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Abstract

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder exhibiting heterogeneous characteristics in patients,
including variability in developmental progression and distinct neuroanatomical features influenced by sex and age. Recent advances in
deep learningmodels based on functional connectivity (FC) graphs have produced promising results, but they have focused on generalized
global activation patterns and failed to capture specialized regional characteristics and accurately assess disease indications. Methods:
To overcome these limitations, we propose a novel deep learning method that models FC with multi-head attention, which enables
simultaneous modeling of the intricate and variable patterns of brain connectivity associated with ASD, effectively extracting abnormal
patterns of brain connectivity. The proposed method not only identifies region-specific correlations but also emphasizes connections at
specific, transient time points from diverse perspectives. The extracted FC is transformed into a graph, assigning weighted labels to the
edges to reflect the degree of correlation, which is then processed using a graph neural network capable of handling edge labels. Results:
Experiments on the autism brain imaging data exchange (ABIDE) I and II datasets, which include a heterogeneous cohort, showed
superior performance over the state-of-the-art methods, improving accuracy by up to 3.7%p. The incorporation of multi-head attention
in FC analysis markedly improved the distinction between typical brains and those affected by ASD. Additionally, the ablation study
validated diverse brain characteristics in ASD patients across different ages and sexes, offering insightful interpretations. Conclusion:
These results emphasize the effectiveness of the method in enhancing diagnostic accuracy and its potential in advancing neurological
research for ASD diagnosis.
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1. Introduction
Autism spectrum disorder (ASD) presents a unique

challenge in neurodevelopmental diagnostics due to its het-
erogeneous manifestations [1–3]. It is characterized by
a spectrum of symptoms impacting communication, so-
cial interaction, and behavior. Key neurodevelopmental
changes in ASD include structural brain changes and de-
velopmental changes, which can differ by sex.

Structural brain changes, including variations in the
hippocampus, amygdala, cerebellum, and cortex, are no-
table in ASD. For instance, an enlarged hippocampus in
children and adolescents, and differing amygdala sizes im-
pacting emotional processing are common [4,5]. Moreover,
alterations in the cortex thickness and cerebellum tissue un-
derscore the complexity of ASD’s neural basis [6,7]. Devel-
opmental changes in ASD are characterized by early brain
overgrowth, followed by potential premature brain shrink-
age. Excessive cerebrospinal fluid and enlarged head cir-
cumference in early development are also observed [8–10].
There are structural brain differences betweenmales and fe-
males with ASD and, alongside variations in the amygdala,
further complicate the subject’s neural profile [7,11,12].

To overcome these challenges, extensive research has
been conducted based on neuroimaging techniques such as
functional magnetic resonance imaging (fMRI) with deep
learning to interpret and extract patterns from the brain’s
complex features [13,14]. On the other hand, an approach
based on functional connectivity (FC) has emerged, which
aims to provide further insight into the brain’s functional
relationships [15–17]. Typically, FC-based methods utilize
the brain’s regional differences by designating each region
as a biomarker and measuring the correlations between re-
gions based on their temporal attributes. The graphs cre-
ated by connecting each region according to these measured
correlations explicitly represent the brain’s spatial relation-
ships, proving useful in various disease diagnoses when an-
alyzed with tools such as graph neural networks (GNNs)
[18].

However, many previousmethods have focused solely
on structural features or fail to consider the heterogeneous
external characteristics of the data, leading to reduced effi-
ciency in diagnosingASD and overlooking the transient and
localized features of the disorder [19,20]. Some symptoms
may manifest in concentrated forms within specific time-
frames and localized regions [21–23]. For instance, seizure
disorders might exhibit changes in brain activity only at
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Table 1. Studies related to deep learning models for the diagnosis of ASD.
Author Feature Method Description

El-Gazzar A. et al.
[30] (2019)

Spatio-Temporal 3D-CNN-LSTM To overcome the challenges of extracting patterns from high-
dimensional data with significant cardinality, the method uses 3D
CNN and LSTM networks.

Eslami T. et al.
[31] (2019)

Spatio-Temporal ASD-DiagNet Tomitigate diagnostic limitations of behavior analysis through au-
toencoders combined with classifiers or sparse autoencoders.

Anirudh R. and
Thiagarajan JJ.
[39] (2019)

Graph Neural Net-
work

Bootstrapping ensemble
of graph convolutional
neural networks (GCNs)

To address the challenges by integrating socio-cultural traits and
brain activity patterns, a bootstrapped GCN reduces dependency
on specific graph constructions, enhancing model robustness and
offering improvements over existing graph-based neural networks
even in the presence of noisy graphs.

Ahmed M.R. et al.
[29] (2020)

Spatio CNN Ensemble This strategy combats data complexity and heterogeneity by de-
ploying ensemble classifiers that learn from generative models in
a post-learning phase.

Almuqhim F. and
Saeed F. [32]
(2021)

Spatio-Temporal ASD-SAEnet To overcome the limitations of current clinical ASD diagnoses re-
liant on behavioral observations, ASD-SAENet utilizes a sparse
autoencoder for feature optimization and classification.

Park K. et al. [41]
(2021)

Spatio-Temporal ResNet-LSTM with self-
attention

To overcome the complexity of diagnosing ASD, the method
leverages attention and convolutional recurrent neural networks
to analyze dynamic connectivity between specific brain regions.

Kang, L. et al. [44]
(2023)

Spatio-Temporal Multi-view ensemble
learning

To address inter-site heterogeneity in multi-site fMRI data, the au-
thors utilized a multi-view ensemble learning network, demon-
strating strong generalization capabilities.

Li W. et al. [43]
(2022)

Spatio-Temporal Self-supervised ensem-
ble

This method addresses the issue of considering non-adjacent re-
gions in CNNs by utilizing Vision Transformers.

Sotero R.C. et al.
[45] (2023)

Feature Selection Al-
gorithm

R-walk Using a random walks technique for feature extraction and selec-
tion from resting-state fMRI data, this method demonstrates effec-
tiveness in simplifying data and enhancing model performance.

ASD, Autism spectrum disorder; CNN, convolutional neural network; fMRI, functional magnetic resonance imaging; LSTM, long short-term
memory.

distinct, fleeting moments, triggered by external or inter-
nal stimuli [24,25]. In other words, these methods fail to
capture the temporal and spatial specificity essential for ac-
curately representing and diagnosing ASD manifestations.

To cope with the challenges of capturing the transient
and localized characteristics of ASD that are heterogeneous
among ASD patients, we propose a novel deep learning
method designed to model FC with multi-head attention.
This model aims to extract transient and localized FC while
simultaneously learning the structural and temporal features
in fMRI images through the attention mechanism. Unlike
conventional methods, the model not only identifies region-
specific correlations across the overall spectrum but also
highlights the connections at specific, transient time points.
Understanding the nuanced characteristics of ASD necessi-
tates an approach that can capture the unique traits of each
patient, as well as the intricate temporal and spatial dynam-
ics of their condition. By employing multi-head attention in
our analysis of ASD, we enhance our ability to capture the
unique and complex traits of each patient, including their
temporal and spatial dynamics.

This method allows for the simultaneous processing
of diverse ASD characteristics, improving the detection of

subtle patterns and offering deeper insights into the disor-
der. Multi-head attention thus plays a crucial role in facil-
itating more accurate and personalized diagnoses, marking
a significant step forward in ASD research. After this ex-
traction process, the FC is transformed into a graph. While
traditional FC-based methods for ASD prediction typically
represent this FC as a binary adjacency matrix, the method
assigns weighted labels to the graph edges, reflecting the
degree of correlation. To effectively process the graph with
added edge information, the proposed method employs a
GNN capable of handling edge labels to embed the FC and
perform disease diagnosis. Due to its design to capture
heterogeneous patterns, the proposed multi-head attention-
based FC model is particularly adept at addressing the dis-
tinct neurodevelopmental changes characteristic of ASD’s
heterogeneity.

To validate the effectiveness of the proposed method,
we conduct experiments using the autism brainimaging data
exchange (ABIDE) I and II datasets. We will show that this
novel method significantly enhances the ability to differ-
entiate between healthy brains and those affected by dis-
eases in FC analysis experiments, aiming at ASD classi-
fication. Additionally, by categorizing patients according
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Fig. 1. Overview of the proposed method. (a–c) Steps in the pre-training of attention based spatio-temporal features. (d,e) Steps in
the proposed brain network graph generation. (f) The final step to diagnosing the brain disorder with graph classifications. ROI, region
of interest; FC, functional connectivity; DMN, Default Mode Network; DLPFC, Dorsolateral Prefrontal Cortex; LOC, Lateral Occipital
Complex; IPS, Intraparietal Sulcus; ACC, Anterior Cingulate Cortex; STS, Superior Temporal Sulcus; TPJ, Temporoparietal Junction;
PCC, Posterior Cingulate Cortex; L, Left; R, Right.

to age and sex as specified in the data, we will verify the
observed heterogeneity in the brain imaging results of the
patients. Furthermore, we will reaffirm that the proposed
method achieves superior performance in datasets exhibit-
ing this heterogeneity.

2. Related Works

An ensemble of convolutional neural networks
(CNNs), encompassing architectures such as ResNet and
Inception V3, has demonstrated proficiency in extracting
spatial features from brain images, a critical factor in deci-
phering spatial conditions [26–28]. Such models have not
only achieved high accuracy but also facilitated the anal-
ysis of both structural and functional brain aspects [29].
Studies that combine spatial features using convolutional
neural networks and temporal features using recurrent neu-
ral networks have been validated for effectively capturing
the brain’s intricate spatio-temporal characteristics, which
demonstrate superior performance in various disease diag-
noses [30–32]. CNN and long short-term memory (LSTM)
networks have been extensively used in brain disease di-
agnosis, particularly leveraging their capability to process
spatio-temporal data effectively [33]. CNNs excel in ex-
tracting spatial features from complex datasets, such as
fMRI images, by identifying patterns and structures within
the brain. Meanwhile, LSTMs contribute by analyzing tem-

poral dynamics, which is crucial for understanding how
brain activities evolve over time. This synergy allows for
a comprehensive analysis of brain function and structure,
leading to more accurate diagnosis and prognosis of vari-
ous neurological conditions [34].

FC analysis has emerged as a fundamental tool in brain
research, playing a critical role in identifying biomarkers
for a wide range of neurological and mental diseases [35–
37]. Traditional FC-based methods are particularly instru-
mental in mapping the brain’s neural network [35]. They do
so by creating graphs where nodes represent regions of in-
terest (ROIs), specific areas within the brain that are of rel-
evance to the study or disease in question [37]. The edges
in these graphs symbolize the functional connections be-
tween these regions, essentially capturing the communica-
tion pathways or networks within the brain.

Moreover, the application of graph-based methods in
fMRI analysis has significantly advanced understanding
of the brain’s structure and functionality [38–41]. These
graph-based approaches provide a more comprehensive
view of the interconnectedness of brain regions, going be-
yond traditional imaging techniques [38,42]. By examining
the intricate network of connections, researchers can un-
cover patterns and associations that may not be immediately
apparent through standard imaging analysis. This level of
analysis is particularly valuable in the study of complex
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brain disorders, where multiple regions of the brain may be
affected simultaneously. Table 1 (Ref. [29–32,39,41,43–
45]) summarizes the trends in the latest ASD-related foun-
dational methods, including a classification and description
of each method.

3. Proposed Method
Fig. 1 illustrates the proposed model that uses a resid-

ual convolutional bidirectional LSTMwith a multi-head at-
tention mechanism to extract spatial and temporal features.
In the preprocessing phase (Fig. 1a), 4D fMRI images are
segmented into 3D blocks at each time interval t, with each
block containing k consecutive slices. These k-slice slid-
ing windows move to the spatial feature extraction phase
(Fig. 1b), creating a series of overlapping blocks that cover
the entire fMRI image sequence by shifting v volumes at
a time. The extracted spatial features are then passed to
an LSTM in phase (Fig. 1c) for modeling the overall tem-
poral attributes. During this phase, the proposed method
employs multi-head attention to assign weights to the tem-
poral attributes. The assigned weights enable the model to
learn which temporal attributes are significant, in conjunc-
tion with Lspatio−temporal. At this phase, Fig. 1a–c out-
lines the classification training to extract spatial and tem-
poral features from brain images through pre-learning. This
allows the CNN-based spatial extractor to identify signifi-
cant spatial features in complex images of the brain, and
in part c, the relationships between each spatial feature ex-
tractor are learned through LSTM and attention, enabling
the extraction of characteristic parts from brain images.

Subsequently, in phase (Fig. 1d), the model explicitly
maps the dynamic (temporal) FC correlations of the input
image sequence to regions of the brain using features ex-
tracted from the attention mechanism in phase (Fig. 1c).
This mapping is utilized in phase (Fig. 1e) to create a graph,
where the FCs are treated as the adjacency matrix of the
graph, the brain regions as nodes, and the edges represent
the degree of correlation. The constructed graph is utilized
for ASD diagnosis using a GNN. We employ a GNN capa-
ble of processing edge labels to utilize the correlations of
FC more effectively.

3.1 Residual CNN for Spatial Features
CNNs are widely utilized in analyzing fMRI imaging

data for autism diagnosis. Typically, CNNs employ con-
volutional filters to detect structural features within mag-
netic resonance imaging (MRI) scans to classify whether
the patient has the disease or not. However, this approach
often falls short in capturing the unique spatial differences
inherent to individual patients. To overcome this limitation,
we use an enhanced residual convolutional neural network.
This network is designed with a more extensive and deeper
architecture compared with traditional CNNs, enabling it
to discern spatial variances more effectively between re-
gions, which vary significantly among patients. We have

defined spatial features not in 2-d space but in 3-d voxel
space, hence we utilize a 3D ResNet structure.

We have devised a specific residual operation, denoted
asH(·), alongside the convolutional operation F (·). These
operations process the input at row i, column j, and layer l,
represented as xl

ij .

H(x) = F (x) + x. (1)

The key innovation in the proposed method lies in the
incorporation of a residual connection that maintains the
gradient F ′(x) + 1 across all layers.

F (x) = Σm−1
a=0 Σm−1

b=0 wl
abx

l−1
(i+a)(j+b). (2)

This feature is particularly critical in addressing the is-
sue of gradient vanishing, a common challenge in deep neu-
ral networks. It not only mitigates the gradient vanishing
issue but also ensures minimal loss of dynamic FC inherent
in convolutional networks. Simultaneously, it maximizes
the extraction and analysis of spatial variations.

3.2 Multi-Head Attention for Temporal Features
The spatial features of the brain extracted through the

residual network are fed into a BiLSTM-based multi-head
attention mechanism for mapping time series attributes.
One of the primary objectives of the proposed method is
to extract and enhance transient brain features appearing
in fMRI images, which is why we employ an attention-
based mechanism to map these time series attributes. We
use multi-head attention instead of single head attention be-
cause the latter is often insufficient to fully extract the de-
pendencies between temporal features in the complex spa-
tial context of the brain. Multi-head attention allows us to
model these dependencies more effectively.

When considering the features x1, x2, …, xk ex-
tracted from the residual CNN blocks, their embedding
through a BiLSTM and multi-head attention mechanism
can be described by referencing the formula provided. At
first, the features x1, x2, …, xk of the CNN are input
into the BiLSTM network, which processes these features
to capture the temporal dependencies, producing a series of
hidden states h1, h2, …, hN . In the context of the multi-
head attention mechanism, each pair of hidden states hi and
hj is evaluated to compute the attention weights aij . This
is achieved through the following softmax function:

aij = softmaxj (hij) =
exp (score (hi, hj ·Wvhi))

ΣN
n=1 exp (hi, hn ·Wvhi)

. (3)

Here, score(hi, hj) is a function that measures the
compatibility of the hidden states hi and hj , which is cal-
culated as:

score (hi, hj) = f (Wqhi,Wkhj) (4)
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where Wq and Wk are weight matrices for the query and
key in the attention mechanism, respectively.

Finally, the output representation ri for each hidden
state hi is computed as a weighted sum of all hidden states,
with the weights being the attention scores:

ri = ΣN
n=1ain · hn. (5)

This process is repeated independently K times, and
the results are concatenated to form a single vector. The
proposed multi-head attention’s integration of spatial and
temporal aspects enables it to focus on specific time frames
and effectively model the transient characteristics of dis-
eases. This mechanism allows for the analysis of disease
characteristics from multiple perspectives, providing a de-
tailed and multi-faceted understanding of the unique fea-
tures of the disease.

3.3 Learning Dynamic Functional Connectivity
Park et al. [41] demonstrated that the extraction

of spatio-temporal features while preserving the integrity
of dynamic connectivity significantly enhances accuracy.
Nevertheless, a more direct method to learn the dynamic
connectivity across 39 brain regions could offer further im-
provements. As depicted in Fig. 1e, the method leverages
the spatio-temporal model as a foundational, pre-trained
model. We transform the output of the intermediate layer,
which consists of time-series spatial feature maps, into
a connectivity matrix that delineates the relationships be-
tween 39 distinct brain regions. Subsequently, this spatio-
temporal feature map is merged with a connectivity adja-
cency matrix, incorporating attention weights between re-
gions. The GNN is then employed to explicitly learn and
articulate the connection information among these 39 brain
regions.

Upon processing the fMRI data through the LSTM
network, enhanced with an attention mechanism, the out-
put consists of a series of feature representations, symbol-
ized asR = r1, r2, …, rT . Each element rt in this series
represents the features for different brain regions at time t,
which are then fed into the ‘ConnectivityMeasure’ module
to compute the connectivity matrices.

The connectivitymatrix, denoted asC, is derived from
these feature representations. Specifically, for each pair of
brain regions, denoted as i and j, over the entire time se-
ries T , the connectivity metric is computed, resulting in a
matrix C of N × N dimensions, where N is the number
of brain regions (we use 39 regions). This can be formally
represented as:

Cij = ConnectivityMeasure (ri, rj) . (6)

Here, Cij represents the connectivity value between
regions i and j. The ‘ConnectivityMeasure’ method allows
us to apply variousmetrics such as correlation, partial corre-

lation, tangent, or covariance, depending on analysis needs.
This results in different forms of the matrix C, each encap-
sulating unique aspects of inter-regional brain dynamics:

Cmetric = metric(F ),

where metric ∈ [Corr, Pcorr, Tan,Cov].
(7)

This method leads to the creation of a comprehen-
sive connectivitymatrixC, which captures the dynamic and
complex inter-regional relationships within the brain. Such
a matrix not only illustrates the direct interactions between
different brain areas but also provides deeper insights into
the overall functional network architecture.

3.4 Assigning Discrete Edge Label
Next, we interpret the connectivity matrix C obtained

from fMRI data as the adjacency matrix A of a graph, with
each element Cij representing the strength of connection
between brain regions i and j. This matrix is crucial for un-
derstanding the complex interconnections within the brain.
To facilitate graph-based analysis, we categorize the contin-
uous correlation values in matrixC into discrete edge labels
based on quartiles, as follows:


1 if Cij ∈ Q1

2 if Cij ∈ Q2

3 if Cij ∈ Q3

4 if Cij ∈ Q4

, where Qn is n− th quartile. (8)

This labeling method allows us to transform the con-
tinuous brain connectivity data into a format suitable for
GNN analysis.

3.5 Edge Conditioned Layer and Classification
In the proposed method, we translate the fMRI-

derived connectivity matrix C into an adjacency matrix
Afor graph construction, with discrete edge labels de-
rived from C’s quartile-based categorization. The edge-
conditioned convolution (ECC) layer plays a crucial role in
embedding this graph, capturing intricate connectivity pat-
terns for ASD diagnosis. The ECC layer is defined by the
following process:

Given the graph G = (V, E) with nodes V (rep-
resenting brain regions) and edges E (representing connec-
tions between regions), and an edge label functionL : E →
Rs assigning labels to each edge, the ECC layer embeds the
graph by computing a signal X l at each node. This signal
is a function of the node’s features and its neighborhood
structure, mathematically defined as:

X l(v) = σ
(
Σu∈N (v)Θ

l
uv ·X l−1(u)

)
. (9)

Here, X l(v) is the feature vector of node v at layer
l, N (v) denotes the set of neighbors of v, Θl

uv is the edge-
conditionedweightmatrix for the edge from u to v at layer l,
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Fig. 2. Box plot of accuracy on the ABIDE I and II datasets. ABIDE, autism brainimaging data exchange.

and σ is a non-linear activation function. The weight matrix
Θl

uv is computed as a function of the edge label L(u, v),
which reflects the strength and characteristics of the con-
nectivity between regions u and v:

Θl
uv = f l(L(u, v)). (10)

where f l is a learnable function specific to layer l, typically
implemented as a neural network.

Through successive ECC layers, the graph is embed-
ded into a high-dimensional space that captures not only the
features of individual brain regions but also the complex
connectivity patterns among them. This embedded repre-
sentation is then used for classification tasks, such as iden-
tifying ASD. The ECC’s ability to condition on edge labels
enables the model to adaptively learn different patterns of
brain connectivity, crucial for accurate disease diagnosis.

The final classification is performed by feeding the
embedded graph representation through a series of fully
connected layers, culminating in a softmax layer for disease
categorization:

Y = softmax(FC(X)L). (11)

where Y is the output classification, XL is the feature rep-
resentation from the final ECC layer, and FC denotes the
fully connected layers. In the proposed method, we do not

use the typical graph classification Readout. Since we have
predefined that each graph consists of the same number of
nodes (39 in total), we do not employ an integrated graph
embedding method that accounts for this.

4. Experimental Results
The experimental setup was conducted using a Nvidia

DGX station (Nvidia, Santa Clara, CA, United States)
equipped with 2560 Nvidia tensor cores, running on an
Ubuntu desktop Linux OS. The hardware included four
Tesla V100 GPUs (64 GB each) and 256 GB of LRDIMM
DDR4 memory. For the software environment, we uti-
lized Ubuntu with Python 3.x (https://www.python.org/)
and TensorFlow version 2.3 (https://www.tensorflow.org/).
Additionally, various Python libraries (https://pypi.org/)
such as Scikit-learn, Nilearn, Nibabel, Monai, and Net-
workx were utilized for the experiments.

4.1 Dataset and Implementation
We employed the preprocessed ABIDE I and II

datasets [44], accessible through a web-based platform. We
preprocessed the dataset using the Configurable Pipeline for
the Analysis of Connectomes (C-PAC) as our preprocessing
pipeline. This version of the preprocessing steps includes
slice timing and motion correction, intensity normalization
(4D global mean = 1000), nuisance signal regression, band-
pass filtering (0.01–0.1 Hz), and registration to the 3 mm
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Table 2. ABIDE I and II data phenotypical information summary.
ABIDE I ABIDE II

Site
Count

Min age (y) Max age (y) Site
Count

Min age (y) Max age (y)
ASD Control Male Female ASD Control Male Female

CALTECH 19 19 30 8 17.0 56.2 BNI 29 29 58 0 18.0 64.0
CMU 14 13 21 6 19.0 40.0 EMC 27 27 44 10 6.2 10.7
KKI 22 33 42 13 8.07 12.77 ETH 13 24 37 0 13.8 30.7
LEUVEN_1 14 15 29 0 18.0 32.0 GU 51 55 71 35 8.1 13.9
LEUVEN_2 15 20 27 8 12.1 16.9 IP 22 34 26 30 6.1 46.6
MAX_MUN 24 33 50 7 7.0 58.0 IU 20 20 31 9 17.0 54.0
NYU 79 105 147 37 6.47 39.1 KKI 56 155 140 71 8.0 13.0
OHSU 13 15 28 0 8.0 15.23 KUL 28 0 28 0 18.0 35.0
OLIN 20 16 31 5 10.0 24.0 NYU_1 48 30 71 7 5.2 34.8
PITT 30 27 49 8 9.33 35.2 NYU_2 27 0 24 3 5.1 8.8
SBL 15 15 30 0 20.0 64.0 OHSU 37 56 57 36 7.0 15.0
SDSU 14 22 29 7 8.6 17.1 OILH 24 35 40 19 18.0 31.0
STANFORD 20 20 32 8 7.5 12.9 SDSU_1 33 25 49 9 7.4 18.0
TRINITY 24 25 49 0 12.0 25.9 SDSU_2 21 21 38 4 8.4 13.2
UCLA_1 49 33 71 11 8.4 17.9 TCD 21 21 42 0 10.0 20.0
UCLA_2 13 14 25 2 9.79 16.47 UCD 18 14 24 8 12.0 17.8
UM_1 55 55 84 26 8.2 19.2 UCLA 16 16 26 6 7.8 15.0
UM_2 13 22 33 2 12.8 28.8 USM 17 16 28 5 9.1 38.9
USM 58 43 101 0 8.8 90 U_MIA 13 15 22 6 7.1 14.3
YALE 28 28 40 16 7.0 17.8
ABIDE, Autism Brain Imaging Data Exchange.

Montreal Neurological Institute (MNI) standard template.
The fMRI volumes were down sampled to 4 mm in the
MNI space. During the training phase, the data was aug-
mented through intensity normalization, random Gaussian
noise injection, and affine transformations, along with se-
quence sampling. During inference, a sliding window in-
ference technique was employed, where the model made
predictions for a continuous sequence of 10 frames (win-
dow size of 10) from user data using a sliding window ap-
proach. Soft voting was then conducted using the model’s
predictions across the sliding window to aggregate the final
prediction results. Table 2 shows the data collection insti-
tutions for ABIDE I and II, along with the distributions of
ASD/normal and male/female, and the minimum and max-
imum ages.

Given the variability in the size and length of each
fMRI image, we standardized all images to a uniform size
of 24 × 24 × 24 and applied the sliding window technique
to acquire serial images of fixed length. To ensure no over-
lap in patient information between training and testing, the
dataset was partitioned based on individual patients rather
than the images themselves. Consequently, the dataset was
split into a training set comprising 90% of the cohort and a
validation set consisting of the remaining 10%. The valida-
tion set was utilized for visualization and various analyses.
Detailed information about the dataset used and the details
of the proposed model are shown in Tables 3,4.

Table 3. Configuration data for training, validation, and
testing by dataset (ABIDE I and ABIDE II).

Dataset Type
Configure

Train Valid Test

ABIDE I
ASD 421 47 52
Control 449 50 55

ABIDE II
ASD 422 47 52
Control 481 53 59

4.2 Experimental Results

The results of the 10-fold cross-validation experi-
ments in ABIDE I and II demonstrated the superiority of
the proposed method. As shown in Fig. 2 and Table 5 (Ref.
[29–32,41,44–47]) when compared with the graph-based
approach Covariance FC with GCN, the method exhib-
ited a performance improvement of approximately 3.7%p
in the ABIDE I dataset and about 2.1%p in the ABIDE II
dataset. This performance difference is attributed to two
main reasons. Firstly, the use of covariance in FC for
graph construction in traditional methods may not suffi-
ciently capture the neurological characteristics of the brain.
The proposed method, applying multi-head attention, di-
versifies perspectives in extracting correlations, thereby en-
hancing the ability to identify and emphasize heteroge-
neous data features from fMRI data. Secondly, unlike GCN
which uses only node features as input, the method benefits

7
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Table 4. Model structure of proposed pre-training method.

Operation
Time In Out Kernel

Stride Padding BatchNorm Dropout Activation
Distributed Channels Channels (Layer)

Input: 10 × 1 × 24 × 24 × 24 (1 channel voxel with time)
Input stem True 1 32 3 × 3 × 3 2 × 2 × 2 1 × 1 × 1 True 0.3 ReLU
Layer 1 True 32 64 3 × 3 × 3 1 × 1 × 1 1 × 1 × 1 True 0.3 ReLU
Layer 2 True 64 128 3 × 3 × 3 1 × 1 × 1 1 × 1 × 1 True 0.3 ReLU
Max pooling True 128 128 2 × 2 × 2 2 × 2 × 2 X X X X
Layer 3 True 128 256 3 × 3 × 3 1 × 1 × 1 1 × 1 × 1 True 0.3 ReLU
Layer 4 True 256 512 3 × 3 × 3 1 × 1 × 1 1 × 1 × 1 True 0.3 ReLU
Global

True - - 3 × 3 × 3 - - - - -
Average Pooling
Bi-Directional

True 512 1024 2 - - - X ReLU
LSTM
Multi-head

- 1024 1024 8 - - - X ReLU
Attention
Fully

- 1024 256 - - - True 0.5 ReLU
Connected 1
Fully

- 256 2 - - - - 0.3 Softmax
Connected 2
Optimizer Adam (lr = 0.0001, weight decay = 0.0005)
Batch size 128
Epochs 1000 epochs (early stopping 20)
Lr scheduler StepLR (step_size = 50, gamma = 0.5)
Total Params: 20,236,146
ReLU, Rectified Linear Unit.

Table 5. Accuracy on the ABIDE I and II datasets.
Task (dataset) Method Accuracy

ABIDE I

Bootstrapping ensemble of GCNNs [47] 68.46 ± 7.94
ASD-DiagNet [31] 76.22 ± 2.29
Multi-view ensemble learning [44] 74.16 ± 1.31
ASD-SAEnet [32] 77.13 ± 5.44
R-walk [45] 73.45 ± 2.81
CNN Ensemble [29] 83.67 ± 3.24
3D-CNN-LSTM [30] 84.65 ± 2.21
ResNet-LSTM with self-attention [41] 86.74 ± 1.34
Covariance FC with GCN 87.66 ± 6.84
Self-supervised ensemble [46] 94.13 ± 3.12
Proposed Method 97.88 ± 1.64

ABIDE II

Multi-view ensemble learning [44] 73.75 ± 2.97
ASD-SAEnet [32] 74.81 ± 1.13
R-walk [45] 75.99 ± 3.28
CNN Ensemble [29] 81.48 ± 5.66
3D-CNN-LSTM [30] 82.38 ± 4.74
ResNet-LSTM with self-attention [41] 82.39 ± 2.93
Covariance FC with GCN 86.94 ± 0.91
Self-supervised ensemble [46] 93.23 ± 2.18
Proposed Method 95.35 ± 0.12

from the Edge conditioned layer that models the correla-
tions between nodes, leading to more effective embedding
of the constructed FC and subsequently improved perfor-
mance (detailed in section 4.3). Due to these characteristics,

the proposed method outperformed existing 3D CNN neu-
ral network-based approaches that achieved state-of-the-art
(SOTA) results through additional parameters or enhanced
learning algorithms.

The receiver operating characteristic (ROC) curves of
the five models are shown in Fig. 3. In contrast to alterna-
tive network models, our proposed model demonstrates a
more balanced trade-off between accuracy and recall rates.
Additionally, the aria under the ROC curve (AUC) index of
our model surpasses that of the others, affirming its capac-
ity to capture the intrinsic features of the data. This under-
scores the superior generalization ability of our model.

4.3 Analysis of Correlations of ROI

Fig. 4 illustrates the brain regions activated as iden-
tified through the proposed method’s model internal atten-
tion values, based on the presence or absence of various dis-
eases, age, and sex derived from data and additional analy-
ses. Notably, in the activation maps of Fig. 4a–c, where
ASD is present, each map shows different regional acti-
vations, highlighting that the areas highlighted by the pro-
posed method vary with age and sex. Furthermore, the ac-
tivation maps of Fig. 4c,d for similar age groups and the
same sex show generally similar patterns of highlighted re-
gions, despite the presence or absence of disease. This un-
derlines the necessity for models diagnosing ASD to cap-
ture not only specific regions and times of brain activity
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Fig. 3. ROC curves on the ABIDE I and II datasets. ROC, receiver operating characteristic; FP, False Positive; TP, True Positive.

Fig. 4. Brain ROI activations depend on the presence or absence of disease, age, and sex. (a–c) represent brain scans of patients with
ASD, while (d,e) depict brain scans of controls. The blue boxes denote common features visible in both individuals with the disease and
those without it, while the red boxes indicate the level of activation varying according to age, gender, and disease status of each patient
and control. ROI, represent regions of interest; M, male; F, female.

but to also comprehend the extent of each disease present
in the dataset and the unique characteristics of each patient.
In essence, this disorder exhibits heterogeneity based on
disease progression, sex, and age, indicating that various
complex external factors must be considered in diagnosing
ASD. Based on our analysis of Fig. 4 and the detailed ob-
servations of brain region activations through the proposed
method’s attention values, it becomes evident that our ap-
proach excels at extracting the nuanced characteristics of
ASD and its variability across different ages and sexes. This

proficiency is particularly crucial given the heterogeneity
of ASD, whichmanifests distinctly in each individual based
on a complex interplay of factors including disease progres-
sion, age, and sex.

Fig. 5 illustrates the analysis of the correlation ma-
trix extracted by the proposed method. As observed in this
correlation matrix, the time-series features extracted from
ASD patients and processed through the attention mecha-
nism closely connect various regions of the brain, reflecting
their interdependencies and enabling effective prediction of
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Fig. 5. Correlation matrices and brain regional connectivity graphs in ASD and normal brains. (a,b) show the level of brain
activation between normal individuals and patients of similar age groups.

ASD. In contrast, in a normal brain, the attention mecha-
nism does not establish as strong connections between re-
gions, indicating that the model fails to identify significant
characteristics that could highlight connections across dif-
ferent brain areas. This distinction highlights the strength of
the proposed method, which leverages attention-based fea-
ture extraction, graph transformation, and a GNN. These
steps enhance the differentiation of disease-specific fea-
tures, thereby improving the accuracy of disease diagnosis.
The method’s effectiveness is rooted in its ability to accen-
tuate the contrast between the neurobiological patterns of
ASD and those of a typical brain, illustrating the nuanced
complexities captured by the proposed method. The inte-
gration of the attention mechanism with graph-based analy-
ses provides a more comprehensive understanding of brain
connectivity patterns, crucial for discerning the subtle yet
significant differences in neurological conditions. This ad-
vancedmethodology demonstrates a significant stride in en-
hancing diagnostic precision through sophisticated analysis
of fMRI data.

Fig. 6 depicts FC overlaid on brain images to ana-
lyze differences based on the presence of disease, as well

as sex and age. Below each image, details such as the col-
lection site, subject ID, sex, age, and disease status are doc-
umented. This allows for a detailed examination of pat-
terns in ASD across different age groups, as observed in
the differences between images Fig. 6a,b. This not only
suggests that FC characteristics in ASD can vary with age
and between individuals but also highlights the importance
of deep learning models in capturing these individual varia-
tions. Furthermore, a comparison between images Fig. 6a,c
demonstrates sex-based variations in brain characteristics.
For instance, the posterior region of the left hemisphere is
almost inactive in image Fig. 6c compared with Fig. 6a,
highlighting the diversity in brain activation patterns in
ASD. The differences among images Fig. 6a–d, where no
similar patterns are observed, underscore the necessity of
the proposed model. Additionally, the similarities observed
in images Fig. 6d–f, regardless of the presence or absence
of disease, present a unique challenge. Considering that
d represents ASD while Fig. 6e,f are from healthy brains,
distinguishing these subtle differences becomes a primary
function of the model. Therefore, the effectiveness of our
proposed method, which employs enhanced FC with multi-
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Fig. 6. FC displayed over brain images, categorized by the presence or absence of disease, and differentiated by sex and age
(measured in years). Subgraphs (a–f) represent the interconnectivity between brain regions of both patients and control individuals.

head attention and an edge label-based GNN, is validated
by its superior performance.

Table 6 shows the statistical significance of various
methods in comparison with the proposed method across
a range of experimental settings. Each row represents a
different method, while the columns delineate the p-values
obtained through Wilcoxon tests and their corresponding
false discovery rate (FDR)-corrected values. These met-
rics serve as indicators of the likelihood that the observed
differences between the proposed method and its counter-
parts are due to chance. Upon examining the table, it is evi-
dent that the p-values associated with the proposed method
consistently exhibit a substantial disparity compared with
other techniques. For instance, the p-values for CNN En-
semble, Covariance FC with GCN, ASD-SAEnet, Vision-
Transformer, 3D-CNN-LSTM, ASD-DiagNet, Contrastive
CNN, and CNN-LSTM-GCN are 3.5× 10−9, 6.58× 10−8,
2.2 × 10−6, 1.3 × 10−5, 3.4 × 10−5, 4.1 × 10−5, 1.1 ×
10−3, and 8.4 × 10−3, respectively, with FDR-corrected
values in a similar range. This stark contrast suggests that
the differences observed between the proposed method and
each alternative are highly unlikely to have occurred by
random chance alone. Furthermore, the FDR-corrected p-
values reinforce the robustness of these findings, indicating
that even after adjusting for multiple comparisons, the sta-
tistical significance of the disparities remains pronounced.

Thus, based on these analyses, it can be confidently con-
cluded that the proposed method exhibits statistically sig-
nificant differences compared with the other methodologies
evaluated in the study. Such findings underscore the effi-
cacy and potential superiority of the proposed approach in
the context of the addressed problem domain.

Our experimental analysis confirms that the proposed
method significantly outperforms existingmodels in detect-
ing ASD, showcasing its potential to improve early diag-
nosis and contribute to personalized healthcare strategies.
The attention-based feature extraction mechanism effec-
tively identifies the most relevant features across diverse
patient profiles, illustrating a deep understanding of the dis-
order’s complexity. This capability is a testament to the
model’s design, which integrates advanced machine learn-
ing techniques to navigate the intricate patterns of brain ac-
tivity unique to ASD.

In conclusion, the proposed method introduces a more
complex yet significantly more effective approach to ASD
diagnosis. Despite the increase in complexity, this method
marks a substantial advancement by offering unparalleled
precision in understanding and diagnosing the disorder. Its
sophisticated use of advanced techniques, including but not
limited to multi-head attention, allows for the precise ex-
traction of features from brain activation maps, enhanc-
ing diagnostic accuracy and our understanding of ASD.
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Table 6. Results of statistical analyses for the proposed method and other methods using the same dataset.
Method p-value (Wilcoxon) Corrected p-value (FDR)

**CNN Ensemble 3.5 × 10–9 2.8 × 10–8

**Covariance FC with GCN 6.58 × 10–8 2.6 × 10–7

**ASD-SAEnet 2.2 × 10–6 5.9 × 10–6

**Vision-Transformer 1.3 × 10–5 52.6 × 10–5

**3D-CNN-LSTM 3.4 × 10–5 5.4 × 10–5

**ASD-DiagNet 4.1 × 10–5 5.4 × 10–5

*Contrastive CNN 1.1 × 10–3 1.3 × 10–3

CNN-LSTM-GCN 8.4 × 10–3 8.4 × 10–3

*p < 0.005. **p < 0.0005. FDR, false discovery rate.

This method’s ability to navigate the disorder’s complex-
ities provides clear advantages, including the potential for
more accurate diagnoses, the development of personalized
treatment plans, and the facilitation of further research
into ASD. By leveraging these advanced techniques, the
proposed method sets a new standard for ASD diagnosis,
promising improved outcomes for individuals with ASD
and paving the way for more effective, personalized care.

4.4 Limitations

Although our method has shown promising results in
effectively extracting brain networks and has undergone
rigorous performance and qualitative evaluations for dis-
ease identification, we acknowledge the existence of mul-
tiple challenges that impede our progress towards a truly
comprehensive diagnostic tool. In practical scenarios, it is
highly unlikely to encounter situations where only a sin-
gle disease needs detection. This reality encourages us to-
wards the ambitious goal of developing a universal diagnos-
tic model that can seamlessly transition between diagnosing
various neurological conditions, such as Alzheimer’s dis-
ease, attention deficit/hyperactivity disorder (ADHD), and
beyond.

However, a significant hurdle that currently limits our
research is the focused nature of existing studies on par-
ticular diseases. This specificity necessitates a unique pre-
processing routine for each disease dataset, complicating
the development of a universal model. The need for a sim-
plified and standardized preprocessing procedure cannot be
overstated, as it would significantly facilitate the adaptation
of models to handle diverse datasets efficiently.

Moreover, the advent of transformer-based feature ex-
tractors, renowned for their efficacy in numerous fields,
particularly due to their strengths in transfer learning,
presents an opportunity for innovation in fMRI data anal-
ysis. These models’ ability to adapt and learn from vast
amounts of data could revolutionize how we approach
fMRI data, making them an excellent candidate for fu-
ture research. Nonetheless, developing a transformer-based
model that caters specifically to the unique characteristics
of fMRI data, such as its high dimensionality and the sub-
tle nature of signal variations indicative of different neuro-

logical conditions, poses an additional layer of complexity.
Such a model would need to not only extract relevant fea-
tures from the fMRI data effectively but also be capable of
doing so in a way that is computationally feasible and clin-
ically relevant.

To evolve into a universal model that is adaptable to
various downstream tasks derived from fMRI data, wemust
also consider the integration of multimodal data sources, in-
cluding genetic information, clinical assessments, and be-
havioral data. This integration would undoubtedly enhance
the model’s diagnostic capabilities but also introduces the
challenge of managing and analyzing heterogeneous data
types.

5. Conclusion
In this paper, we present a significant advancement in

understanding and diagnosing neurological conditions, us-
ing advanced neural network techniques applied to fMRI
data. The proposed method, which incorporates attention-
based feature extraction, graph transformation, and GNNs,
has demonstrated superior accuracy in identifying ASD and
differentiating it from normal (neurotypical) brain patterns.
The SOTA models achieve 94.13% and 93.23% accuracy
on the ABIDE I and II datasets, whereas our proposed
method has achieved 97.88% and 95.35% accuracy on the
same datasets. Thus, we achieved an accuracy increase of
up to 3.7%p over other SOTAs, outperforming the latest
model methods. Our proposed method has not only en-
hanced the accuracy of ASD diagnosis but also provides
deeper insights into the underlying neurobiological mecha-
nisms.

Future research will focus on developing brain feature
extraction methods using contrastive learning. Although
the proposed method is effective, it is essential that the fea-
ture extraction process is enhanced, especially for identi-
fying patterns in continuous images. The goal is to syner-
gistically integrate feature extraction with graph learning,
aiming for more refined and accurate neural network mod-
els for use in neurological diagnostics.
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