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Abstract

Sleep disorders are prevalent neurological conditions linked to neurocognitive impairments. Understanding the neuroplasticity changes in
the hippocampus, which plays a central role in regulating neurocognitive function, is crucial in the context of sleep disorders. However,
research on neurodegenerative disorders and the influence of sleep disorders on hippocampal neuroplasticity remains largely unclear.
Therefore, this review aims to highlight the latest advancements regarding hippocampal neuroplasticity and functional changes during
sleep disorders, drawing insights from clinical and preclinical research involving sleep-deprived animal models. These articles were
gathered through comprehensive literature searches across databases, including Google Scholar, PubMed, Web of Science, and Scopus.
Maternal sleep deprivation has been observed to cause neurocognitive impairment in offspring, along with changes in protein expression
levels associated with neuroplasticity. Similarly, sleep deprivation in adult mice has been shown to affect several cognitive functions
and fear extinction without influencing the acquisition of fear conditioning. While mechanistic research on neurocognitive dysfunction
induced by maternal and adult sleep deprivation is limited, it suggests the involvement of several signaling pathways, including neu-
rotrophic factors, synaptic proteins, and inflammatory molecules, which are triggered by sleep deprivation. Further studies are needed
to clarify the mechanistic pathways underlying hippocampal dysfunction and synaptic alterations associated with sleep disturbances.
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1. Introduction one symptom of insomnia [13]. Therefore, sleep disorders,
including insomnia and abnormal sleep patterns, frequently
co-occur with neuropsychiatric conditions such as cognitive
impairment and emotional dysregulation, highlighting the
intricate interplay between sleep quality and mental well-

being.

Sleep is crucial in maintaining overall health and well-
being. Deprivation of sleep is intricately linked to several
challenges across various body systems, including the en-
docrine, metabolic, and neurological domains [1-3]. The
importance of a proper and adequate sleep in normal brain
development and function has been considerably explored
[4,5]. Sleep dynamics can profoundly influence brain de-
velopment throughout an individual’s lifespan and are in-
volved in neurodegeneration [6]. During early life, which
is characterized by rapid developmental changes, sleep is
a fundamental brain activity that crucially contributes to
healthy cognitive and psychosocial development [7]. Sleep
disorders manifest in different forms, ranging from com-
plaints of inadequate sleep to perceived excessive or abnor-
mal movements during sleep [8,9]. Chronic sleep distur-
bances are linked to neurobehavioral deficits and physio-
logical abnormalities, often resulting in psychiatric condi-
tions such as cognitive dysfunction and depression [10,11].
For instance, research findings suggest that 40% and 47%

The hippocampus, extensively explored for its diverse
roles in learning, cognition, memory storage, depression,
and anxiety, serves as a focal point of investigation among
other brain regions. Furthermore, it serves as a focal piv-
otal area for exploring the pathophysiology of various neu-
rological diseases characterized by functional alterations,
encompassing neurodegenerative [ 14,15] and neuroinflam-
matory diseases [ 16,17], traumatic brain injuries (TBI) [ 18],
and sleep disorders [19]. Moreover, the hippocampus
has received significant attention in studies investigating
changes in neuroplasticity, particularly concerning neuro-
logical insults such as neurodegenerative diseases [15] and
sleep disorders [19]. Previous research has explored hip-
pocampal neuroplasticity based on neurodegenerative dis-

of individuals experiencing insomnia and excessive sleepi-
ness also exhibit neuropsychiatric disorders, respectively
[12]. Furthermore, disturbed nocturnal sleep patterns are
common among individuals experiencing depression, as re-
vealed in clinical and epidemiological studies, where ap-
proximately 83% of patients with depression report at least

orders [15]. However, the influence of sleep disorders on
hippocampal neuroplasticity remains largely unclear.

Sleep architecture comprises two distinct stages:
rapid-eye-movement (REM) (also known as paradoxical
sleep) and non-REM (NREM) sleep (encompasses deep
slow-wave sleep). Electroencephalogram (EEG) record-
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Table 1. Classification of sleep disorders based on ICSD-3 with typical examples and symptoms.

ICSD-3 major category Typical symptoms

Insomnia

Sleep-related breathing disorder
Central disorder of hypersomnolence
Parasomnia

Sleep-related movement disorder
Circadian rhythm sleep disorder

Excessive daytime sleepiness

Difficulty initiating and maintaining sleep

Excessive daytime sleepiness, cataplexy (with narcolepsy)

Nocturnal movements, sleepwalking

Urge to move legs, difficulty initiating sleep

Difficulty initiating and maintaining sleep, early awakening, and excessive daytime sleepiness

Abbreviations: ICSD-3, international classification of sleep disorders-third edition.

ings facilitate the determination and quantification of these
stages [20]. REM and NREM sleep stages exhibit distinct
oscillatory rhythms in the EEG. Theta rhythms characterize
REM sleep, while NREM sleep features slow waves, spin-
dles, and sharp wave ripples. Certain EEG patterns, such as
theta oscillations in REM sleep and high-frequency sharp
wave ripples in NREM sleep, involve approximately 10—
18% of hippocampal neurons [21]. These EEG rhythms are
proposed to play crucial roles in memory consolidation [22—
24] and in transmitting information from the hippocampus
to the cortex and other brain regions [25,26]. Moreover, the
hippocampus contains a neurogenic niche in adults, con-
tributing to its neuroplasticity capacity. Neurogenesis—a
complex process—is implicated in hippocampal neuroplas-
ticity changes observed across various neurological condi-
tions, including sleep disorders. The hippocampus serves
multiple higher-level functions, with newly formed neurons
potentially integrating into processes such as mood regula-
tion [27] and learning and memory [28]. The influence of
sleep on adult hippocampal neurogenesis has long been rec-
ognized. For example, total sleep deprivation >48 h consis-
tently reduces the basal rate of cell proliferation in the den-
tate gyrus by 30-80% [29]. Overall, sleep disorders clearly
affect hippocampal plasticity from multiple perspectives.

Therefore, this review aims to synthesize articles pre-
dominantly focusing on hippocampal neuroplasticity based
on sleep disorders. By examining clinical and preclinical
studies that focused on sleep dysregulation, these findings
could shed light on potential therapeutic strategies for regu-
lating aberrant hippocampal neuroplasticity in neurodegen-
erative diseases. Additionally, it seeks to identify existing
gaps in comprehending hippocampal neuroplasticity within
the context of neurodegenerative disorders, thereby serving
as a reference point for future research endeavors.

2. Sleep Disorders: A Comprehensive
Overview

Sleep, a dynamic and multifaceted behavioral pro-
cess, can experience disruptions at different stages. The In-
ternational Classification of Sleep Disorders-Third Edition
(ICSD-3) outlines six primary categories [30,31]: insom-
nias, sleep-related breathing disorders, central hypersom-
nolence disorders, parasomnias, sleep-related movement
disorders, and circadian rhythm sleep disorders (Table 1).

2.1 Insomnia

Insomnia is characterized by difficulty initiating or
maintaining sleep. It results in significant daytime reper-
cussions, including impaired functionality, decreased work
performance, social withdrawal, and fatigue [32,33]. Indi-
viduals experiencing insomnia struggle to sleep even when
provided sufficient opportunity to do so in a conducive en-
vironment. It frequently coexists with other conditions,
such as depression, neurological disorders, cardiovascular
disease, diabetes, respiratory issues, gastrointestinal com-
plications, and cancer [32]. Moreover, insomnia elevates
the risk of developing neuropsychiatric disorders and car-
diovascular disease. However, an effective treatment strat-
egy can enhance cardiovascular and mental health out-
comes [34,35]. Research findings suggest that approxi-
mately 10% of adults experience insomnia, while up to 20%
of patients in primary care report symptoms leading to func-
tional impairment and reduced productivity [33,36].

Studies on the hippocampal structure in insomnia have
yielded varied findings. Some indicate diminished hip-
pocampal volume among patients with insomnia [37,38].
In contrast, others demonstrate negative associations be-
tween hippocampal volume and subjective sleep quality
[39]. Conversely, other studies have reported no differ-
ences in hippocampal volume between individuals with in-
somnia and control groups [40,41]. Different subtypes of
insomnia may plausibly demonstrate distinct hippocampal
connectivity patterns. We consider it crucial and timely to
address these findings in our review to enhance our under-
standing of the hippocampal involvement in insomnia.

2.2 Sleep-Related Breathing Disorder

The classification system of the American Academy
of Sleep Medicine categorizes sleep-related breathing dis-
orders as obstructive apnea, central sleep apnea, and sleep-
related hypoventilation [30,42]. These nocturnal events can
raise pulmonary arterial pressure during sleep and while
awake [43]. However, the treatment approach for these di-
verse disorders often follows similar principles. Typically,
alleviating the sleep-related breathing disorder involves ad-
dressing underlying medical conditions or adjusting medi-
cations.
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Sleep-related breathing disorders are linked to neural
injury that influences many physiological systems, includ-
ing sensing chemoreception and airflow, respiratory mus-
culature, timing circuitry for breathing pattern coordina-
tion, and blood pressure mechanisms integrated with res-
piration [44]. Sleep-related breathing disorders exert com-
plex and poorly understood effects on cognition and day-
time memory, involving the hippocampus. For instance,
obstructive sleep apnea, observed in adults and children,
is frequently associated with different levels of mood dys-
regulation and cognitive deficits [45]. Clinical cases have
revealed decreased neural metabolites in the hippocampus
and frontal cortex, leading to impaired memory, learning,
and executive functions [45,46]. Untreated neural, cogni-
tive, and daytime functional impairments can lead to severe
downstream consequences. Improving our understanding
of the cognitive effects associated with these disorders and
advancing the development of more efficient diagnostic as-
sessment tools will facilitate early intervention, thereby im-
proving the quality of life of patients.

2.3 Central Disorder of Hypersomnolence

Central disorders of hypersomnolence encompass sev-
eral marked conditions characterized by excessive daytime
sleepiness stemming from pathological origin. The under-
lying pathophysiology of most of these disorders remains
elusive. While excessive daytime sleepiness is a shared
characteristic among these conditions, their classification
can be further aided by considering additional clinical pre-
sentations, such as cataplexy, sleep duration, and episodic
or continuous nature of symptoms [47,48].

Memory function typically remains intact in patients
with central disorders of hypersomnolence, while specific
subgroups may experience impairments in higher-order
cognition, decision-making, and emotional processing [49].
Some patients exhibit hypermetabolism in various brain re-
gions, including the hippocampus [50,51]. However, stud-
ies exploring the involvement of the hippocampus in central
hypersomnolence disorders remain limited.

2.4 Parasomnia

Parasomnia is commonly classified according to the
sleep state from which it originates: NREM and REM
[30]. NREM parasomnia includes arousal disorders, such
as confusional arousal, sleepwalking, and sleep terrors.
These behaviors manifest when the cortex incompletely
arouses from deep NREM sleep, often triggered by comor-
bid conditions that induce repeated arousal and/or promote
sleep inertia. Alterations in the cyclic alternating pattern,
a biomarker indicating arousal instability during NREM
sleep, have been observed in sleepwalking and related dis-
orders [52].

A significant feature of REM parasomnia is its higher
prevalence among males [53,54]. Evidence of hippocam-
pal involvement in REM parasomnia is clear by height-
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ened theta rhythms, indicating increased hippocampal ac-
tivity during REM sleep [55]. However, the involvement
of the hippocampus in REM and parasomnia is complex,
involving interactions with other brain regions, such as the
cortex [56]. Recognizing the role of the hippocampus in
REM parasomnia highlights the importance of a compre-
hensive investigation of its interaction with other brain re-
gions. Such research provides vital insights for advancing
our understanding and management strategies for this com-
plex sleep disorder.

2.5 Sleep-Related Movement Disorders

Sleep-related movement disorders include various
repetitive movements that frequently disturb sleep, result-
ing in insomnia, diminished sleep quality, fatigue, and ex-
cessive daytime sleepiness. This category encompasses
conditions such as restless leg syndrome, periodic limb
movement disorder, sleep-related leg cramps, sleep-related
bruxism, and sleep-related rhythmic movement disorders
[30,57]. Despite their clinical significance, the specific
brain regions involved in these disorders remain largely elu-
sive and, unfortunately, underexplored.

Recent magnetic resonance imaging (MRI) studies in-
vestigating restless leg syndrome have provided some in-
sights into the structural abnormalities within the brain
[58,59]. These studies revealed marked morphological al-
terations, particularly in the bilateral amygdala, and less
pronounced changes in regions such as the hippocampus,
right caudate, left globus pallidus, and left putamen. Addi-
tionally, a population-based study involving 189 individu-
als revealed a correlation between periodic limb movements
during sleep. It reduced hippocampal and amygdala vol-
ume [60]. Cumulatively, these findings suggest the poten-
tial involvement of the hippocampus in sleep-related move-
ment disorders. Consequently, further studies exploring the
synaptic plasticity changes within the hippocampus associ-
ated with these disorders are warranted. Such investigations
could provide valuable insights into the underlying mech-
anisms and potentially guide the development of more ef-
fective targeted treatment approaches.

2.6 Circadian Rhythm Sleep Disorders

Circadian rhythm sleep disorders involve disturbance
of the internal clock of the body, which regulates vari-
ous physiological processes, including sleep-wake cycles
[30,61]. Previous study findings have prompted discus-
sions regarding the degree of hippocampal involvement in
the circadian system [62—65]. While several reviews have
presented varying perspectives on this topic [66—68], the
precise nature of this relationship remains subject to ongo-
ing investigation.

It is well-established that the circadian rhythm and
REM sleep significantly influence memory consolidation,
a process heavily dependent on hippocampal activity [69].
A study found that rats experiencing circadian rhythm sleep
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Table 2. Overview of literature investigating sleep disorders associated with hippocampal dysfunction and neuroplasticity changes.

Animal model/clinical study Effect on sleep/Effect of disease model on sleep Changes in hippocampal neuroplasticity Reference
Sleep-deprived CD-1 mice (maternal) Induced cognitive impairment Decreased BDNF and PSD95 [74]
Environmental enrichment recovered cognitive function Environmental enrichment recovered BDNF and PSD95 levels
Sleep-deprived CD-1 mice (maternal) Induced depression-like behavior and learning and memory im- Increased proinflammatory cytokines [73]
pairments
Environmental enrichment improved behavioral dysfunction Decrease in neuroplasticity-associated proteins
Environmental enrichment restored the neuroplasticity proteins
Sleep-deprived (maternal) Sprague Dawley rats Pups born to REM sleep-deprived dams exhibited a significantly higher [75]
percentage of active sleep throughout the examination period, alongside
reduced latency during postnatal days 15-21
Induced maturational delay in the sleep-wake neural networks
CD-1 mice with maternal sleep deprivation Induced anxiety-like behavior and cognitive impairment Decreased neurotrophic factors (BDNF and Syt-1) [72]
Environmental enrichment recovered behavioral deficits Environmental enrichment restored sleep deprivation-induced molecu-
lar changes
CD-1 mice with maternal sleep deprivation Induced emotional and cognitive impairments [71]
Fragmented sleep deprivation exacerbated cognitive performance
to a greater extent compared to continuous sleep deprivation
Sleep-deprived C57BL6 mice Induced depression-like behavior Reduced expression of neurotrophic factors [76]
Increased cytokines in the hippocampus
Sleep-deprived C57BL6J mice Identified 1146 DEGs: 507 upregulated and 639 downregulated genes [82]
Upregulation was associated with RNA splicing and the nucleus
Downregulation was associated with cell adhesion, dendritic localiza-
tion, the synapse, and postsynaptic membrane
Sleep-deprived C57BL6J mice Impaired object place recognition memory in young adult mice [79]
but enhances the performance in old mice
Sleep-deprived C57BL6J mice Showed 16 common DEGs in sleep deprivation and AD mice [83]
Sleep-deprived Wistar rats Induced cognitive dysfunction Triggered the elevation of hippocampal autophagy [80]
Reduced generation of endogenous HoS and CBS and 3-MST expres-
sion
Sleep-deprived Sprague Dawley rats Affected extinction of conditioned fear, but not the acquisition of Inhibited hippocampal proBDNF activity rises during the circadian cy- [81]
fear conditioning cle
Sleep-deprived Wistar rats Short period (<90 min) of selective RSR exhibited a strong REM sleep [95]

homeostatic drive
Increased REM sleep homeostatic drive increased phosphorylation and
activation of ERK1/2 and BDNF expression in the pedunculopontine

tegmentum
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Table 2. Continued.

Animal model/clinical study Effect on sleep/Effect of disease model on sleep Changes in hippocampal neuroplasticity Reference
Sleep-deprived C57BL6J mice Affected the contextual memory, but not cued memory Impaired CREB activation and mTOR signaling pathways [77,96,97]
BDPP protective against sleep deprivation-induced contextual BDPP exerts a protective effect through CREB activation and mTOR
memory impairment signaling pathways
Sleep-deprived C57BL6J mice Sleep deprivation during hours ZT 2-5 after OPR training impairs [78]
long-term memory and LTP
Sleep-deprived SD rats Enhanced IL-18 and TNF-« expression [84]
Decreased BDNF mRNA levels after 5 days
Wistar and SD rats simulated shift work Simulated night shift work in rats disrupts the pathways regulating the [85]
circadian component of the translation of mRNA in the PFC
SHR and WKY rats CRD and hypertension reduced memory performance and novel Decreased fractional anisotropy values, the number of neurons and as- [64]
object recognition and preference trocytes and the expression of BDNF and synapsin 1 in the hippocampus
Enhanced neuron and microglia degeneration, reduced hippocampal
blood flow, and increased NF-xB, caspase, NSE, and IL-6 levels
Female CBA/JRi mice Synaptic Shank3 protein levels oscillated in the hippocampus and stria- [86]
tum throughout the day, correlating with serum melatonin fluctuations
Physical activity impaired Shank3« oscillation
Male C57BL/6J mice. 9-10 weeks (young group) 15% (214 proteins) displayed circadian rhythms in abundance in the hip- [87]
or 44-52 weeks (middle-aged group) exposed to 2 pocampus of young mice, while only 1.6% (23 proteins) were rhythmic
days of constant darkness in middle-aged mice
Aging disrupts the circadian regulation of proteins involved in cellular
functions critical for hippocampal function and memory
Focal-cerebral ischemia in male SD rats NREM sleep duration was greater during the dark period but Neurons in the hippocampal CA1 of the MCAO group were lost, atro- [91]

lower during the light period

REM sleep duration following stroke (MCAO group) was signif-
icantly lower

Wake duration increased during the light and 24-h periods fol-
lowing the stroke

Melatonin and exercise in combination improved the sleep dis-

ruption in MCAO mice

phied, or loosely arranged
PSD was significantly thinner following the stroke

Combining melatonin and exercise improved the hippocampal neuro-
plasticity changes

Traumatic brain injury in CD-1 mice

Disrupted sleep homeostatic drive

Reduced the amplitude and frequency of mIPSCs in dentate granule cells
Dual orexin antagonist (DORA-22) rescued

[90]
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Table 2. Continued.

Animal model/clinical study Effect on sleep/Effect of disease model on sleep Changes in hippocampal neuroplasticity Reference
TBI in C57BL/6 mice + sleep fragmentation Post-injury sleep fragmentation causes deficits in trace fear Sleep fragmentation increases cortical inflammation after TBI [92]
conditioning acquisition consistent with compromised dorsal ~ Sleep fragmentation induced hippocampal CA1 neuronal activity
hippocampus function Post-TBI sleep fragmentation enhances ipsilateral CA 1 microglia reactiv-

ity and imbalanced neuronal activity 30 DPI

Post-TBI sleep fragmentation causes persistent microgliosis lateral to the
lesion area associated with increased cortical expression of glial pro-
inflammatory signaling genes 30 DPI

Injury and sleep fragmentation induced Schaffer collateral deficits 30 DPI

Imaging, behavioral, and genetic datasets of 1200 Female good sleepers exhibited larger GMV in the right parahippocampal [88]
participants in the age range of 22-35 years gyrus extending to the right hippocampus than female poor sleepers

Smaller GMYV in the right parahippocampal gyrus in women with poor

sleep quality
Forty right-handed, healthy, adult male volunteers Morning-to-evening increases were observed in cerebral blood flow. [89]

A night of sleep deprivation was associated with further cerebral blood

flow increases.

Eighty older adults (aged >65 years) with first- Older adults with TBI showed a higher prevalence of OSA, in- [93]
time TBI >3 months since injury and 80 older somnia, and daytime sleepiness than older adult controls.

adults controls without TBI

Older adults diagnosed with TBI between TBI was associated with an increased risk of insomnia [94]
2008-2014 (n=78,044) and non-TBI controls
(n=176,107)

Abbreviations: 3-MST, 3-mercaptopyruvate sulfurtransferase; AD, Alzheimer’s disease; BDNF, brain derived neurotrophic factor; BDPP, bioactive dietary polyphenol preparation; CA, cornu ammonis; CBS,
cystathionine S-synthase; CRD, circadian rhythm disorder; CREB, cyclic adenosine monophosphate (cAMP) response element-binding protein; DEGs, differentially expressed genes; DORA, dual orexin
antagonist; DPI, days post-injury; ERK, extracellular signal-regulated kinase; GMYV, gray matter volume; IL, interleukin; LTP, long-term potentiation; MCAO, middle cerebral artery occlusion; mIPSCs,
miniature inhibitory synaptic currents; mTOR, mammalian target of rapamycin; NF-xB, nuclear factor xB; NSE, neuron-specific enolase; OPR, object place recognition; OSA, obstructive sleep apnea; PFC,
prefrontal cortex; PSD, postsynaptic density; REM, rapid-eye-movement; NREM, non-REM; RSR, REM sleep restriction; SD, Sprague Dawley; SHR, spontaneously hypertensive rat; Syt-1, synaptotagmin
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1; TBI, traumatic brain injury; TNF, tumor necrotic factor; WKY, Wistar—Kyoto; ZT, zeitgeber time.
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disorders demonstrate decreased cognitive function along-
side alterations in hippocampal neuron count and plastic-
ity [64]. However, the direct correlation between circa-
dian rhythm disorders and hippocampal neuroplasticity is
not firmly established. Nonetheless, they are considered
among several brain regions affected by these disruptions.
Consequently, employing specific methodologies aimed at
elucidating the precise involvement of the hippocampus in
circadian rhythm sleep disorders is warranted. The find-
ings could potentially shed light on the relationship. Fur-
thermore, clarifying this connection could offer valuable
insights into the underlying mechanisms of these disorders,
thereby potentially guiding inform targeted therapeutic in-
terventions.

3. Hippocampal Function and
Neuroplasticity in Sleep Deprivation

While the classifications of sleep disorders delineated
in the preceding chapter are consistently observed in human
studies, attempts to emulate these conditions in preclinical
animal models are often based on sleep disorders induced
by sleep deprivation. Sleep deprivation, which is charac-
terized by prolonged periods of inadequate sleep [70], is
a primary method to evoke various sleep disturbances, as
elucidated and discussed in the preceding chapter. Table 2
(Ref. [64,71-97]) provides a detailed overview of recent
research investigating alterations in hippocampal function
and neuroplasticity across various sleep disorders and nor-
mal sleep-wake cycles. This chapter is divided into three
distinct subchapters, with each focusing on a specific aspect
of the interplay between hippocampal function and sleep
disruptions. This structural setup aims to provide improved
comprehensive insight into the hippocampal function and
neuroplasticity effect on varying sleep disorders, encom-
passing various life stages and clinical conditions.

3.1 Maternal Sleep Deprivation and Offspring
Hippocampal Function

The central nervous system undergoes critical devel-
opmental phases during intrauterine development growth.
It is highly vulnerable to maternal sleep deprivation and
other external influencing factors [98]. Recent reviews
highlight various neurological and non-neurological effects
of maternal sleep deprivation on their offspring [99,100].
From these reviews and recent research, maternal sleep de-
privation is shown to affect hippocampus-dependent func-
tion adversely and synaptic plasticity in offspring, espe-
cially in animal models (rodents). Maternal sleep depri-
vation is linked to cognitive decline [71-74], emotional
dysfunction, including depression- or anxiety-like behavior
[71-73], and delayed maturation in the sleep-wake neural
networks [75].

Additionally, maternal sleep deprivation is associ-
ated with linked to reduced levels of brain-derived neu-
rotrophic factor, postsynaptic density protein 95, and
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other neuroplasticity-related proteins [72—74], alongside
increased hippocampal-proinflammatory cytokine levels
[73]. Furthermore, environmental enrichment has shown
promise in reversing neurocognitive dysfunction and restor-
ing synaptic protein expression in most of the studies men-
tioned above [72-74]. Overall, these findings underscore
the substantial effect of maternal sleep deprivation on hip-
pocampal function and neuroplasticity in offspring. Fur-
thermore, these findings suggest the potential of environ-
mental enrichment as a therapeutic intervention strategy to
mitigate these adverse effects. However, a substantial gap
exists in understanding the mechanisms underlying mater-
nal sleep deprivation-induced hippocampal dysfunction in
offspring. Thus, further studies are warranted to explore
the molecular mechanisms underlying the observed mater-
nal sleep deprivation effect on the hippocampal function of
offspring and explore additional intervention and preven-
tion strategies to protect offspring neurodevelopmental out-
comes effectively.

3.2 Adulthood Sleep Deprivation and Hippocampal
Dysfunction

Several preclinical studies have examined the influ-
ence of sleep deprivation in adulthood. For example,
mice deprived of sleep displayed depression-like behavior
[76] and experienced reduced contextual memory, while
their cued memory remained unaffected [77]. Further-
more, sleep deprivation impaired object place recognition
and cognitive function in young adult mice [78,79] and rats
[80]. Moreover, it enhanced cognitive performance in old
mice [79]. The extinction of conditioned fear influenced
sleep-deprived rats, while the acquisition of fear condition-
ing remained unaffected [81].

Further mechanistic studies are crucial to understand-
ing how sleep deprivation leads to hippocampal dysfunc-
tion. Transcriptome profiling of the hippocampus in sleep-
deprived mice revealed an increase in genes related to
RNA splicing and a decrease in genes associated with cell
adhesion, dendritic localization, and synaptic membrane
function [82]. A total of 16 common differentially ex-
pressed genes exhibited similar patterns of change in both
sleep-deprived mice and Alzheimer’s disease model mice
[83]. Sleep deprivation resulted in decreased expression
levels of neurotrophic factors and increased cytokine ex-
pression in the hippocampus [76,84], suggesting that sleep
deprivation adversely affects hippocampal neuronal func-
tion through various signaling pathways. Additionally,
sleep deprivation impaired cyclic adenosine monophos-
phate (cAMP) response element-binding protein activation
and mammalian target of rapamycin (mTOR) signaling
pathways [77]. Moreover, simulated night shift work in rats
disrupted pathways that regulate the circadian cycle [85].
Synaptic concentrations of Shank3 protein displayed mi-
nor oscillations during the day in hippocampal and striatal
brain regions, correlating with changes in serum melatonin
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Sleep disorders

Insomnia

Sleep-related breathing disorder
Central disorder of hypersomnolence
Parasomnia

Sleep-related movement disorder
Circadian rhythm sleep disorder

Maternal sleep Adult sleep Sleep disorders in
deprivation deprivation brain injury
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Decreased BDNF, PSD95, Syt-1 '
Increased pro-inflammatory cytokines
Impaired CREB activation and mTOR signaling pathways

Hippocampal neuronal loss

Cognitive dysfunction
Anxiety-like behavior
Depressive-like behavior
Increased risk for insomnia

¥

-

Hippocampus-related
function alteration

Fig. 1. Schematic illustration depicting alterations in hippocampal neuroplasticity associated with sleep disorders. Preclinical

studies investigating maternal-, adult-sleep deprivation, and brain injuries, revealed changes in synaptic proteins, neuronal growth factors,

and signaling mechanisms within the hippocampus. These changes may contribute to functional and behavioral alterations, such as

neurocognitive dysfunction, observed in individuals affected by sleep disorders. Figure created using BioRender.com (https://www.bi

orender.com/). BDNF, brain derived neurotrophic factor; CREB, cyclic adenosine monophosphate (cCAMP) response element-binding

protein; PSD, postsynaptic density; Syt-1, synaptotagmin 1.

levels in mice [86]. It appears that aging disrupts circa-
dian patterns of protein expression in the murine hippocam-
pus. In young mice, 15% (214 proteins) exhibited circadian
rhythms in abundance, while only 1.6% (23 proteins) dis-
played rhythmic in middle-aged mice [87].

Clinical studies suggest that females with good sleep
exhibit a larger gray matter volume in the right parahip-
pocampal gyrus than females without good sleep [88].
Additionally, a study involving 40 healthy adult males
revealed morning-to-evening increases in cerebral blood
flow, with a night of sleep deprivation associated with fur-
ther increases in cerebral blood flow [89]. However, there is
limited information on the hippocampal effects of sleep de-
privation in adults than in preclinical studies. Thus, clinical
researchers must focus more on improving and stabilizing
the current understanding gained from preclinical research.
Consequently, the multifaceted influence of sleep depriva-
tion in adulthood on hippocampal function emphasizes the
urgent need for additional preclinical/clinical research to
clarify its underlying mechanisms and devise targeted inter-
ventions to alleviate its detrimental effects on brain health.

3.3 Sleep Disorders in Neurological Disorders

Sleep disorders frequently coexist with varying
chronic conditions, including heart disease, kidney disease,
high blood pressure, diabetes, obesity, and mental illness
[24,101-104]. These disorders may be primary or sec-
ondary to other organ and/or nervous system diseases. Con-
sequently, several recent reviews have explored the po-
tential presence of sleep disorders in neurological disor-
ders, such as Parkinson’s [105,106] and Alzheimer’s dis-
ease [105,107—109] and multiple sclerosis [110]. These
prevalent neurological disorders are linked to disruptions in
hippocampal neuroplasticity at different stages of the dis-
ease progression [15,111-114]. Considering the involve-
ment of various brain regions in the pathology of neuro-
logical disorders, it is probable that sleep disorders in these
conditions result from a combination of mechanisms across
multiple brain regions. Moreover, therapeutic interventions
administered during the course of neurological disorders
have been implicated in sleep disorder development [109].
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Additionally, sleep disorders frequently occur after
traumatic brain injury (TBI), including conditions such
as narcolepsy, posttraumatic hypersomnia, periodic limb
movements in sleep, and especially obstructive sleep ap-
nea, which can lead to significant consequences [115—
117]. Preclinical animal models of TBI and ischemic stroke
have shown disturbances in the sleep homeostatic drive
[90,91]. TBI has been demonstrated to decrease the ampli-
tude and frequency of miniature inhibitory synaptic currents
in dentate granule cells [90], while sleep fragmentation has
been associated with heightened cortical inflammation and
hippocampal cornu ammonis 1 neuronal activity post-TBI
[92]. Multiple factors probably play a role in the develop-
ment of sleep disturbances post-TBI. Diffuse axonal injury,
for instance, can result in damage to sleep-regulating struc-
tures [118]. While direct evidence of hippocampal involve-
ment in sleep disorders following TBI or ischemic stroke
is lacking, the hippocampus may be one of the brain re-
gions affected by these injuries [119,120]. Clinical study
findings corroborate preclinical evidence, suggesting a con-
nection between TBI and sleep disorders. For instance,
older adults with TBI demonstrate a higher prevalence of
obstructive sleep apnea, insomnia, and daytime sleepiness
than older adult controls [93]. A comprehensive database
study showed that TBI was linked to an elevated risk of in-
somnia [94].

In summary, the presence of sleep disorders alongside
neurological conditions highlights the complex relationship
between sleep and brain health, necessitating comprehen-
sive clinical management strategies. Further exploration of
the molecular mechanisms connecting sleep disorders with
neurological conditions, including the distinct role of the
hippocampus, is crucial for enhancing our understanding
and devising targeted interventions to enhance patient out-
comes.

4. Conclusions

Sleep disorders, which have been tested on preclini-
cal setting as maternal sleep deprivation, significantly affect
hippocampus-dependent behaviors, such as learning, mem-
ory, anxiety, and depression. These behavioral alterations
often co-occur with disruptions in hippocampal neuroplas-
ticity (Fig. 1). This review highlights a scarcity of pre-
clinical research examining hippocampal-structural neuro-
plasticity, particularly regarding specific categories of sleep
disorders that are described and defined in human setting.
Additionally, inconsistencies exist in the assessment strate-
gies for hippocampal dysfunction during sleep disorders.
While sleep dysregulation is also observed in animal mod-
els of brain injuries, the direct role of the hippocampus in
these injuries remains uncertain owing to widespread dam-
age across multiple brain regions. Nonetheless, molecu-
lar and synaptic changes resulting from brain injuries con-
tribute to associated sleep dysregulation, involving various
brain regions in the process. This review offers an updated
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overview of studies that evaluated hippocampal involve-
ment in sleep disorders and sleep deprivation while high-
lighting existing gaps in comprehending hippocampal func-
tion in this context. Ultimately, this insight may stimulate
future mechanistic and therapeutic research efforts in the
field.
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