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Abstract

Background: The adoption of convolutional neural networks (CNNs) for decoding electroencephalogram (EEG)-based motor imagery
(MI) in brain-computer interfaces has significantly increased recently. The effective extraction of motor imagery features is vital due to
the variability among individuals and temporal states. Methods: This study introduces a novel network architecture, 3D-convolutional
neural network-generative adversarial network (3D-CNN-GAN), for decoding both within-session and cross-session motor imagery.
Initially, EEG signals were extracted over various time intervals using a sliding window technique, capturing temporal, frequency, and
phase features to construct a temporal-frequency-phase feature (TFPF) three-dimensional feature map. Generative adversarial networks
(GANSs) were then employed to synthesize artificial data, which, when combined with the original datasets, expanded the data capacity and
enhanced functional connectivity. Moreover, GANs proved capable of learning and amplifying the brain connectivity patterns present in
the existing data, generating more distinctive brain network features. A compact, two-layer 3D-CNN model was subsequently developed
to efficiently decode these TFPF features. Results: Taking into account session and individual differences in EEG data, tests were
conducted on both the public GigaDB dataset and the SHU laboratory dataset. On the GigaDB dataset, our 3D-CNN and 3D-CNN-GAN
models achieved two-class within-session motor imagery accuracies of 76.49% and 77.03%, respectively, demonstrating the algorithm’s
effectiveness and the improvement provided by data augmentation. Furthermore, on the SHU dataset, the 3D-CNN and 3D-CNN-GAN
models yielded two-class within-session motor imagery accuracies of 67.64% and 71.63%, and cross-session motor imagery accuracies
of 58.06% and 63.04%, respectively. Conclusions: The 3D-CNN-GAN algorithm significantly enhances the generalizability of EEG-
based motor imagery brain-computer interfaces (BCIs). Additionally, this research offers valuable insights into the potential applications
of motor imagery BCls.

Keywords: brain-computer interfaces; motor imagery; convolutional neural networks; brain network analysis; generative adversarial
networks

1. Introduction plicability of BCI algorithms. Addressing the inter- and

intra-individual variability of EEG signals is crucial for de-

Brain-computer interfaces (BCIs) establish a direct
communication channel between the brain or neural system
of an organism and a computer, enabling the exchange of
information and control mechanisms [1]. The non-invasive
electroencephalogram (EEG)-based motor imagery BCI
(MI-BCI) employs the brain’s electrical activity to ma-
nipulate external devices and have gained recognition for
their precise temporal resolution [2]. This technology
offers significant assistance to individuals with mobility
impairments, enabling them to operate devices such as
wheelchairs and prosthetics, thereby aiding in rehabilitation
and the recovery of motor functions [3,4]. Nonetheless, the
variability of EEG signals, both across different individ-
uals and within the same individual over time, presents a
substantial challenge. This variability compromises the re-
peatability of EEG-specific responses and restricts the ap-

veloping effective BCI systems [5—7].

Over the last two decades, a plethora of motor imagery
feature extraction algorithms have emerged, including key
methods such as common spatial pattern (CSP), filter bank
common spatial pattern (FBCSP) [8], wavelet package
decomposition-common spatial pattern (WPD-CSP) [9,10],
and convolutional neural networks (CNNs) [11-13]. CSP
and its variants [8—10] rank among the most classic and suc-
cessful methods in motor imagery [14—17]. Support vector
machine (SVM) stands out as the most commonly utilized
classifier [9], along with other methods such as linear dis-
criminator analysis (LDA), k nearest neighbour (KNN), and
sparse autoencoder (SAE), all of which have also shown
notable success [18]. Recently, deep learning-based tech-
niques have become the preferred approach for decoding
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EEG in motor imagery [5,19,20], demonstrating impres-
sive accuracy. These algorithms, having shown their ef-
fectiveness in fields such as image, audio, and text recogni-
tion, include deep belief networks (DBN), CNN, and long
short-term memory networks (LSTMs). Furthermore, hy-
brid models that combine CNNs with LSTMs, autoencoders
(AEs), and other techniques have exhibited potential in mo-
tor imagery decoding [21]. Among these, CNNs are espe-
cially favored for their decoding capabilities. The optimiza-
tion of CNN architectures is an ongoing area of research.
In EEG decoding, CNNs and their structural optimizations
have been successfully applied in areas such as motor im-
agery decoding [12], emotion recognition [22], psychiatric
disorder detection [23], and epilepsy detection [24].

Schirrmeister et al. [12] proposed an optimization
strategy for CNNs tailored to motor imagery tasks. This
strategy incorporates batch normalization, exponential lin-
ear units, and specific training techniques to boost the de-
coding performance of deep CNNs. Sakhavi et al. [25] in-
troduced a cutting-edge classification framework that lever-
ages EEG envelope data representations and feature extrac-
tion through FBCSP, combined with CNNs, for classify-
ing motor imagery EEG data. To overcome the challenge
of subject dependency in motor imagery training, Kwon et
al. [13] developed a subject-independent framework using
CNN. Tested on data from 55 participants, this framework
enhances feature extraction for CNN learning, thereby im-
proving interpretability. Ma et al. [26] compiled an ex-
tensive EEG dataset on motor imagery involving 25 par-
ticipants over five days, encompassing five sessions per
participant with a 23 day interval between sessions and
each session including 100 trials of left and right hand MI
tasks. This dataset facilitated an investigation into the EEG
characteristics of motor imagery at various time points and
evaluated the effectiveness of transfer learning decoding al-
gorithms. Benchmark tests conducted with three different
deep learning methods revealed that these advanced tech-
niques achieved classification accuracy that surpassed tra-
ditional methods. However, the refinement of deep learning
networks significantly depends on the availability of large
datasets. For example, while the ImageNet database used in
image processing contains a vast amount of data, the Brain
Computer Interface Competition IV (BCICIV) motor im-
agery dataset is limited to just nine subjects [27], and other
public datasets such as Physionet and GigaDB also feature a
restricted number of motor imagery trials [28,29]. Research
indicates that enlarging the dataset to include 55 partici-
pants and 21,600 trials markedly increases accuracy, high-
lighting the deep learning network’s dependency on exten-
sive datasets, akin to the millions of data points in ImageNet
[30]. Similarly, in the domain of image processing, where
generative adversarial networks (GANs) are employed for
data augmentation [31], the algorithmic augmentation and
enhancement of EEG signals are expected to significantly
improve decoding accuracy.

In recent years, numerous research groups have ex-
plored the augmentation of EEG data. Zhang et al. [32]
generated EEG data from Gaussian noise using GANS,
achieving a convolutional neural network with increased
data volume and classification accuracy surpassing that of
the original dataset. Although the initial success of synthe-
sizing EEG data from Gaussian noise has been noted, es-
pecially in the context of motor imagery feature extraction,
the mechanisms underlying this process require further ex-
ploration. Dai et al. [33] introduced a method that incor-
porates data segmentation, time-frequency reconstruction,
and exchange, aiming to extract more discriminative fea-
tures across different subjects. However, this method com-
promises data continuity, which is crucial for capturing the
continuous nature of motor imagery features [3]. When en-
hancing EEG data for motor imagery, it is essential to em-
phasize the enhancement of distinctive features. Brain con-
nectivity features, which provide intuitive insights into the
state of brain regions, are vital for effective enhancement
[34,35]. Enhancements based on comprehensive, multi-
session datasets are expected to yield subject-independent
outcomes.

This study aims to investigate innovative approaches
for extracting brain network features associated with motor
imagery and to strengthen brain network connectivity us-
ing GANs. By doing so, it aims to enhance the accuracy
and generalizability of EEG decoding for motor imagery.
The optimized algorithm developed through this research
is poised to significantly benefit the application of motor
imagery EEG algorithms in clinical rehabilitation and con-
tribute to a deeper understanding of motor imagery brain
network features. The paper introduces three novel contri-
butions to the field of EEG-based motor imagery for brain-
computer interfaces:

(1) Innovative 3D-convolutional neural network-
generative adversarial network (3D-CNN-GAN) Architec-
ture: The development of the 3D-CNN-GAN architecture
marks a significant advancement by integrating a GAN with
a 3D-CNN. This innovative architecture adeptly learns and
enhances motor imagery and brain connectivity from EEG
data, showcasing a novel decoding strategy in BCI research.

(2) Multi-Domain Feature Extraction and Classifica-
tion: This paper presents an effective technique for extract-
ing and classifying temporal, frequency, and phase connec-
tivity features from EEG signals using a two-layer 3D-CNN
model. This approach effectively tackles the issue of indi-
vidual variability in EEG data, thereby improving the pre-
cision of motor imagery classification.

(3) Strong Performance on Within-Session and Cross-
Session Datasets: The proposed model demonstrates com-
mendable performance on both within-session and cross-
session analyses, particularly on the public GigaDB and
SHU datasets, especially notable on the SHU dataset, where
it exceeds the performance of existing state-of-the-art algo-
rithms [26].
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Table 1. Parameters comparison of the GigaDB dataset and the SHU dataset.

Number of subjects

Number of classes

Number of sessions for each subject

Number of trials per session
Sampling rate
Number of channels

GigaDB dataset ~SHU dataset
52 25
2 2
1 5
100 100
512 Hz 250 Hz
64 64

2. Materials and Methods
2.1 Description of the Dataset

This study utilized the Motor Imagery GigaDB
database [29] from the Giga Science Database and the
SHU dataset [26] collected by Shanghai University. Both
databases contain extensive motor imagery and EEG data,
providing a robust foundation for this study.

2.1.1 GigaDB Dataset

The Giga Science Database (GigaDB Dataset, pub-
licly available at http://gigadb.org/dataset/100295) is a
comprehensive research dataset featuring a wide range of
physiological signals. In 2017, it published “Supporting
data for EEG datasets for motor imagery brain-computer in-
terface”, introducing the Motor Imagery GigaDB database.
This database comprises data from 52 participants, each
participating in a single session of 2-class motor imagery
tasks. Each trial within these sessions lasts 3 seconds, with
a sampling rate of 512 Hz [29,36].

2.1.2 SHU Dataset

The SHU dataset (publicly available at https://figshare
.com/articles/software/shu_dataset/19228725/1), compiled
by the Research Center for Brain Computer Engineering
at the School of Mechatronic Engineering and Automa-
tion, Shanghai University, includes motor imagery EEG
data from 25 participants. This dataset marks the first do-
mestic effort to explore subject variability across sessions
in motor imagery EEG research. It features a significant
number of trials per session, with the total data collection
spanning six months. The SHU dataset, gathered by our
research group, provides valuable references and practical
insights. For a more comprehensive description or applica-
tion information, please see our previous publication [26].
Participants in the SHU dataset underwent five sessions of
motor imagery EEG tasks, with intervals of 2—-3 days be-
tween sessions. Each session consists of 100 2-class trials,
with each trial lasting 4 seconds. The data were captured
using a 32-electrode amplifier at a sampling rate of 250
Hz. The detailed comparison of the parameters between
the SHU dataset and the GigaDB dataset is presented in Ta-
ble 1.
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2.2 Preprocessing of EEG Signal

To ensure adequate data volume and representative-
ness, we selected the data of 45 subjects for our experiments
from two datasets: 20 from the GigaDB and 25 from the
SHU dataset. The data first underwent independent com-
ponent analysis (ICA) filtering within the 8-30 Hz range to
eliminate artifacts. As shown in Fig. 1, we then applied a
sliding time window technique, with steps of 0.4 seconds
and a width of 2 seconds, for temporal segmentation of the
EEG signals. To evaluate the effect of the sliding window
approach on the dynamics of EEG signals, we conducted
an ablative study to identify the optimal window length and
step size. After several experiments and considering the
subjects’ mental focus, the duration of the EEG signal for
a single trial was set at 2 seconds. Ultimately, considering
computational complexity, dynamic variability, and dataset
balance, we chose a sliding window step size of 0.4 second
for further experiments.

2.3 Temporal-Frequency-Phase Feature (TFPF)

To capture brain network characteristics more effec-
tively from EEG data, we selected features apt for depict-
ing the state of brain networks: Pearson’s correlation co-
efficient, coherence, and phase-locking value. These met-
rics provide complementary measures of linear correlation,
frequency correlation, and phase synchronization, respec-
tively. Thus, the features derived from Pearson correla-
tion coefficient, coherence, and phase locking value offer
a holistic representation of the brain network’s connectivity
state.

2.3.1 Pearson Correlation Coefficient (PCC)

Pearson correlation coefficient (PCC) serves as a met-
ric for measuring brain network features, evaluating the
connectivity between brain regions by calculating the cor-
relation between signals. The formula for PCC is as follows
(Eqn. 1) [37]:

1 N
PCC = > x(t)y(t) 1)
t=1

PCC is used to assess the linear relationship between
two variables, reflecting their temporal interconnectedness.
The calculation of PCC provides insights into the degree of
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Fig. 1. Sliding time window segmentation: 0.4-sec step, 2-sec width.

direct linkage between different brain areas. The coefficient
ranges from —1 to 1, where —1 indicates a perfect negative
linear relationship, O signifies no linear correlation, and 1
indicates a perfect positive linear relationship.

2.3.2 Coherence (COH)

Coherence (COH) serves as a measure to character-
ize time-frequency domain features, quantifying the simi-
larity between components of two signals across different
frequencies. The formula for COH is defined in Eqn. 2 [37]:

Sey(f)
K,y =
- S )
COH .y(f) = |Key(F)” = 8w (£)Syy(f)

In this study, the COH method is applied for extract-
ing temporal-frequency domain features. It evaluates the
correlation or match between the frequency components of
two distinct signals. This measure provides an indicator of
the strength and consistency of the linear connection be-
tween two signals at various frequencies. COH represents
the squared magnitude of the coherency function, calcu-
lated as the ratio of the power spectral density of the com-
bined signals to the power spectral densities of the individ-
ual signals. The coherence value ranges from 0, indicating
no correlation, to 1, denoting complete correlation at a spe-
cific frequency.

2.3.3 Phase Locking Value (PLV)

The phase locking value (PLV) method is employed
for phase feature extraction. It measures the level of syn-
chronization of signal phases, reflecting phase connectiv-
ity between neural regions. Notably, phase synchroniza-
tion can occur even when signal amplitudes are uncorre-
lated. Despite the presence of noise and spontaneous phase

shifts in practical applications, PLV accounts for the cyclic

nature of phase. It produces values between 0, indicating

a high variability in phase difference or low synchroniza-

tion, and 1, signifying minimal variability or high synchro-

nization. Therefore, for any given time ¢, the condition of
phase-locking is described by Eqn. 3 [37]:

AG(t) = [¢2(t) — ¢, (1)] < const 3)

Where, ¢,.(t) and ¢, (t) represent the phases of the sig-

nals. In practical experimental setups, signals often contain

noise and may experience random phase shifts of 27r. Thus,

addressing the cyclic nature of the relative phase necessi-
tates the following equation (Eqn. 4):

Aqf)rel (t> = qu)(t) mod 27 (4)

Accordingly, the PLV is a metric used to quantify the
phase synchronization between two signals, indicating the
consistency of their phase difference over time. The for-
mula for PLV is given by Eqn. 5:

1 N
—_— iA(brel (tn)
E (&
N

n=1

V(08 A,y (£))? + (sin A, () 5)

PLV = ’<6M¢>,\el<t>>‘ _

Where, (-) denotes the time average.

In summary, the combined use of PCC, COH, and
PLV offers a comprehensive framework for analyzing the
dynamic changes in EEG connectivity during motor im-
agery tasks. PCC focuses on linear connections, COH pro-
vides frequency-specific insights, and PLV reveals phase
consistency. Together, these metrics allow for a detailed
examination of the complex and dynamic activities within
brain networks associated with motor imagery. This inte-
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Fig. 2. Schematic diagram of the 3D-CNN-GAN for decoding TFPF features. CNN, convolutional neural networks; GAN, generative
adversarial networks; TFPF, temporal-frequency-phase feature; PLV, phase locking value; ICA, independent component analysis; PCC,

pearson correlation coefficient; COH, coherence; EEG, electroencephalogram.

grated approach enhances our understanding of the intricate
dynamics present in brain networks during motor imagery
tasks.

2.4 TFPF Generation

Considering the complexity of EEG signal character-
istics in brain networks, we integrate the previously men-
tioned metrics, PCC, COH, and PLV, along with slid-
ing time windows to construct a 3D brain network fea-
ture matrix, referred to as temporal-frequency-phase feature
(TFPF). Fig. 2 illustrates the process of decoding TFPF fea-
tures using the 3D-CNN-GAN model.

The sequential procedure of temporal-frequency-
phase feature generation is as follows: After preprocess-
ing, the EEG signals are analyzed to extract their temporal,
spectral, and phase characteristics using PCC, COH, and
PLV, respectively, forming the TFPF set. Concurrently,
GANS are utilized to generate synthetic EEG signals. These
GAN-generated signals undergo the same process of feature
extraction (PCC, COH, and PLV) to form additional TFPF.
Fig. 3 depicts the formation of TFPF and the resulting voxel
segments.

Two types of TFPF voxels are produced: one voxel
type (denoted as V) consists of EEG signals segmented by
sliding time windows from the original input set (S), and the
other voxel type (denoted as V’) is generated by the GAN
(S’). Algorithm 1 outlines the detailed steps involved in the
feature generation process:

This above Fig. 4 introduces a groundbreaking method
for generating TFPF representations of EEG data and em-
ploying GANSs to create synthetic TFPF representations. It
involves calculating three types of features: PCC, COH,
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and PLV for each EEG segment. These features are stacked
to form a unified feature vector for each segment. The
REAL-TFPF representation is created by concatenating
these feature vectors across all segments. Then, GANs are
used to generate the FAKE-TFPF representation from the
REAL-TFPF representation.

The combined use of PCC, COH, and PLV metrics of-
fers a powerful tool for exploring the brain’s connectivity
and dynamics. This comprehensive approach not only fa-
cilitates the effective identification of EEG signal patterns
but also aids in extracting vital insights into cognitive func-
tions and underlying neural activities.

2.5 3D-CNN

Employing a 3D-CNN for extracting multi-domain
features represents a state-of-the-art method that amalga-
mates temporal, frequency, and phase data. The applica-
tion of 3D-CNNs allows for the simultaneous capture of
complex dynamics across these three domains, simplifying
the feature extraction process and mitigating the potential
reduction in accuracy associated with separate feature ex-
traction techniques. Table 2 provides the implementation
details of the 3D-CNN.

Upon acquiring three-dimensional spectral features,
the limitation of conventional 2D CNN:ss in fully preserving
the intricate details of EEG signal information—spanning
temporal, frequency, and phase domains—becomes evi-
dent. This shortfall overlooks the critical interdependence
among the three dimensions. Consequently, this study
adopts 3D CNNss to ensure the retention of complex, inter-
related patterns essential for decoding cognitive states. The
superior capability of 3D CNNs in feature extraction sig-
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S’ represents the GAN-generated voxels. EEG, electroencephalogram.

Algorithm 1 Generation of TFPF representation

Input: EEG data (X, Y)

* X e RET: asingle trial EEG signal, where C is the electrode channels and T is the time

length.
* Y e {L, R}: corresponding class labels

Output: REAL-TFPF representation S and FAKE-TFPF representation S’

Procedures:
fori=1toNdo
PCC,; = corrcoef(X)

COH,; = coherence(X)
PLV, = phaselockingvalue(X)
V, = concat(PCC,, COH,, PLV,)
end
= Generate REAL-TFPF representation

S={V,V, Vs ..,VIN,
= Generate FAKE-TFPF representation
S’ = GAN(S)

return S, S’

// N represents the number of segments of the EEG signal

// corrcoef() represents a function for calculating PCC features

// coherence() represents a function for calculating COH features

// phaselockingvalue() represents a function for calculating PLV features

// concalt() represents a concatenation function

// GAN represents a generative adversarial network

Fig. 4. Generation of TFPF representation Algorithm. PCC, pearson correlation coefficient; COH, coherence; PLV, phase locking

value.

nificantly enhances the model’s efficacy in detecting and
categorizing brain activities related to motor imagery. This
improvement leads to higher accuracy rates and more de-
pendable real-time responses in BCI systems.

2.6 Generative Adversarial Networks

GANSs have emerged as a significant technological ad-
vancement within the realm of BCIs, demonstrating sub-
stantial promise for a variety of applications, including

data augmentation [38], signal denoising and decoding
[39], neural rehabilitation, and brain-to-brain communica-
tion [4]. The key aspect of GANS is their objective function
formula, as outlined below (Eqn. 6):

rrgn max V(D,G) = Eympdata(x)[log(D(z))]

+ E.np.(»[log(l — D(G(2)))] (6)
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Table 2. The Implementation details of the 3D-CNN.

Activation shape Activation size

Input:
Cl(k=[3,3,3],s=[1, I, 1], p=‘valid’)

c2 (k = [Nkcmcls’ Nkcmc]s, 1], §= [1, la 1]a p= ‘Valid,)

(Nchannels, Nchannels> 3, 1) Nchannels X Nchannels x 3
(Nkeme]s, Nkemelsa 1, 50) Nkemels X Nkemels x 50
(1, 1,1, 100) 100

C1: the first convolutional layer. C2: the second convolutional layer. k denotes kernel. s denotes stride. p de-

notes padding. Activation shape: (feature,,;qin, featurey g, featurecpannei» feature map). When employing
SHU dataset, Nchannels = 32 Niemels = 30; When employing GigaDB dataset, Nepannels = 60 Niemets = 58.

Table 3a. The implementation details of the
GigaDB-discriminator.

Layer Output Shape Param
Conv2D (None, 30, 30, 128) 3584
Leaky Relu  (None, 30, 30, 128) 0
Conv2D (None, 15, 15, 128) 147,584
Leaky Relu  (None, 15, 15, 128) 0
Flatten (None, 28800) 0
Dropout (None, 28800) 0
Dense (None, 1) 28,801

Total params: 179,969
Trainable params: 179,969

Non-trainable params: 0

Table 3b. The implementation details of the
GigaDB-generator.

Layer Output Shape Param
Dense (None, 28,800) 2,908,800
LeakyRelu (None, 28,800) 0
Reshape (None, 15, 15, 128) 0
Conv2D Transpose  (None, 30, 30, 128) 262,272
LeakyRelu (None, 30, 30, 128) 0
Conv2D Transpose  (None, 60, 60, 128) 262,272
LeakyRelu (None, 60, 60, 128) 0
Conv2D (None, 60, 60, 3) 24,579

Total params: 3,457,923
Trainable params: 3,457,923
Non-trainable params: 0

The GAN objective function is divided into two pri-
mary parts:

Discrimination of Real Data:

Epdata(®)[log (D(x))] represents the expected value
of the discriminator’s (D) accuracy in identifying samples
(x) from the real data distribution pdata as real.

Discrimination of Generated Data:

E.p.(2)[log (1-D(G(2)))] denotes the expected value
of the discriminator’s (D) accuracy in classifying samples
G(z) produced by the generator (G) as fake. In this context,
z represents a noise vector sourced from a specific prior dis-
tribution P, (z).

The architecture of GANs, characterized by its inno-
vative generator-discriminator design, is adept at learning
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Table 4a. The implementation details of the
SHU-discriminator.

Layer Output Shape Param
Conv2D (None, 16, 16, 128) 3584
LeakyRelu  (None, 16, 16, 128) 0
Conv2D (None, 8, 8, 128) 147,584
LeakyRelu (None, 8, 8, 128) 0
Flatten (None, 8192) 0
Dropout (None, 8192) 0
Dense (None, 1) 8193

Total params: 159,361
Trainable params: 159,361

Non-trainable params: 0

Table 4b. The implementation details of the SHU-generator.

Layer Output Shape Param
Dense (None, 8192) 827,392
LeakyRelu (None, 8192) 0
Reshape (None, 8, 8, 128) 0
Conv2D Transpose  (None, 16, 16, 128) 262,272
Leaky Relu (None, 16, 16, 128) 0
Conv2D Transpose  (None, 32,32, 128) 262,272
Leaky Relu (None, 32, 32, 128) 0
Conv2D (None, 32, 32, 3) 24,579

Total params: 1,376,515
Trainable params: 1,376,515

Non-Trainable params: 0

data distributions. This facilitates advancements in the cre-
ation of synthetic data and adversarial training methods.
The intricate architecture of GANSs, as applied to the Gi-
gaDB and SHU datasets, is detailed in Tables 3a,3b,4a,4b.

2.7 Combining Generative Adversarial Networks with 3D
Convolutional Neural Networks (3D-CNN-GAN)

The integration of Generative Adversarial Networks
with 3D-CNN-GAN creates a formidable strategy for
dataset augmentation through the generation of an enriched
set of TFPF. The GAN, recognized for its proficiency in
data augmentation, is adept at creating an enrich set of TFPF
that accurately replicate the intricate properties of original
EEG signals. This capability significantly enhances the vol-
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ume and quality of training data, which in turn improves
the motor imagery decoder’s ability to generalize and per-
form classifications. By merging GAN with 3D-CNN, the
combined framework exploits the comprehensive analytical
power of three-dimensional convolution, capturing a more
detailed representation of EEG signal dynamics across var-
ious domains. The strategic emphasis on the 3D-CNN-
GAN architecture not only extends the dataset with quality
features but also strengthens the classification mechanism.
This approach offers a sophisticated method for decoding
the complex patterns present in EEG data.

Within the realm of EEG signal classification, it has
been observed that shallow network architectures often out-
perform deeper networks, a trend that contrasts with obser-
vations in other tasks. In line with this finding, we have
meticulously designed a neural network with just two con-
volutional layers, as shown in Fig. 2d. The initial convolu-
tional layer features a kernel voxel size of 3 x 3 x 3 and a
feature map dimension of 50. The kernel size for the subse-
quent convolutional layer is determined by the formula (C
-3+1)x(C-3+1)x (N-3+1),as indicated in Fig. 2d,
where C represents the input dimension on one axis, and N
denotes another input dimension. The feature map dimen-
sion for this layer is set at 100. These parameters were care-
fully chosen to enhance EEG data feature extraction, allow-
ing the network to identify complex neurophysiological pat-
terns effectively. During the training phase, our 3D-CNN
employs ReLU activation functions over 100 epochs. We
used the Adam optimization algorithm to reduce the cost
function, conducting experiments with a batch size of 16
and a learning rate of 0.0001.

To validate our model’s stability and accuracy, for
both GigaDB and SHU datasets in a within-session sce-
nario, we divided the independent data segments into two
equal parts; 50% were enhanced using a GAN network
[40], resulting in an augmented set of twofold indepen-
dent data segments for training. The remaining 50% in-
dependent data segments were used for testing. Hence,
for the 3D-CNN-GAN, under the within-session scenario,
the training data from both GigaDB and SHU datasets ac-
counts for 2/3 of the total dataset, while the testing data
accounts for 1/3 of the total dataset. For the cross-session
scenario, each of the five sessions per subject is split into
two equal parts due to the sliding time window strategy.
We enhanced the independent data segments from the four
sessions not involved in testing using GAN. Consequently,
for the 3D-CNN-GAN in a cross-session scenario within
the SHU dataset, each experiment’s training data accounts
for 8/9 of the total dataset, with test independent data seg-
ments comprising 1/9. Therefore, this approach ensures our
model’s robustness and dependability, as well as the rele-
vance of our test data, thereby affirming the model’s credi-
bility.

2.8 Brain Network Analysis

Our comprehensive brain network analysis meticu-
lously examined the complex interconnectivity and nu-
anced information flow within the brain. This examina-
tion helped uncover interactions among various brain re-
gions, elucidating the pathways of information transfer and
the collaborative operations of neural functions. This con-
tributes to our understanding of the foundational processes
that govern cerebral functionality and cognitive dynam-
ics. Fig. 5 illustrates the brain network analysis process,
beginning with EEG signal processing to extract features,
followed by calculating the connectivity between different
brain regions, and concluding with the analysis of the dif-
ferences between real and fake brain connectivity.

3. Experiment and Results

In this section, we evaluate the 3D-CNN and the pro-
posed 3D-CNN-GAN models by their classification ac-
curacy, detailed by both session and subject within the
SHU dataset and GigaDB dataset. We then performed a
brain network analysis to investigate the topology of the
brain network and the experimental results corresponding
to this analysis. Additionally, we explored the impact of
GAN on the characteristics of brain network connectiv-
ity, specifically examining the interpretable similarities be-
tween REAL and FAKE connections.

3.1 TFPF Classification Using 3D-CNN and
3D-CNN-GAN

To assess the efficacy of the proposed 3D-CNN and
3D-CNN-GAN models in handling EEG session variabil-
ity, we conducted classification experiments across multi-
ple sessions using the SHU and GigaDB datasets, as shown
in Figs. 6,7.

In the SHU dataset, the 3D-CNN-GAN model shows
a notable improvement in classification accuracy, with
within-session improvements of up to 3.99% and cross-
session improvements of up to 4.98%. However, in the
GigaDB dataset, the improvement with the 3D-CNN-GAN
model is not as pronounced, with the 3D-CNN and 3D-
CNN-GAN models achieving accuracies of 76.59% and
77.03%, respectively. The marked improvement observed
in the SHU dataset can be attributed to the GAN’s ability to
enhance the learning of brain network connectivity features
and effectively eliminate irrelevant connections, likely due
to potential external interferences encountered during EEG
data collection in the SHU dataset.

To assess the 3D-CNN and 3D-CNN-GAN models’
ability to manage EEG variability across individuals, clas-
sification experiments were conducted for each subject
within the SHU and GigaDB datasets. Fig. 8 shows a
detailed analysis of classification accuracies for individ-
ual subjects across these two datasets, employing both 3D-
CNN and 3D-CNN-GAN models. In the GigaDB dataset,
the average within-session classification accuracy using
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Fig. 5. Schematic diagram of brain network analysis. (a) Clean EEG signal was obtained. (b) Multi-domain feature representation
for the connectivity matrix. (c) REAL & FAKE Connectivity Assessment. (d) REAL & FAKE connectivity analysis using significant
connections based on PCC, COH, and PLV. PCC, pearson correlation coefficient; COH, coherence; PLV, phase locking value; L, left
hand; R, right hand.
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Fig. 6. The comparison of average within-session classification accuracies between 3D-CNN and 3D-CNN-GAN across the two

datasets, detailing the performance for each session. NS indicates no significant difference.
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Fig. 8. Comparison of within-session and cross-session classific
datasets, detailed for each subject.

3D-CNN stands at 76.49%, with a slight increase to 77.03%
observed when employing the 3D-CNN-GAN model. No-
tably, within this average, subjects S3 and S14 reached
exceptional average accuracies of 88.87% and 91%, re-
spectively. Conversely, in the SHU dataset, the 3D-CNN
model’s within-session average accuracy of 67.42% im-
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ation accuracies for 3D-CNN and 3D-CNN+GAN across two

proved to 71.63% with the 3D-CNN-GAN, and for cross-
session, the average accuracy rose from 58.06% with 3D-
CNN to 63.04% with 3D-CNN-GAN. A closer look reveals
that, despite the overall average accuracy of 71.63% for
within-session and 63.04% for cross-session with the 3D-
CNN-GAN model, significant exceptions were observed.
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Fig. 10. Top view of brain network topology.

For instance, within the SHU dataset, subject S6 achieved
accuracies of 88.27% within-session and 80.55% cross-
session, while subject S16 reached accuracies of 84.29%
within-session and 78.68% cross-session. These significant
improvements in the SHU dataset highlight the GAN algo-
rithm’s effectiveness, especially in enhancing classification
accuracy per subject. The uniform improvement across all
subjects in the SHU dataset with the 3D-CNN-GAN model
evidences the algorithm’s capability to bolster the discrim-
inative features of EEG signals for motor imagery classifi-
cation.

3.2 Brain Connectivity Analysis

Upon examining the subject-specific experimental re-
sults shown in Fig. 8, it is evident that SHU-S6 achieved the
highest accuracy, with significant improvements attributed

&% IMR Press

Brain regions

Brain regions

to GAN. Consequently, we delved deeper into the analysis
of the best performer’s brain network features, revealing the
reasons behind its superior performance from the perspec-
tive of brain functional connectivity. This approach facili-
tates an understanding and observation of the neural mech-
anisms underlying effective classification performance in
motor imagery tasks. Analyzing connectivity metrics pro-
vides valuable insights into the collaboration and coopera-
tion among brain regions involved in motor imagery tasks.

In this research, our research team explored brain
functional connectivity by extensively analyzing the brain
network of SHU-S6 from the SHU dataset. Fig. 9 presents
the lateral view of brain network topology, combining PCC,
COH, and PLV with GAN, to depict the connectivity across
different brain regions through the color and line thickness
of the marked lines.
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Table 5. Within-session classification with cutting-edge
methods on the SHU and GigaDB datasets.

Table 6. Cross-session classification with cutting-edge
methods on the SHU dataset.

Method Subjects Level Avg.ACC Dataset Method Subjects Level Avg. ACC Dataset
FBCNet [41] 25 WS 68.85% MEIS [46] 25 CS 58.83%

CSP [26] 25 WS 57.33% FBCNet [41] 25 CS 50.97%
WTS-SVM [42] 25 WS 65.51% CSP [46] 25 CS 51.16%

FBCSP [8] 25 WS 64.33% WTS-SVM [42] 25 CS 59.38%

EEGNet [11] 25 WS 65.03% SHU EEGNet [11] 25 CS 53.65%
DeepConvNet [12] 25 WS 64.82% DeepConvNet [12] 25 CS 52.92% SHU
Bi-LSTM [42] 25 WS 61.83% Bi-LSTM [42] 25 CS 53.91%

Proposed method CSA [26] 25 CS 57.56%

3D-CNN [43] 25 WS 67.42% Proposed method

3D-CNN-GAN 25 WS 71.63% 3D-CNN [43] 25 CS 58.06%

OPTICAL [44] 52 WS 68.19% 3D-CNN-GAN 25 CS  63.04%

D&W CNN [45] 26 WS 76.21% CS, cross-session testing; MEIS, Manifold Embedded Instance
Proposed method GigaDB Selection Algorithm; CSA, cross session adaptation.

3D-CNN [43] 20 WS 76.49%

3D-CNN-GAN 20 WS 77.03%

WS, within-session testing; Avg.ACC, Average Accuracy; FBC-
Net, Filter Bank Convolutional Network; WTS-SVM, Wavelet
Time Scattering-based Support Vector Machine; CSP, common
spatial pattern; SVM, support vector machine; FBCSP, filter bank
common spatial pattern; EEG, electroencephalogram; LSTMs,
long short-term memory networks; CNN, convolutional neural
networks; GAN, generative adversarial network; OPTICAL, Op-
timized and LSTM based predictor; D&W; Deep and Wide.

Our investigation revealed that the connections be-
tween key brain regions, such as the frontal, parietal, and
occipital lobes, intensified during motor imagery tasks.
Notably, Fig. 9 contrasts the “REAL Connectivity” and
“FAKE Connectivity” within the brain network, revealing
that the latter often exhibited a greater number of structures
and stronger connections. Specifically, enhanced connec-
tivity was particularly noted between the prefrontal motor
area, the parietal lobe’s somatosensory associated area, and
the occipital lobe’s visual associated area and visual cortex.

Upon further observation, it is exciting to note the for-
mation of “triangular structures” and “circular structures”.
Specifically, there was an observed enhancement in con-
nectivity between the prefrontal motor area, the somatosen-
sory associated area of the parietal lobe, and the visual as-
sociated area along with the visual cortex of the occipital
lobe. Further examination revealed the intriguing formation
of “triangular structures” and “circular structures” within
the highlighted red border regions of the frontal, parietal,
and occipital lobes. These structures are pivotal characteris-
tics of complex networks, and an increased number of such
structural features within brain connectivity signifies en-
hanced stability in “communication” across different brain
regions. This revelation holds significant implications for
a deeper understanding of EEG features and their applica-
tion in brain network analysis, offering new strategies to
enhance classification accuracy.
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Furthermore, compared with the brain network topol-
ogy of REAL and FAKE Connectivity, add the top view
brain network topology and the corresponding adjacency
matrix. In Fig. 10, we analyzed the network structural
features using data from SHU dataset subject S6. The
color and thickness of the marked lines represent the con-
nectivity strength of different brain regions from top view
brain network topology, combined with the correspond-
ing adjacency matrix, connectivity structures, and strength
of “FAKE Connectivity”, which are stronger compared to
“REAL Connectivity”. Thus, from the confirmed experi-
mental insights, we found that combining PCC, COH, and
PLV with GAN not only augments the volume of data avail-
able for analysis but also potentially enriches the feature
content with synthesized EEG signals that exhibit similar
spectral and temporal characteristics as the real data. Ex-
perimental results confirmed that this approach not only
markedly improved classification accuracy within the SHU
dataset but also enhanced the model’s interpretability.

4. Discussion

In this study, we introduced a novel framework em-
ploying a 3D-convolutional neural network combined with
a 3D-CNN-GAN for the enhancement and classification of
motor imagery tasks. This framework excels at integrating
brain network features with deep learning and GANs to de-
code motor imagery EEG signals.

To clarify these findings, we conducted classification
experiments at both individual and session levels using the
SHU and GigaDB datasets. Specifically, at the individ-
ual level, the experiments assessed the proposed model’s
generalization capability across different individuals. The
preprocessing of EEG signals for each time window in-
volved the analysis to extract PCC, COH, and PLV fea-
tures, which were then integrated to form a 3D feature rep-
resentation. The GAN is designed to generate synthetic
EEG features indistinguishable from real data, thus enlarg-
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ing the training dataset and improving the model’s general-
ization ability. This approach effectively captures the tem-
poral, frequency, and phase-related features of EEG sig-
nals, simplifying the inherent complexity of EEG data anal-
ysis. Furthermore, a 3D-CNN model with two convolu-
tional layers was utilized to classify two-class motor im-
agery tasks based on the TFPF. The results, as shown in
Tables 5,6 (Ref. [8,11,12,26,41-46]), demonstrate that the
proposed 3D-CNN-GAN method outperforms existing re-
search methodologies. These results highlight the method’s
efficacy in motor imagery classification and its ability to
decode within-session variability patterns (within-session-
level) and cross-session variability patterns (cross-session-
level).

It is noteworthy that, as Table 5 shows, under within-
session conditions, the 3D-CNN-GAN algorithm outper-
forms the existing state-of-the-art decoding algorithms in
the literature for both SHU and GigaDB datasets. Fur-
thermore, Table 6 illustrates that under cross-session condi-
tions, the decoding accuracy improvement by the 3D-CNN-
GAN algorithm becomes more pronounced, highlighting
the benefits of incorporating GANs in addressing session-
variability issues. However, the GigaDB dataset, compris-
ing only a single session per subject, did not allow for cross-
session testing. Conversely, in cross-session classification,
discussing transfer learning methodology is essential. Ma
et al. [26]. employed transfer learning, termed cross ses-
sion adaptation (CSA), for testing. In the SHU dataset, with
time intervals between each of the five sessions per subject
ranging from 2 to 3 days, significant differences in feature
distribution across sessions were observed. For the CSA al-
gorithm in Ma et al. [26], if the adaptation data partition in-
cludes test set trials, the feature distribution within the same
session can be effectively recognized by the transfer learn-
ing base model, resulting in better adaptation outcomes. In
contrast, our training strategy treats the five sessions as sep-
arate entities, excluding the test session from the training
process. This approach did not show improvement in the
CSA method’s efficacy in our tests.

Moreover, the 3D-CNN-GAN stands out with several
advantages over other state-of-the-art methods. Firstly, its
3D aspect integrates three crucial brain network param-
eters: PCC, COH, and PLV, providing a comprehensive
view of dynamic EEG connectivity changes during mo-
tor imagery. PCC delineates linear relationships, COH re-
veals frequency-specific synchronization, and PLV high-
lights phase consistency across EEG signals, together form-
ing a robust feature set for neural network analysis. Sec-
ondly, the deep learning CNN model, a core component
of the framework, enhances interpretability, often a chal-
lenge in neural decoding tasks. It bridges the gap between
raw EEG data and the abstract representations learned by
deep neural networks, thus improving the model’s output
interpretability, as illustrated in Figs. 9,10. Lastly, the in-
clusion of a GAN overcomes the large dataset dependency
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typical of deep learning models. The GAN generates syn-
thetic EEG features, enhancing the training dataset and gen-
eralization capabilities, vital in EEG analysis where large,
diverse datasets are scarce. The synergy between gener-
ated and original brain network features offers a valida-
tion mechanism, ensuring model robustness by assessing
the synthetic data’s reliability and authenticity.

Acknowledging the limitations of our study is crucial
for the interpretation of our findings. The preprocessing
procedures, such as filtering, significantly contribute to the
proposed method’s performance; thus, further exploration
of various preprocessing methods is vital to fully under-
standing their impact on classification accuracy. Addition-
ally, the study utilized relatively small datasets, necessitat-
ing an assessment of the method’s scalability and efficiency
with larger datasets to determine its practical applicability
in real-world scenarios.

5. Conclusions

In conclusion, our study explored the 3D-CNN-GAN
model’s effectiveness in classifying motor imagery tasks
using brain network features, PCC, COH, and PLV, ex-
tracted from the GigaDB and SHU datasets. The GAN net-
work substantially enhanced classification accuracies both
within and across sessions on the SHU dataset, noted for
its laboratory-induced noise, and achieved a modest im-
provement in within-session classification on the public Gi-
gaDB dataset. These findings demonstrate the GAN’s capa-
bility to learn motor imagery features effectively, particu-
larly in noisy settings, thus confirming the robustness of the
3D-CNN-GAN framework and its potential applicability in
real-world BCI scenarios.

Future work should address several areas. Primar-
ily, assessing the 3D-CNN-GAN framework’s efficacy and
real-time applicability in real-world environments is essen-
tial, with a particular focus on GAN implementation. The
integration of brain networks with deep learning and GAN
techniques is expected to gain considerable interest in the
BCI research community. Further research directions in-
clude applying the 3D-CNN-GAN architecture to diverse
EEG-based BCI applications, such as emotion recognition
and cybersecurity. The proposed TFPF feature sets, cou-
pled with CNN’s deep learning capabilities and GAN’s data
augmentation, show potential for capturing essential multi-
domain dynamics for specific tasks, making this integrated
approach versatile for various BCI applications.

Availability of Data and Materials

The data sets analyzed during the current study are
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//figshare.com/articles/software/shu_dataset/19228725.
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