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Abstract

Alzheimer’s disease (AD) is a common central neurodegenerative disease disorder characterized primarily by cognitive impairment and
non-cognitive neuropsychiatric symptoms that significantly impact patients’ daily lives and behavioral functioning. The pathogenesis
of AD remains unclear and current Western medicines treatment are purely symptomatic, with a singular pathway, limited efficacy,
and substantial toxicity and side effects. In recent years, as research into AD has deepened, there has been a gradual increase in the
exploration and application of medicinal plants for the treatment of AD. Numerous studies have shown that medicinal plants and their
active ingredients can potentially mitigate AD by regulating various molecular mechanisms, including the production and aggregation of
pathological proteins, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, neurogenesis, neurotransmission, and
the brain-gut microbiota axis. In this review, we analyzed the pathogenesis of AD and comprehensively summarized recent advancements
in research on medicinal plants for the treatment of AD, along with their underlying mechanisms and clinical evidence. Ultimately, we
aimed to provide a reference for further investigation into the specific mechanisms through which medicinal plants prevent and treat AD,
as well as for the identification of efficacious active ingredients derived from medicinal plants.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurode-
generative condition characterized by cognitive deficits, be-
havioral abnormalities, and impaired social functioning,
posing a significant global health threat to older adults
and ranking as the fifth leading cause of death worldwide
[1,2]. According to a national cross-sectional study in 2020,
approximately 9.83 million people aged 60 and above in
China were affected by AD [3]. As the global population
ages, the incidence, disability, and mortality rates of AD
continue to rise annually, promising a growing burden on
individuals, families, and societies in the future [4]. Clini-
cal study has identified amyloid-β (Aβ) plaque deposition
and hyperphosphorylated Tau protein as primary hallmarks
of AD pathology [5]. In addition, numerous studies have
demonstrated that oxidative stress, inflammatory responses,
programmed cell death (such as apoptosis, autophagy, and
ferroptosis), and disturbances in intestinal flora contribute
significantly to structural and functional abnormalities in
AD progression [6,7].

Currently, the drugs used in the treatment of AD pri-
marily consist of cholinesterase inhibitors and N-methyl-D-
aspartate antagonists [8], which can only partially improve
the symptoms of patients, but do not reverse disease pro-
gression, and prolonged use can lead to various adverse ef-
fects. Additionally, surgical interventions used in clinical
management are both risky and costly [9]. Hence, there is

a critical need to further investigate the pathogenesis of AD
and develop effective strategies for its prevention and treat-
ment.

In traditional medical practices, numerous medici-
nal plants and their active ingredients have been recom-
mended for enhancing cognitive function and alleviating
symptoms of AD [10,11], such as cognitive impairment,
memory loss, spatial awareness deficits, depression, and
dementia. Bioactive compounds derived from medicinal
plants are noted for their low incidence of adverse effects
and high effectiveness [12]. In recent years, a large num-
ber of scholars have carried out studies on active ingredi-
ents from medicinal plants for treating AD and elucidating
their associated mechanisms [13,14], thereby establishing
experimental foundations for AD treatment using medic-
inal plants. Notably, Huperzine-A derived from Huperzia
serrata has been clinically employed in the treatment of pa-
tients with AD [15,16]. These findings underscored the po-
tential of medicinal plants to offer novel perspectives and
strategies for addressing AD in contemporary society.

Currently, there have been a scarcity of reviews focus-
ing on plant-based bioactive compounds for the prevention
and treatment of AD. This review provided a comprehen-
sive overview of the current pathogenesis of AD. Further-
more, it summarized recent research on active ingredients
derived from medicinal plants targeting AD through global
and local databases such as PubMed, Web of Science, and
China National Knowledge Infrastructure. The review ex-
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amined the mechanisms and clinical efficacy of these com-
pounds, aiming to inform the clinical application of medic-
inal plants in the treatment of AD and provide a theoretical
basis for the development of new drugs to combat this dis-
ease.

2. Research Methodology
This review article was conducted using electronic

databases such as PubMed, Google Scholar, Springer
Link, Science Direct, Cochrane Library, Embase, Web
of Science, and Scopus. All published data till the year
2024 have been taken into consideration. The follow-
ing search keywords were used in the search of materi-
als for this study: “medicinal plants”, “active ingredients”,
“bioactive compounds”, “polyphenols”, “flavonoids”, “al-
kaloids”, “terpenes”, “polysaccharides”, “quinones”, “gly-
cosides”, “volatile oils”, “biological activity”, “pharma-
cological activities”, “Alzheimer’s disease”, “amyloid β”,
“tau protein”, and other similar keywords in combination
with words such as traditional Chinese medicine, Clinical
trials, botanical description, toxicity, human health, and nu-
tritional composition. All articles addressing these princi-
pal keywords were considered when available in the En-
glish language, and in peer-reviewed journals, whether pub-
lished as review or research articles. Papers were reviewed
in their entirety if their abstract mentioned that the article
presented any potential relevance to the inclusion criteria.
Articles were excluded based on title, abstract, or full text
because of their lack of pertinence to the issue concerned.
Articles were excluded if they were letters, comments, and
not available for access to the full article.

3. Etiology and Pathophysiology of AD
Although AD was first reported by the German physi-

cian Alois Alzheimer more than 100 years ago [17], the
precise mechanisms underlying its onset and progression
remain unclear. Currently, the primary pathological fea-
ture of AD has been recognized as the deposition of ex-
tracellular amyloid β (Aβ) plaques [18]. Aβ is produced
and released through the abnormal cleavage of amyloid pre-
cursor protein by β-secretase 1 and γ-secretase enzymes
[19,20]. Clinical studies have shown that Aβ plaques can
penetrate blood vessels and disrupt the blood supply to the
brain [21,22]. Additionally, research has demonstrated that
Aβ plaques can damage neurons and trigger activation of
microglia and astrocytes [23], leading to increased produc-
tion of free radicals and influx of Ca2+ ions, which exac-
erbate neuronal apoptosis [24]. It has also been observed
that Aβ can enhance the formation of advanced glycation
end products on neuron surfaces and stimulate the release of
pro-inflammatory cytokines, contributing to impaired neu-
ronal function and eventual cell death [25].

Furthermore, the formation of Aβ plaques typically
coincides with additional pathological changes primarily
affecting pyramidal neurons and their structural integrity

[26]. These changes are induced by increased phosphory-
lation of tau protein [27], which aggregates into polymers
known as tau tangles. Under normal physiological condi-
tions, tau protein plays a crucial role in stabilizing micro-
tubules and facilitating their polymerization to maintain cy-
toskeletal integrity [28]. Functionally, microtubules are es-
sential for the transport of cellular proteins and enzymes
necessary for normal neuronal function [29].

Increasing evidence has observed hyperphosphoryla-
tion of tau protein in the brain tissue of patients with AD
[30], which in turn leads to the formation of intracellular
neurofibrillary tangles, contributing to neuronal degenera-
tion and eventual cell death. At a molecular level, cyclin-
dependent kinase 5 (CDK5) can be activated by elevated
levels of Ca2+ ions within neuronal cells. This activa-
tion accelerates microtubule depolymerization, causes cy-
toskeletal abnormalities, triggers microglial activation, and
inflammation, and ultimately impairs neuronal function and
leads to apoptotic cell death [31,32].

Recent studies have also confirmed that viral infec-
tions [33], mitochondrial dysfunction [34], abnormalities in
insulin signaling [35], imbalance in intestinal flora [36], ex-
citotoxicity from amino acids [37], and deficits in choliner-
gic function [38] are closely associated with the progression
of AD. These processes contribute to the aggregation of
Aβ plaques, neuroinflammation, oxidative stress, neuronal
death, and insulin resistance. Moreover, these factors col-
lectively increase the permeability of the blood-brain bar-
rier, thereby accelerating the pathological advancement of
AD.

4. The Therapeutic Effect of Plant-Based
Bioactive Compounds on AD and Its
Potential Mechanisms

Through extensive research into the pathogenesis of
AD, traditional Chinese medicine (TCM) has demonstrated
unique therapeutic advantages in AD treatment due to its
multi-component, multi-target approach, and emphasis on
whole-body integrity [39]. Increasingly, a study has high-
lighted that medicinal plants and their primary bioactive
constituents characterized by diverse structures, exert pro-
tective effects against neurodegenerative diseases [40]. The
mechanisms by which plant-based bioactive compounds
prevent AD are illustrated in Fig. 1 and detailed in Ta-
ble 1 (Ref. [41–112]). Meanwhile, the majority of Chi-
nese AD patients have incorporated medicinal plants and
herbal formulations into their diagnostic and treatment reg-
imens [113,114]. This review aimed to consolidate research
progress on natural plant components in the treatment of
AD, providing a reference for identifying safe and effective
small molecules for AD treatment.

4.1 Polyphenols
Polyphenols are widely found in grapes, Salvia mil-

tiorrhiza, tea, Gastrodia elata, and other medicinal plants.
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Fig. 1. Therapeutic effects of medicinal plants and their main active ingredients on Alzheimer’s disease and the related mech-
anism. Aβ, amyloid β; BBB, blood-brain barrier; AMPK, AMP-activated protein kinase; GSK-3β, glycogen synthase kinase 3 beta;
AKT, protein kinase B; mTOR, rapamycin; PPARγ, Peroxisome proliferator-activated receptor gamma; NLRP3, Nod-like receptor fam-
ily, pyrin domain containing 3; JAK, Janus kinase; STAT, signal transducer of activation; NF-κB, nuclear factor-κB; Nrf2, nuclear factor
erythroid 2-related factor 2. Fig. 1 was created using Microsoft PowerPoint (version 2016, Microsoft, Redmond, WA, USA).

Modern pharmacological study has confirmed that polyphe-
nolic compounds have a variety of biological activities
[115], including antitumor, antioxidant, anti-inflammation,
and anti-oxidative stress properties. Importantly, increas-
ing study has confirmed the anti-AD potential of polyphe-
nolic compounds [116], with their mechanisms summa-
rized in Table 1. For example, proanthocyanidins, a type
of polyphenolic compound, possess a spectrum of biologi-
cal activities that impede the onset and progression of AD
[117,118], including anti-inflammatory effects, improve-
ment of insulin resistance, and anti-oxidative stress proper-
ties. Resveratrol, capable of crossing the blood-brain bar-
rier, exerts neuroprotective effects by reducing glial acti-
vation, amyloid precursor protein levels, and plaque for-
mation [119], and by modulating gut microbiota composi-
tion [120] in AD treatment. Research by Fasina et al. [45]
has demonstrated that gastrodin enhances memory func-
tion in AD mouse models by targeting the “gut microbiota-
brain” axis, attenuating neuroinflammation, and preserving
intestinal barrier integrity. Other studies have indicated that
pterostilbene possesses neuroprotective properties against
AD through its anti-inflammatory activities and mitigation
of mitochondria-dependent apoptosis [43,44]. Addition-

ally, ferulic acid has been shown to ameliorate AD pro-
gression by reducing the accumulation of Aβ peptide and
tau protein hyperphosphorylation [121]. In conclusion,
polyphenolic compounds represent promising therapeutic
agents for AD treatment due to their multifaceted mecha-
nisms.

4.2 Flavonoids
Flavonoids, secondary metabolites widely found in

medicinal plants, exhibit various pharmacological activi-
ties beneficial to human health [122], including their role
in treating AD (Table 1). Previous studies have demon-
strated that compounds like nobiletin [72] and luteolin [73]
exert anti-AD effects by inhibiting oxidative stress, mi-
tochondrial dysfunction, and neuroinflammation. Sun et
al. [61] have shown that rutin mitigates AD progression
by reducing tau aggregation, neuroinflammation, and tau
oligomer-induced cytotoxicity. Icariin [123] and genistein
[57] have been found to ameliorate memory impairment
in AD mouse models by suppressing endoplasmic reticu-
lum stress. Quercetin-3-O-Glucuronide, a type of active
flavonol glucuronide, exhibits anti-neuroinflammatory ef-
fects in AD by modulating the gut microbiota-brain axis,
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Table 1. Experimental research of active components of medicinal plants in the treatment of AD from 2019–2024.
Compound Evaluation model Effects and action mechanism Ref.

Polyphenols

Paeonol • D-gal+AlCl3-induced AD rat model
Behavioral dysfunction, Aβ levels, and loss of fibrillar actin ↓

[41]
Rho/Rock2/Limk1/cofilin1 pathway ↑

Carvacrol
• Aβ1−42-induced AD mouse model Cell viability ↑

[42]
• Aβ1−42-induced SH-SY5Y cells Memory impairment and oxidative stress ↓

Pterostilbene
• Aβ25−35-induced AD mouse model

Neuronal plasticity, expression of SIRT1 and Nrf2, and SOD level ↑
[43]

Neuronal loss and mitochondria-dependent apoptosis ↓
• Aβ1−42-induced HEK 293T cells Learning and memory abilities ↑

[44]
• APP/PS1 mice Microglial activation, Aβ aggregation, inflammation, and TLR4 pathway ↓

Gastrodin • D-gal-induced AD mouse model
Inflammation and gut microbiota dysbiosis ↓

[45]
Expression of ZO-1 and occludin ↑

Ellagic acid • Scopolamine-induced AD mouse model
Learning and memory abilities and level of SOD and CAT ↑

[46]
MDA level ↓

Salidroside
• Aβ1−42-induced AD mouse model

Cognitive dysfunction, Aβ accumulation, and Tau hyperphosphorylation ↓
[47]

TLR4/NF-κB/NLRP3/Caspase-1 pathway ↓

• SAMP8 mice
Cognitive impairment, Aβ plaques, neuronal damage, and inflammation ↓

[48]
Nrf2/GPX4 pathway ↑

Resveratrol • LPS-induced BV2 cells
NLRP3 inflammasome and NF-ĸB pathway ↓

[49]
Expression of CAT and SOD2 ↑

Curcumin • Aβ1−42-induced AD mouse model
Cognitive function, spatial memory, SOD content, and AMPK pathway ↑

[50]
Damaged neurons and levels of Aβ1−42, TNF-α, IL-6, IL-1β, and MDA ↓

EGCG • Aβ25−35-induced AD rat model
Cognitive impairment, Tau phosphorylation, and expression of Aβ1−42 ↓ [51]

Ach content ↑

Kaempferol
• Aβ25−35-induced PC-12 cells

Cell death and apoptosis ↓
[52]

ERS/ERK/MAPK pathway ↓
• STZ-induced AD mouse model Learning and memory abilities, and expression of GAD67 and p‑NMDAR ↑ [53]

Quercetin
• 3xTg mice

Cognitive function and Aβ reduction ↑
[54]

Tau phosphorylation ↓

• Aβ25−35-induced PC-12 cells
Cell proliferation and levels of SOD, GSH-Px, CAT, and Nrf2 protein ↑

[55]
Levels of LDH, AChE, MDA, and HO-1 protein ↓
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Table 1. Continued.
Compound Evaluation model Effects and action mechanism Ref.

Flavonoids

Genistein
• STZ-induced AD rat model

Aβ level and hyperphosphorylated tau protein ↓
[56]

Autophagy and TFEB ↑

• D-gal+Aβ25−35-induced AD rat model
Learning and memory ability ↑

[57]
Neuronal damage and ERS-mediated apoptosis ↓

Amentoflavone
• Aβ1−42-induced SH-SY5Y cells Neurological dysfunction and pyroptosis ↓

[58]
• Aβ1−42-induced AD rat model AMPK/GSK-3β pathway ↑

Q3GA
• Aβ1−42-induced SH-SY5Y cells Neuroinflammation, Aβ accumulation, p-Tau, and gut microbiota dysbiosis ↓

[59]
• Aβ1−42-induced AD mouse model CREB and BDNF levels ↑

Naringenin • Aβ1−42-induced neurons
Levels of ULK1, Beclin1, ATG5, and ATG7 ↑

[60]
Aβ level, LDH, ROS, and AMPK pathway ↑

Rutin
• Tau oligomers-induced microglia cells Tau aggregation, inflammation, microglial activation, and NF-κB pathway ↓

[61]
• Tau-P301S mice PP2A level ↑

DHMDC • STZ-induced AD mouse model
Learning and memory abilities, and GSH activity ↑

[62]
Lipid peroxidation, TBARS level, and AChE activity ↓

Isoorientin • APP/PS1 mice
Levels of IL-4 and IL-10 ↑

[63]
Aβ42 deposition, phospho-Tau, gut microbiota dysbiosis, and NF-κB pathway ↓

Trilobatin • 3xTg-AD mouse model
Memory impairment, Aβ burden, neuroinflammation, Tau hyperphosphorylation ↓

[64]
TLR4-MYD88-NF-κB pathway ↓

Eriodictyol
• Aβ1−42-induced HT-22 cells Cognitive deficits, Aβ aggregation, and Tau phosphorylation ↓

[65]
• APP/PS1 mice Nrf2/HO-1 pathway ↑

Quercitrin • 5xFAD mice Microglia activation, inflammation, and Aβ level ↓ [66]

Hesperidin • 5xFAD mice
Aβ accumulation and memory dysfunction ↓

[67]
Neural stem cell proliferation and AMPK/CREB pathway ↑

Icariin
• 3xTg-AD mouse model

Memory deficits, Aβ level, and hyperphosphorylated tau ↓
[68]

Brain glucose uptake, NeuN, and AKT/GSK-3β pathway ↑

• Aβ1−42-induced AD mouse model
Content of Aβ1−42 and neuronal damage ↓ [69]

Learning and memory abilities, synaptic plasticity, and BDNF-TrκB pathway ↑

Dihydromyricetin
• LPS+ATP-induced BV2 cells Inflammation, cell apoptosis, and level of TLR4 and MD2 ↓

[70]
• APP/PS1 mice

Silibinin
• STZ-induced HT22 cells Cognitive impairment and inflammatory cytokines ↓

[71]
• STZ-induced AD mouse model Level of SLC7A11 and GPX4 ↑
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Table 1. Continued.
Compound Evaluation model Effects and action mechanism Ref.

Nobiletin • STZ-induced AD mouse model
Memory defects, Aβ level, oxidative stress, and neuroinflammation ↓

[72]
SIRT1/FoxO3a pathway ↑

Luteolin
• Aβ1−42-induced neurons Memory impairment, Aβ level, mitochondrial dysfunction, neuronal apoptosis ↓

[73]
• 3xTg-AD mouse model PPARγ ↑

Baicalein
• Aβ1−42-induced AD mouse model

Cognitive and memory impairment ↓
[74]

Synaptic plasticity and AMP/GMP-CREB-BDNF pathway ↑

• 3xTg-AD mouse model
Learning and memory abilities ↑

[75]
Neuroinflammation and CX3CR1/NF-κB pathway ↓

Alkaloids

Oxymatrine
• Aβ1−42-induced microglia cells Neuronal damage, microglia activation, levels of TNF-α, IL-1β, and COX-2 ↓

[76]
• Aβ1−42-induced AD mouse model NF-κB and MAPK pathways ↓

Isorhynchophylline
• Aβ1−42-induced neurons Cognitive deficits, Aβ level, tau phosphorylated, levels of TNF-α, IL-6, and IL-1β, Iba1+ microglia, and JNK pathway ↓ [77]

• TgCRND8 mice

Rutaecarpine • High sucrose-induced AD mouse model
Learning and memory deficits and tau hyperphosphorylation ↓

[78]
Synaptic plasticity ↑

Tetrandrine
• Aβ1−42-induced BV2 cells Cognitive ability ↑

[79]
• 5xFAD mice Aβ plaque deposition, cell apoptosis, inflammation, and TLR4/NF-κB pathway ↓

Sophocarpine • APP/PS1 mice Cognitive impairment, Aβ level, inflammation, and microglial activation ↓ [80]

Rhynchophylline • APP/PS1 mice Aβ plaque burden and inflammation ↓ [81]

Homoharringtonine • APP/PS1 mice Cognitive deficits, Aβ level, neuroinflammation, and STAT3 pathway ↓ [82]

DMTHB • Aβ25−35-induced AD mouse model Cognitive deficits, microglia activation, and NLRP3 inflammasome ↓ [83]

Magnoflorine
• Aβ-induced PC12 cells Cognitive deficits, cell apoptosis, ROS generation ↓

[84]
• APP/PS1 mice JNK pathway ↓

Dauricine • D-gal+AlCl3-induced AD mouse model Learning and memory deficits, neuronal damage, expression of p-CaMKII, p-Tau, Aβ, and Ca2+/CaM pathway ↓ [85]

Berberine • 3xTg-AD mouse model
Cognitive disorders, Aβ level, p-tau, neuronal loss ↓

[86]
Nrf2 pathway ↑

Terpenes

Oleanolic acid • N2a/APP695swe cells
Cell viability and expression of stanniocalcin-1 ↑

[87]
ROS level and Aβ content ↓

Artemisinin

• Aβ1−42-induced SH-SY5Y cells Cognitive impairment, Aβ level, p-tau, inflammation, cell apoptosis, and ROS ↓
[88]

• 3xTg-AD mouse model ERK/CREB pathway ↑
• Aβ1−42-induced BV2 cells NeuN+ cells ↑

[89]
• Aβ1−42-induced AD mouse model Inflammation and NF-κB pathway ↓
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Table 1. Continued.
Compound Evaluation model Effects and action mechanism Ref.

Linalool • Aβ1−42-induced AD rat model Neurodegeneration, ROS levels, oxidative stress, and inflammatory response ↓ [90]

Tanshinone IIA
• Aβ1−42-treated BV2 cells Spatial learning, memory deficits, Aβ level, and pro-inflammatory cytokines ↓

[91]
• APP/PS1 mice

Synapse-associated proteins (Syn and PSD-95) ↑
RAGE/NF-κB pathway ↓

Bilobalide
• Aβ42-induced primary astrocytes Aβ plaque deposition, expression of TNF-α, IL-1β, and IL-6, neuronal deficiency, and STAT3 pathway ↓ [92]

• APP/PS1 mice

Geniposidic Acid
• Aβ1−42-induced primary neurons Cognitive impairment, Aβ level, neuronal apoptosis, and inflammation ↓

[93]
• APP/PS1 mice GAP43 expression and PI3K/AKT pathway ↑

Ginkgolide • APP/PS1 mice
Levels of TNF-α, IL-1β, and IL-6 ↓

[94]
NF-κB pathway ↓

Cucurbitacin B • STZ-induced AD rat model Cognitive impairment, neuron apoptosis, and inflammation ↓ [95]

Ginkgolide B
• ATP+LPS-induced BV2 cells Cognitive behavior and γ-aminobutyric acid level ↑

[96]
• SAMP8 mice Pro-inflammatory cytokines and NLRP3 inflammasome ↓

OABL
• 5xFAD mice Cognitive function ↑

[97]
• LPS-induced BV2 cells Neuroinflammation, Aβ level, p-Tau, oxidative stress, and NF-κB pathway ↓

Ginsenoside Rg1 • Aβ25−35+D-gal-induced AD tree shrew model
Cognitive impairment, p-Tau, Aβ1−42 level, and Wnt/β-catenin pathway ↓

[98]
Activity of SOD, CAT, GSH-Px ↑

Artesunate
• Aβ1−42-treated BV2 and neurons Deficits in memory and learning, Aβ deposition, inflammation, and neuronal cell apoptosis ↓ [99]

• APP/PS1 mice

Celastrol • 3xTg-AD mouse model
Memory dysfunction, cognitive deficits, p-Tau ↓

[100]
TFEB ↑

Patchouli alcohol
• Aβ25−35-induced primary neurons Cognitive defects, Aβ plaque deposition, oxidative stress, and apoptosis ↓

[101]
• APP/PS1 mice

Microglial phagocytosis and synaptic integrity ↑
BDNF/TrkB/CREB pathway ↑

Paeoniflorin • APP/PS1 mice
Cognitive ability and SOD expression ↑

[102]
Cell ferroptosis ↓

Catalpol
• Aβ1−42-induced BV2 cells Levels of Aβ, TNF-α, IL-6, and iNOS, IBA-positive microglia, GFAP-positive astrocytes, and NF-κB pathway ↓ [103]

• APP/PS1 mice
Astragaloside IV • Aβ1−42-induced BV2 cells Microglial activation, inflammation, and EGFR pathway ↓ [104]
Polysaccharides
Coptis chinensis • Aβ25−35-induced PC-12 cells Cell viability ↑; Oxidative stress and JNK pathway ↓ [105]
Lycium barbarum • APP/PS1 mice Aβ level ↓; Cognitive functions, neurogenesis, and synaptic plasticity ↑ [106]

Angelica sinensis • Aβ25−35-induced AD mouse model
Learning and memory deficiency, AchE level, MDA, and inflammation ↓

[107]
Activity of SOD and CAT and BDNF/TrkB/CREB pathway ↑7
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Table 1. Continued.
Compound Evaluation model Effects and action mechanism Ref.

Codonopsis pilosula • APP/PS1 mice
Cognitive defects and expression of Aβ42 and Aβ40 ↓ [108]

Synaptic plasticity ↑

Astragalus membranaceus • APP/PS1 mice
Apoptosis of brain cells and content of Aβ ↓

[109]
Spatial learning and memory abilities and Nrf2 pathway ↑

Taxus Chinensis • D-gal-induced AD mouse model
Cognitive defects, level of caspase-3, Bax, MDA, ROS, and Aβ1−42 ↓ [110]

Level of SOD and Nrf2 pathway ↑
Cistanche deserticola • D-gal-induced AD mouse model Memory and learning disorders, inflammation, and gut microbiota dysbiosis ↓ [111]

Polygonatum sibiricum
• D-gal-induced HT-22 cells

Cell death, memory impairment, oxidative stress, and inflammation ↓ [112]
• D-gal-induced AD mouse model

Note: AchE, Acetylcholinesterase; AD, Alzheimer’s disease; AMPK, adenosine monophosphate-activated protein kinase; Aβ, amyloid-β; CAT, catalase; CREB,
cAMP-response element-binding protein; D-gal, D-galactose; DMTHB, Demethylenetetrahydroberberine; EGCG, epigallocatechin-3-gallate; EGFR, epidermal
growth factor receptor; ERS, Endoplasmic reticulum stress; FoxO, Forkhead box-containing protein, O subfamily; GSH-Px, glutathione peroxidase; GSK-3β,
glycogen synthase kinase 3β; IL, interleukin; MDA, malondialdehyde; NeuN, Neuronal nuclear antigen; NF-κB, nuclear factor-κB; Nrf2, nuclear factor ery-
throid 2-related factor 2; OABL, 1,6-O,O-diacetylbritannilactone; PPARγ, peroxisome proliferator-activated receptor gama; Q3GA, quercetin-3-O-glucuronide;
SAMP8, senescence-accelerated mouse prone 8; SIRT1, sirtuin-1; SOD, superoxide dismutase; STZ, streptozotocin; TNF-α, tumor necrosis factor-α; DHMDC,
2′,6′-dihydroxy-4′-methoxy dihydrochalcone; Rho, Ras homology; Rock2, Rho-associated coiled-coil containing protein kinase 2; HEK, human embryonic kidney;
APP/PS1, amyloid precursor protein/presenilin 1; TLR4, Toll-like receptor 4; ZO-1, zonula occludens-1; NLRP3, Nod-like receptor family, pyrin domain containing
3; GPX4, glutathione peroxidase 4; LPS, lipopolysaccharide; ERK, extracellular signal-regulated kinase; MAPK, mitogen-activated protein kinase; GAD67, glu-
tamate decarboxylase 67; p-NMPAR, phosphorylated N-methyl D-aspartate receptor; LDH, lactate dehydrogenase; HO-1, heme oxygenase-1; TFEB, transcription
factor EB; ULK1, UNC-52-like kinase 1; ATG, autophagy-related gene; ROS, reactive oxygen species; PP2A, protein phosphatase 2A; GSH, glutathione; TBARS,
thiobarbituric acid reactive substance; MYD88, myeloid differentiation primary response 88; AKT, protein kinase; BDNF, brain-derived neurotrophic factor; TrkB,
tropomyosin receptor kinase B; MD2, myeloid differentiation factor 2; AMP, adenosine monophosphate; GMP, good manufacturing practice; CX3CR1, CX3C
chemokine receptor 1; COX, cyclooxygenase; JNK, c-Jun N-terminal kinase; p-CaMKII: phosphorylated Ca2+/calmodulin-dependent protein kinase II; PSD, post-
synaptic density protein; RAGE, receptor for advanced glycation end product; GAP43, growth-associated protein 43; PI3K, phosphatidylinositol 3-kinase; iNOS,
inducible nitric oxide synthase; IBA, ionized calcium binding adapter; GFAP, glial fibrillary acidic protein; BCL-2, B-cell leukemia/lymphoma 2; Bax, BCL-2 asso-
ciated X.
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as evidenced by its ability to reduce short-chain fatty
acids and address gut microbiota dysbiosis [59]. Overall,
flavonoids possess a diverse array of biological activities
that can prevent the development and progression of AD.

4.3 Alkaloids

Alkaloids, a class of nitrogen-containing basic organic
compounds widely found in medicinal plants, exert pro-
tective effects against AD by suppressing inflammation,
oxidative stress, and neuronal apoptosis (Table 1). Ma-
trine, a natural quinolizidine alkaloid isolated from Sophora
flavescens, reduces proinflammatory cytokines and Aβ de-
position, alleviating memory deficits in AD transgenic
mice by inhibiting the Aβ/receptor for advanced glyca-
tion end product (RAGE) pathway [124]. Similarly, oxy-
matrine demonstrates anti-neuroinflammatory effects in an
Aβ1−42-induced AD rat model by inhibiting nuclear factor-
κB (NF-κB) andmitogen-activated protein kinase (MAPK)
pathways [76], suggesting it as a potential candidate for the
treatment of AD. Research by Li et al. [77] has shown
that isorhynchophylline reduces Aβ deposition, tau hyper-
phosphorylation, and neuroinflammation, while improving
cognitive deficits in AD mice by inactivating the c-Jun
N-terminal kinase (JNK) pathway. Berberine, a natural
isoquinoline alkaloid derived from Rhizoma coptidis, sup-
presses the formation of Aβ plaques, tau protein hyperphos-
phorylation, and neuronal loss in the brains of AD mice
by activating the nuclear factor erythroid 2-related factor
2 (Nrf2) pathway [86]. Furthermore, a recent study high-
lights that palmatine, a natural alkaloid found in various
plants, enhances cognitive function and restores mitochon-
drial function in AD mouse models [125].

4.4 Terpenes

Terpenoids, a diverse group of organic compounds
found in medicinal plants, are increasingly recognized for
their potential in treating various diseases [126,127]. Their
preventive and therapeutic effects on AD have garnered
significant attention (Table 1), owing to their remarkable
biological activities, such as anti-inflammatory, antioxi-
dant, and anti-apoptotic properties. Huperzine-A, a nat-
ural sesquiterpene alkaloid derived from Huperzia ser-
rata, demonstrates a neuroprotective effect in AD by re-
ducing Aβ accumulation, preserving mitochondrial func-
tion, and maintaining Fe2+ homeostasis [128]. Paeoni-
florin, commonly found in Paeoniaceae plants, improves
cognitive function and mitigates neuronal ferroptosis in AD
mice through inhibition of the P53 pathway [102]. Ad-
ministration of geniposidic acid attenuates AD progres-
sion by enhancing cognitive function, reducing Aβ ac-
cumulation, neuronal apoptosis, and neuroinflammation
[93]. Patchouli alcohol, a bioactive tricyclic sesquiter-
pene from Pogostemonis herba, exerts neuroprotective ef-
fects against AD by suppressing Aβ plaque deposition, tau
protein hyperphosphorylation, neuroinflammation, and gut

dysbiosis via inhibition of the CCAAT/enhancer-binding
protein β/asparagine endopeptidase (C/EBPβ/AEP) path-
way [129]. Ginkgolide B, a terpene lactone derived from
Ginkgo biloba leaves, prevents AD progression by inhibit-
ing NLRP3 (Nod-like receptor family, pyrin domain con-
taining 3) inflammasome activation and improving learn-
ing and memory impairments [96]. Tanshinone IIA, a fat-
soluble component of Salvia miltiorrhiza, protects against
AD by enhancing Aβ transport [130], reducing tau phos-
phorylation, oxidative stress, and neuroinflammation [91,
131]. Celastrol, a friedelane-type triterpene from Triptery-
gium wilfordii, activates transcription factor enhancer bind-
ings (EBs) to suppress phosphorylated tau aggregates,
thereby improving memory and cognitive deficits in AD
mousemodels [100]. A recent study has shown that catalpol
rescues cognitive deficits in AD by preventing Aβ plaque
formation and neuroinflammation [103].

4.5 Polysaccharides

Currently, plant polysaccharides have been gaining
significant global attention due to their versatile biologi-
cal activities, including antioxidation, anti-inflammation,
and anti-oxidative stress properties, coupled with minimal
side effects [132]. Particularly noteworthy are their po-
tential roles in mitigating risk factors associated with AD
[133] (Table 1), such as modulation of neuroplasticity,
promotion of neurogenesis, normalization of neurotrans-
mission, and suppression of neuroinflammation. For in-
stance, Angelica polysaccharides have been shown to alle-
viate AD progression by reducing inflammation, oxidative
stress, neuronal apoptosis, and improving memory impair-
ment [107]. Polysaccharides from Coptis chinensis pro-
tect Aβ-induced neurotoxicity, reduce phosphorylated tau
protein, and mitigate oxidative stress in AD rat models
[105]. Zhou et al. [106] reported that polysaccharides
from Lycium barbarum act as a novel therapeutic agent for
AD by reducing Aβ plaque deposition and improving cog-
nitive functions. In D-galactose-induced mouse models,
polysaccharides from Polygonatum sibiricum exhibit anti-
oxidative stress and anti-inflammatory effects against AD
[112]. Additionally, polysaccharides from Cistanche de-
serticola have been shown to improve cognitive function
by restoring homeostasis in the gut microbiota-brain axis
[111].

4.6 Others

In addition to the previously mentioned compounds
isolated from medicinal plants for the prevention of AD,
various other plant-based bioactive compounds have shown
therapeutic potential against AD. Studies have highlighted
that quinones such as sennoside A [134], rhein [135],
and shikonin [136], phenylpropanoids, including mag-
nolol [137] and forsythoside A [138], glycosides such
as tenuifolin [139] and ginsenoside compound K [140],
and volatile oils from plants like Acorus tatarinowii
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Schott [141], Rosmarinus officinalis and Mentha piperita
oils [142], alleviate AD progression through antioxidant,
anti-inflammatory, and anti-apoptotic activities. Further-
more, several medicinal plants have demonstrated po-
tential in preventing or treating AD, including Moringa
oleifera [143], Rosmarinus officinalis [144], Nardostachys
jatamansi [145], and Tinospora cordifolia [146]. For
example, plant-derived alkaloids [147,148], polyphenols
[149], flavonoids [150,151], saponins [152,153], alka-
loids [154], terpenes [155], and essential oils [156,157]
showedmulti-targeted activity against acetylcholinesterase,
butyrylcholinesterase, tyrosinase, monoamine oxidase, and
pancreatic lipase, which helped to prevent the occurrence
and development of AD. However, the functional roles of
these plant-based bioactive compounds in the treatment of
AD remain poorly understood, with limited knowledge of
their mechanisms. In conclusion, plant-based bioactive
compounds exhibit multi-target and versatile biological ac-
tivities in experimental AD studies, suggesting their poten-
tial as therapeutic agents for AD treatment in clinical set-
tings.

5. Clinical Trials of Medicinal Plants for AD
Management and Challenges

Accumulating evidence indicates that medicinal
plants offer a wide range of pharmacological effects in
AD, with beneficial efficacy demonstrated in vitro cell
models and animal experiments. Gul et al. [158] have
reported that Huperzine-A acts as an acetylcholinesterase
inhibitor, improving cognition and task-switching abilities
in patients with AD. Moreover, ongoing clinical studies
are exploring the safety and efficacy of medicinal plant
decoctions and injections for the treatment of AD (Table 2).
A randomized controlled clinical trial found that Di-Tan
decoction is a safe method for treating AD and improving
cognitive symptoms [159]. Another study demonstrated
that a medicinal plant formula was beneficial for cognitive
improvement in AD patients by reducing Aβ plaque
deposition [160]. Recently, Huanglian Jiedu decoction
has been found to reduce inflammation and oxidative
stress in AD patients by regulating lipid and glutamic
acid metabolism [161]. Furthermore, clinical trials have
indicated that the Jiannao Yizhi formula’s efficacy and
safety in treating AD are comparable to Western medicine
(donepezil) [162]. Meanwhile, Western medicines are
expensive and have side effects. A study in Australia
showed that EGb 761® (a standardized extract from
Gingkgo biloba) treatment improved the activities of daily
living deterioration by 22.3 months in patients with AD,
and EUR 531 for one additional therapy success (defined
as improvement in clinician’s global judgment) with EGb
761® while cholinesterase inhibitors require between EUR
3849 and EUR 14,224 [163]. A randomized controlled
trial (NCT00391833) showed that AD patients treated with
Panax ginseng powder (4.5 g/day) for 12 weeks, the cogni-

tive subscale of the Alzheimer’s Disease Assessment Scale
and the Mini-Mental State Examination score began to
show improvements. Moreover, Chinese medicinal plants’
adjunctive therapy could improve cognitive impairment
and enhance immediate response and quality of life in AD
patients [12,164]. Based on these findings, plant-based
bioactive compounds present a promising alternative for
AD, offering diverse therapeutic benefits.

However, it is also necessary to explore the several
challenges of translating preclinical findings into clinical
applications. The biggest challenge to plant-based drug de-
livery into the brain is circumventing the blood-brain bar-
rier, which prevents the entry of numerous potential thera-
peutic agents. Another challenge is related to approval of
the drug for commercialization because enough resources
are unavailable. Since some compounds cannot be synthe-
sized in a semi-synthetic manner or by growing or engineer-
ing the plant artificially, this will increase the product’s de-
pendency on natural resources. As per the reports, nearly
25,000 plants will go extinct, which imposes an ethical is-
sue for extracting bioactive compounds from plants. In ad-
dition, there is still a lack of sufficient clinical data and their
mechanisms of action. Finally, plant-based bioactive com-
pounds have solubility & absorption, intellectual property,
absence of drug-likeness, and purity issues.

6. Current Status of Plant-Based AD
Treatments in Different Countries

Medicinal plants have been used for thousands of
years and have been broadly used in clinical practice in
China and several other Asian countries (such as Japan
and Korea) [165], and Chinese people have a wealth of
clinical experience in medicinal plants. Currently, medic-
inal plants account for more than 40% of China’s phar-
maceutical market [166]. Meanwhile, the world health
organization (WHO) stated that about 80% of the world
population depends on medicinal plants to satisfy health-
care requirements [167,168]. For example, Evalvulus
alsinoides, Centella asiatica, Myristica fragrans, Andro-
graphis paniculata, Nardostachys jatamansi, and Nelumbo
nuciferawidely used in Indian traditional medicine systems
for cognitive enhancement were known for their acetyl-
cholinesterase inhibitory activity [169]. Lobbens et al.
[170] reported that a total of 29 ethanolic extracts from
European traditional medicine plants served as new drug
candidates for the treatment of AD by inhibition of acetyl-
cholinesterase and amyloidogenic activities. Kumar et al.
[171] found that medicinal plants from the Australian rain-
forest possessed anti-AD activity by suppressing neuroin-
flammation. In the West Africa region, over 10,000 medic-
inal plants have been utilized in curing neurodegenerative
diseases [172], such as Pyllanthus amarus, Crysophyllum
albidum, Rauwolfia vomitora, Abrus precatorius. A clini-
cal study confirmed that administration with ninjin’yoeito
(NYT), a traditional Japanese medicine (Kampo medicine),
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Table 2. Registered clinical trials of plant species and compounds in Alzheimer’s disease.
Sources Year of registration Enrollment Sponsor Clinical trial ID

Yizhi Baduanjin 2023 30 The University of Hong Kong, China NCT06453941
Rhizoma acori Tatarinowii, Poria cum Radix Pini, and Radix polygalae 2022 180 Peking Union Medical College Hospital, China NCT05538507
Centella asiatica 2022 48 Oregon Health and Science University, USA NCT05591027
Yangxue Qingnao Pills 2021 216 Dongzhimen Hospital, China NCT04780399
Yi-gan-san, Huan-shao-dan, Salvia miltiorrhiza, Rhizoma gastrodiae,
Ramulus uncariae cum Uncis, and Morindae officinalis

2020 28 Taipei Veterans General Hospital, China NCT04249869

Bupleurum+Ginkgo 2019 60 Xuanwu Hospital, China NCT04279418
GRAPE granules 2017 120 Dongzhimen Hospital, China NCT03221894
Jian Pi Yi Shen Hua Tan Granules 2016 300 Dongfang Hospital Beijing University of Chinese Medicine, China NCT02641886
Ginkgo biloba Extract 2016 240 The First Affiliated Hospital with Nanjing Medical University, China NCT03090516
EGb761® 2008 49 Ipsen, France NCT00814346
Nootropics (Ginkgo biloba, nicergoline, piracetam, or others) 2006 1134 Janssen-Cilag G.m.b.H, USA NCT01009476
Curcumin and Ginkgo 2004 36 Chinese University of Hong Kong, China NCT00164749
Curcumin 2003 33 John Douglas French Foundation, USA NCT00099710
Ginkgo biloba 2000 3069 National Center for Complementary and Integrative Health, USA NCT00010803
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improved impairments and depressive states in twelve AD
patients [173]. Meanwhile, Ginkgo biloba extract (EGb
761®) was registered as an ethical drug in Western coun-
tries and has been widely used in clinical therapy to treat
AD [174]. Galantamine (Razadyne®) serves as a selective
competitive and reversible inhibitor of acetylcholinesterase
and has received regulatory approval in 29 countries [175],
such as Sweden, Austria, United States, Europe, and other
countries. Rivastigmine (Exelon®) was approved to treat
mild to moderate AD in over 40 countries in North and
South America, Asia, and Europe [176]. Currently, the
U.S. Food and Drug Administration has approved tacrine
(Cognex®), donepezil (Aricept®), galantamine, meman-
tine, and rivastigmine for the treatment of AD patients in
clinical [177,178]. Taken together, medicinal plant-based
bioactive compounds exhibited their powerful roles in the
management of AD progression and helped to relieve the
symptoms related to AD.

7. Conclusions and Future Directions
With increasing research into the pathogenesis of AD,

the role of medicinal plants in its treatment has advanced
significantly in recent years. TCM has been particu-
larly prominent in treating various diseases, including AD,
and offers a new perspective in the modern era for both
the prevention and treatment of coronavirus disease 2019
(COVID-19). This review underscored that plant-based
bioactive ingredients can prevent and manage AD through
multiple mechanisms, including reducing the production
and aggregation of pathological proteins, enhancing their
degradation, antioxidative and anti-inflammatory activities,
improving mitochondrial function and energy metabolism,
regulating intestinal flora, inhibiting neuronal apoptosis,
and promoting neurogenesis. Clinical trials have demon-
strated the efficacy and safety of medicinal plants in alle-
viating the symptoms of AD. However, the treatment of
AD with medicinal plant-based bioactive ingredients still
faces some challenges that must be addressed. (1) With the
rapid development of science, there is a need to elucidate
the physiological functions andmechanistic explanations of
medicinal plants against AD using network pharmacologi-
cal approaches andmulti-omics techniques, such as nutrige-
nomics, metabolomics, proteomics, gut microbial macroge-
nomics, and immunomics. (2) Further validation of the
metabolic, toxicity, and pharmacokinetic profiles of medic-
inal plants in clinical trials for AD is essential. (3) Research
on active ingredients frommedicinal plants is limited by un-
stable chemical structures, low bioavailability, and suscep-
tibility to oxidation. Consideration of strategies like lipo-
some embedding or nanoparticle formulation may mitigate
these challenges. (4) Many active compounds frommedici-
nal plants cannot effectively cross the blood-brain barrier to
reach the brain. Exploring how plant-based bioactive com-
pounds that regulate intestinal flora based on the “brain-gut
microbiota” axis can mitigate AD is warranted.

Due to the synergistic effects, systematic ana-
lytical tools must be developed to study the multi-
component, multi-rule, and multi-target characteristics of
TCM. Network-based approaches in medicinal plants use
computational algorithms to elucidate the underlyingmech-
anisms of bioactive compounds and identify the underly-
ing synergistic effects. Moreover, the development of net-
work pharmacology diminishes the cost, reduces the risk,
and saves time in researching new bioactive compounds for
the treatment of various diseases, including AD [179]. Re-
searchers can use these tools and experimental knowledge
to determine effective substances in medicinal plants for
AD. For example, Wu et al. [180] presented a novel al-
gorithm based on entropy and random walk with the restart
of the heterogeneous network was proposed for predicting
active ingredients for AD and screening out the effective
TCMs for AD, and results showed that the top 15 active
ingredients may act as multi-target agents in the preven-
tion and treatment of AD, Danshen, Gouteng and Chaihu
were recommended as effective TCMs for AD, Yiqitongyu-
tang was recommended as effective compound for AD. Re-
cent studies have proved that integrating network pharma-
cology and experimental verification to reveal the poten-
tial pharmacological ingredients and mechanisms of differ-
ent medicinal plants (Paeonia lactiflora [181], Acoritatani-
nowii rhizome [182], Ginkgo biloba [183], Panax ginseng
[184],Corydalis rhizome [185]) in curingAD, and TCMde-
coction (Erjingwan [186], Jin-Si-Wei [187], Guhan Yang-
shengjing [188], and Tian-Si-Yin [189]). Therefore, us-
ing network pharmacology to discover the relationship be-
tweenmedicinal plants, AD, and cellular responseswas eas-
ily achievable.

In conclusion, medicinal plants exhibit promising
anti-AD effects and serve as essential active agents for treat-
ing neurodegenerative diseases. In addition to experimen-
tal studies, bioinformatics approaches provide valuable in-
sights into the mechanisms by which plant-based bioactive
compounds exert their therapeutic effects on AD. Incorpo-
rating molecular docking studies, molecular dynamics sim-
ulations, quantitative structure-activity relationship mod-
els, network pharmacology, and genomics/transcriptomics
analyses can significantly enhance our understanding of the
multi-target effects and potential efficacy of these com-
pounds. Integration of these bioinformatics methods could
validate experimental findings and guide the development
of novel therapeutic strategies for AD. This review syn-
thesized the current understanding of AD’s pathogenesis,
systematically analyzed and explored the mechanisms of
medicinal plants in preventing AD, and reviewed their clin-
ical trial outcomes. The aim was to offer a scientific
and comprehensive reference for the treatment of AD with
medicinal plants, enhancing the utilization and develop-
ment of TCM resources.
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