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Abstract

It is becoming increasingly evident that Artificial intelligence (AI) development draws inspiration from the architecture and functions
of the human brain. This manuscript examines the alignment between key brain regions—such as the brainstem, sensory cortices, basal
ganglia, thalamus, limbic system, and prefrontal cortex—and AI paradigms, including generic AI, machine learning, deep learning,
and artificial general intelligence (AGI). By mapping these neural and computational architectures, I herein highlight how AI models
progressively mimic the brain’s complexity, from basic pattern recognition and association to advanced reasoning. Current challenges,
such as overcoming learning limitations and achieving comparable neuroplasticity, are addressed alongside emerging innovations like
neuromorphic computing. Given the rapid pace of AI advancements in recent years, this work underscores the importance of continuously
reassessing our understanding as technology evolves exponentially.
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1. Brain Development and Critical Regions

The human embryonic brain begins forming just three
weeks after fertilization as an oval-shaped disk of tissue
known as the neural plate. This structure folds and fuses
into the neural tube, where the neuroepithelium initiates
neurogenesis, leading to rapid neuron proliferation. By the
early secondmonth, this rudimentary structure’s rostral part
differentiates into three, then five enlargements-vesicles,
while the caudal part elongates to form the spinal cord. Dur-
ing the second trimester, glial cells proliferate, and millions
of nerves branch out throughout the body. The fetus be-
gins to show synapses, leading to tiny, often undetected
movements, typically sensed by themother around eighteen
weeks. The already developed brainstem, responsible for
vital functions like heart rate, breathing, and blood pressure,
enables extremely premature babies to potentially survive
outside the womb. By the last trimester, around 28 weeks,
nerve cells begin to be covered in myelin sheath, facili-
tating rapid electrical impulse transmission and marked by
increased reflex movements. The cerebellum experiences
the fastest growth, and the baby’s activity significantly in-
creases. As the brain triples in weight, the cerebrum de-
velops deeper grooves, yet babies are born with a primi-
tive cerebral cortex, explainingmuch of their emotional and
cognitive maturation postnatally [1].

In the first years of life, an infant’s brain undergoes
significant strengthening, with an increase in white mat-
ter volume [2] that surpasses that found in chimpanzees
[3] while forming new neural connections—a process that
continues to be refined until around age 25. This ongoing
adaptability, known as neuroplasticity, is the brain’s abil-

ity to reorganize its connections in response to experiences
and environmental stimuli, a concept first experimentally
demonstrated in the early 1960s byDiamondMC and others
[4]. Neuroplasticity involves not only neurons but also glial
cells, particularly microglia. Interestingly, although the hu-
man brain contains approximately 86 billion neurons [5],
brain size alone doesn’t dictate intelligence. For example,
elephants have large brains but lack sophisticated problem-
solving abilities, while bees, with much fewer neurons, dis-
play complex behaviors. Greater neuroplasticity is linked
to higher intelligence and regenerative capacity. A strik-
ing example is the flatworm planaria, which can fully re-
generate their nervous system including a two-lobe brain
but also the whole body, exhibiting almost sheer immor-
tality [6]. While genes were traditionally viewed as the
primary drivers of organ development, recent research sug-
gests that bioelectric signals, biomechanical triggers, train-
ing, and non-neural memory also play crucial roles in in-
structing this adaptation [7].

Since ancient times, philosophers like Plato and later
Descartes sought to understand the nature of human con-
sciousness and thought. In the 1960s, neuroscientist Paul
MacLean introduced a conceptual model to explain how
different parts of the brain might govern various func-
tions. Although outdated, his model provided a framework
for linking specific brain structures to different cognitive
functions such as instincts, emotions, and rational thought.
However, contemporary neuroscience reveals that mental
activities such as primal instincts, emotional regulation, and
logical reasoning do not reside in separate, distinct brain re-
gions. Instead, these functions are the result of complex in-
teractions across multiple areas of the brain [8]. The brain’s
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cognitive functions are organized within large-scale net-
works that span various critical brain regions (Fig. 1). The
visual cortex processes sensory information, particularly vi-
sual data, forming the foundation of perceptual awareness.
The basal ganglia and thalamus integrate and relay sensory
and motor signals, with the basal ganglia’s striatum regulat-
ing movement and reward, and the thalamus acting as a sen-
sory hub. The hippocampus and cingulate cortex are cen-
tral to memory and cognitive control, with the hippocampus
managing memory and the cingulate cortex (both anterior
and posterior) overseeing emotional regulation and cogni-
tive processing. These regions operate within major net-
works: the default mode network (DMN) integrates self-
referential thought and memory, the frontoparietal network
(FPN) supports executive functions and attention, and the
salience network (SN) detects salient stimuli and maintains
cognitive control. Lastly, at the forefront of executive func-
tions and complex decision-making is the prefrontal cor-
tex (PFC), particularly the medial PFC (mPFC), which in-
tegrates information across these networks to manage high-
level cognitive processes.

2. From Brain Neural Networks to
Intelligent Systems

The earliest encephalization began in simple organ-
isms like flatworms around 500million years ago, driven by
the need to coordinate nerve cells around the gut to meet en-
ergy demands. True brains emerged later as organisms de-
veloped hunting and predation skills, necessitating the coor-
dination of motor functions for more efficient hunting and
enhanced sensory input to avoid predation. About 7 mil-
lion years ago, early hominins appeared, gradually evolv-
ing from using simple tools to more complex ones. Ap-
proximately 2 million years ago, Homo erectus harnessed
fire, invented tools, and developed the first rudimentary
cultures. Homo sapiens emerged around 300,000 years
ago with even larger and more complex brains, eventually
leading to the advent of agriculture and organized civiliza-
tions around 3500 B.C. Rapid advancements in medicine
began about 200 years ago, and in 1950, foundational con-
cepts for artificial intelligence (AI), such as the Turing Test,
were established [9]. The internet age began roughly 35
years ago, accelerating technological progress. The first
AI chatbot, ELIZA, was developed in 1964, and by 2022,
the world was introduced to Chat Generative Pre-Trained
Transformer (ChatGPT), a large language model (LLM)
based on a single-threaded neural network. But why neural
networks, and how did we advance so quickly to this point?

Neural networks, inspired by the human brain, are AI
systems designed to process data and learn autonomously
[10]. There are different types of artificial neural networks
(ANN), such as multi-layer perceptrons (MLP), promis-
ing alternatives known as Kolmogorov-Arnold networks
(KAN), convolutional neural networks (CNN), and recur-
rent neural networks (RNN). The simplest form, a percep-

Fig. 1. Brain mimicking artificial intelligence (AI). The simpli-
fied figure demonstrates the parallels between key neural regions
and AI concepts, starting with the main input, which converges
afferent stimuli from the periphery. These stimuli are part of pro-
prioception and include pure sensory cranial nerves, mixed nerves
primarily located in the brainstem (red), along with parasympa-
thetic projections from the autonomic nervous system. Auxiliary
inputs arise from various cortical regions within the CNS, such as
the visual cortex (yellow), somatosensory cortex, and cerebellar
cortex. Altogether, these regions handle basic sensory process-
ing, analogous to generic AI systems that recognize patterns and
process inputs at a fundamental level. Machine Learning can be
corralated to the basal ganglia and thalamus (magenta), regions
critical for integrating sensory information and adaptive decision-
making. Deep Learning resonates fittingly with with the limbic
system, including the hippocampus, amygdala, and cingulate cor-
tex (orange), which collectively manage complex data processing,
memory, and emotional regulation within neural networks like the
DMN and SN. Lastly, artificial general intelligence (AGI) is as-
sociated with the prefrontal cortex (cyan), particularly the mPFC,
which oversee advanced reasoning and executive functions, re-
flecting the capabilities envisioned for AGI systems. The figure
emphasizes the influence of neuron-level biology on AI neural
networks and suggests a focus on how insights from brain cir-
cuitry inform AI design. CNS, central nervous system; DMN, de-
fault mode network; SN, salience network; mPFC, medial PFC.
Created with Adobe Illustrator (Version 29.3.1, Adobe, Waltham,
MA, USA).

tron, mimics a single neuron with one or multiple inputs, a
processor, and a single output. While traditional machine
learning (ML) models rely on structured data and signifi-
cant human intervention, deep learning (DL), a subset of
ML, allows models to handle unstructured data, like text
and images, through more automated and complex learn-
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ing. ANNs form the core of DL algorithms, enabling sys-
tems to adapt to new patterns, often through unsupervised
learning. Essentially, AI is the overarching system, with
ML as a subset, DL as a further specialization, and ANN
as the foundation of these models—akin to a Russian nest-
ing doll (babuska) where each concept contains the next.
Interestingly, these AI paradigms can be mapped to brain
regions, reflecting increasing complexity and functionality.
Generic AI parallels the visual cortex, both handling basic
sensory processing and pattern recognition. ML aligns with
the basal ganglia and thalamus, where decision-making and
adaptive learning occur. DL mirrors the hippocampus and
cingulate cortex, with both managing complex data pro-
cessing, memory, and cognitive control. At the highest
level, artificial general intelligence (AGI) corresponds to
the prefrontal cortex, the center of advanced reasoning,
planning, and executive function (Fig. 1).

Neurons transmit information through chemical and
electrical signals at synapses, forming the brain’s intricate
wiring, where “neurons that fire together, wire together”.
The brain, with over 100 trillion synapses, stores and pro-
cesses information much like a computer, where the brain
matter acts as the hardware and the transmitted informa-
tion as the software. While conventional software is pro-
grammed to perform specific tasks and only changes when
updated by humans, AI is designed to learn and improve its
performance autonomously. AI systems rely on techniques
like backpropagation to refine their models, but they still
fall short of the brain’s unmatched ability to adapt and learn
from minimal exposure to new information, since brain
constantly reshapes itself physically, as new synapses form
or resolve with every piece of information processed. In-
terestingly, third generation of ANN named spiking neu-
ral networks (SNN) mimic even more human physiology
of neurons and how they asynchronously operate [11]. In
order to run better AI, we need better hardware to sustain
and feed these advanced algorithms. This raises a pivotal
question: should we strive to build silicon-based supercom-
puters that emulate the brain’s complexity, or should we ex-
plore integrating advanced computational systems directly
into our neural tissue? As we push the boundaries of both
AI and neurotechnology, we glimpse the possibilities and
challenges inherent in each trajectory.

3. Where We Stand Now and Where We’re
Headed: The Future of Computational
Innovation

Hardware-wise, traditional computers, based on the
Von Neumann architecture, separate computing and mem-
ory functions, creating a bottleneck that limits efficiency.
As transistor sizes shrink to the atomic scale, this design
faces increasing challenges, including excessive heat gen-
eration and energy consumption. In response, neuromor-
phic computing—a new approach inspired by the brain’s
seamless integration of memory and processing into sin-

gle neurons, minimizing latency—seeks to overcome these
limitations by emulating the dense, interconnected neuron
clusters of the neocortex. To grasp the potential of this
technology, consider how far we’ve come with supercom-
puters: From the BRAIN Initiative and the TrueNorth chip
from International Business Machines (IBM) Corporation,
to Intel’s Loihi SNN chips, we now have Hewlett Packard
Enterprise’s Frontier, that can perform over one quintillion
operations per second, but it requires 22.7 megawatts of
power and occupies 680 square meters. This is a stark con-
trast to the human brain, which operates on just 20 watts of
power within a compact 1500 cm3 space, achieving an ex-
traordinary level of efficiency [12]. Despite these advances,
the energy demands and physical size of even the most ad-
vanced systems remain significant hurdles—challenges that
may be addressed as quantum computing advances [13].

The reverse approach—implanting hardware chips
into neural tissue—is also gaining momentum. Technolo-
gies such as computed tomography (CT) scans and func-
tional magnetic resonance imaging (fMRI) allow us to map
brain networks with unprecedented detail, paving the way
for brain-computer interfaces (BCIs) like Neuralink. Addi-
tionally, bio-devices and non-invasive techniques like tran-
scranial stimulation are increasingly used to correct neural
issues, leveraging our understanding of the brain’s struc-
ture. However, research involving human brain tissue
raises ethical concerns. To address this, scientists have
turned to brain organoids—miniature, lab-grown brains—
and other synthetic biological intelligence platforms [14],
as ethical alternatives. All in all, AI with its superior pattern
recognition, plays a critical role in analyzing various mod-
els, helping to sift through noise and improve signal clar-
ity, ultimately refining our understanding of brain develop-
ment and function. Nevertheless, while multiple selective
pressures likely shaped human brain evolution, no single
theory fully accounts for our unique brain capacity, a puz-
zle that may partially relate to the fetal head-down posture
in our species. As we explore vast amount of innovations,
we stand at the intersection of carbon-based (human) struc-
tures, silicon-based (current AI hardware) systems, and the
future potential of quantum-based computing, each bring-
ing us closer to blurring the lines between biological and
artificial intelligence.

4. Limitations and Challenges
The neural network literature is vast, particularly fol-

lowing the state-of-the-art applications of DL techniques
such as backpropagation, CNNs, and RNNs [15]. These
advancements have inadvertently highlighted the similari-
ties but also the inconsistencies between brain and AI in-
formation processing [16]. While ANN have made signifi-
cant strides, they still face substantial limitations compared
to biological systems, particularly in areas such as life-
long learning and memory retention. A key issue is catas-
trophic interference, also known as catastrophic forgetting,
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where AI models struggle to retain previously learned in-
formation when new data is introduced [17]. Unlike the
brain, which employs mechanisms like synaptic plastic-
ity to consolidate important memories and prune irrelevant
ones, AI systems overwrite previously learned information
when encountering new information. A recent study on
replay mechanisms, inspired by biological systems, sug-
gest potential solutions, but these methods remain under-
developed in AI, lacking the robustness observed in nat-
ural learning [18]. Lastly, AI networks lack the dynamic
interplay of top-down and bottom-up control seen in the
brain. While the human brain dynamically integrates sen-
sory inputs and higher-order decision-making in a bidirec-
tional manner, current AI architectures remain largely uni-
directional, limiting their adaptability and responsiveness
to complex environments.

5. Discussion
This opinion article explored the parallels between

brain regions (i.e., from sensory integration in the tha-
lamus and basal ganglia to complex decision-making in
the prefrontal cortex) and the progression of artificial sys-
tems, from elemental AI handling inputs like text, images,
and speech to the integration of ML and DL algorithms
driving advancements toward AGI. SNNs and neuromor-
phic computing aim to emulate brain neuroplasticity, en-
abling dynamic memory mechanisms that could mitigate
catastrophic forgetting, while overcoming challenges re-
lated to volume, space, and velocity in neural processing.
These technologies also hold promise for introducing top-
down and bottom-up control within AI systems, mirroring
the hierarchical and bidirectional processing found in the
brain. More specifically, SNNs could facilitate more effi-
cient memory consolidation, whereas neuromorphic com-
puting may enhance adaptability by integrating high-level
goals with sensory processing. While these analogies re-
veal valuable insights, they also expose critical limitations.
Constructing systems that approach human intelligence,
remains an existentially precarious endeavor, demanding
careful forecast and mitigation of its societal impacts. De-
spite these challenges, I posit that integrating neuroscience-
inspired mechanisms into AI, paired with the implementa-
tion of robust regulations to ensure safety and ethical align-
ment, will not only bridge existing gaps but also unlock
transformative potential, advancing both scientific discov-
ery and the future of human-centric technology.
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