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Abstract

Owing to the intricacy of the dementia course and the selection of clinical trial populations, research on distinct populations, comorbid
conditions, and disease heterogeneity is currently a topic of great interest. For instance, more than 30% of individuals enlisted for natural
history and clinical trial studies may exhibit pathology extending beyond Alzheimer’s disease (AD). Additionally, recent autopsy studies
have evinced significant heterogeneity in the neuropathology of individuals who succumb to dementia, with approximately 10%–30% of
those clinically diagnosed with AD revealing no neurological lesions at autopsy. Nevertheless, 30%–40% of cognitively intact elderly
individuals exhibit neurological lesions at autopsy. This indicates that the brain can withstand accumulated aging and neurological lesions
while retaining brain integrity (brain resilience) or cognitive function (cognitive resilience). Presently, there is a lack of consensus on how
to precisely define and measure the resilience of the brain and cognitive decline. This article encapsulates the research on constructing
multimodal neuroimaging biomarkers for cognitive resilience, summarizes existing methods, and proposes some improvements. Fur-
thermore, research findings on the biological mechanisms and genetic traits of brain resilience were collated, and the mechanisms for the
formation of resilience and the genetic loci governing it were elucidated. Potential future research directions are also discussed.
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1. Introduction
In recent times, there has been a surge in the occur-

rence of neurodegenerative disorders associated with aging,
such as Alzheimer’s disease (AD). It is noteworthy that in
the absence of biomarkers, upwards of 30% of participants
selected for a clinical trial study may demonstrate patholo-
gies distinct from AD [1]. Furthermore, current autopsy
investigations have demonstrated notable heterogeneity in
the neuropathology of individuals who succumb to demen-
tia [2]. To further complicate matters, recent research indi-
cates that individuals who die from dementia may also ex-
perience dementia-like ailments, such as age-related (Tubu-
lin associated unit) Tau pathology, Tau astrogliopathy, and
hippocampal sclerosis [3]. In view of this, a more accu-
rate delineation of the AD concept is indispensable to es-
tablish a standardized framework for researchers, not only
to facilitate clinical trials but also to prognosticate the tra-
jectory of dementia and to assist in the formulation of indi-
vidualized treatment protocols. In 2011, the National In-
stitute on Aging (NIA) and the Alzheimer’s Association
(AA) convened a working group to revise the primary 1984
directives formulated by the National Institute of Neurol-
ogy and Communicative Disorders and Stroke (NINCDS)
and the AD and Related Disorders Association (ADRDA)

[4]. The aim of the revision was to devise an alternative
set of recommendations based on distinct stages of mild
cognitive impairment (MCI) to dementia [5,6]. Notably,
in contrast to many other diseases, affirmative biomarkers
for AD can predate clinical indications of MCI and demen-
tia by a duration of 15 to 20 years [7]. Hence, dementia
is deemed a continuum, and detecting the disease before
the clinical onset of AD is considered a significant research
priority, as timely intervention offers the highest possibil-
ity of successful treatment [8]. In 2018, the National In-
stitute on Aging and the Alzheimer’s Association (NIA-
AA) working group classified AD biomarkers into three
dimensions: amyloid deposition, Tau, and neurodegener-
ation (cortical atrophy or metabolism) (A/T/N) [7]. The
relative changes between A/T/N can capture pathological
factors that adversely impact cognitive recovery, and the
relationship between the three can be described using the
residual method [9]. Multimodal imaging integrates vari-
ous pathologies within the AD continuum, and this classi-
fication approach has revealed distinct rates of memory de-
cline [10,11] and clinical risk [12,13] in certain A/T/N com-
bination patients. On the other side, the efficacy of informa-
tion transmission in the brain’s functional connectivity net-
work and the organizational features of functional modules
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are intimately associatedwith cognitive resilience [14]. The
increased connectivity between specific brain regions facil-
itates the mobilization of neuronal resources, which could
be a mechanism for brain resilience [15,16]. In addition to
imaging features, the genetic characteristics of cognitive re-
silience are crucial for early intervention and treatment of
AD. Previous work, due to insufficient sample sizes, could
only focus on individual genes. A major challenge in ad-
vancing research is how to define different cognitive re-
silience groups, significantly reducing the number of par-
ticipants available for analysis [17,18]. In recent years, the
residual method for quantifying “resilience” measures has
become a potential phenotype for genetic analysis. Sum-
marizing the genetic analysis results of cognitive resilience
quantified through the residual method can provide insights
into the genetic architecture of AD and potential therapeu-
tic targets [19]. Currently, the main focus of drug treatment
for AD is symptom relief to limit the progression of cogni-
tive impairments and psychological symptoms of dementia.
Anti-cholinesterase inhibitors and anti-glutamatergic drugs
have been approved for marketing [20,21]. These medi-
cations are administered orally or transdermally. Acetyl-
cholinesterase inhibitors are molecules that increase acetyl-
choline levels in the brain, a neurotransmitter crucial for
memory. Anti-glutamatergic agents can modulate gluta-
mate levels by acting as non-competitive antagonists of the
N-methyl-D-aspartate (NMDA) receptor. Glutamate is also
a neurotransmitter involved in learning and memory func-
tions in the brain [22]. These medications may be more
beneficial in the early asymptomatic stages before neurode-
generative changes occur. Therefore, measuring cognitive
resilience can aid in identifying groups with a potentially
faster progression of dementia, enabling timely interven-
tions to prevent further deterioration. Although current re-
search has provided some insight into the genetic mecha-
nisms and imaging characteristics of resilience, there are
still several relatively independent pathological factors that
remain unaccounted for, necessitating further exploration.

This review begins by introducing the definition and
significance of the A/T/N framework, outlining the rela-
tionships between the three modalities of imaging. Subse-
quently, it summarizes the concept of cognitive resilience
and its impact on the progression of AD. It elaborates on
how to measure or quantify cognitive resilience using the
residual method, highlighting the benefits of quantifying
cognitive resilience compared to other features. Then, the
latest research is summarized, elucidating how the residual
method is employed to describe changes among the A/T/N
dimensions and subsequently predict future cognitive tra-
jectory changes in patients. In addition to integrating the
aforementioned pathological information, this paper dis-
cusses, from the perspective of brain networks, the mecha-
nisms that sustain cognitive resilience and how various net-
work metric parameters can be utilized to measure brain re-
silience in the context of AD. Finally, we discuss the molec-

ular mechanisms of cognitive resilience in the brain, sum-
marizing the genetic loci and their polymorphisms that in-
fluence cognitive resilience, providing a reference for sub-
sequent research and the development of treatment targets.

2. A/T/N Framework
2.1 Definition of the A/T/N Framework

Researchers have suggested that the standardization of
the AD framework must primarily rely on neuropatholog-
ical data rather than clinical information in order to cap-
ture the underlying molecular mechanisms of the disease
[23]. In 2018, the NIA-AA Working Group recommended
that the criteria framework for AD be most aptly applied
in the context of investigational research on the disease as
opposed to serving as diagnostic criteria [7]. The imple-
mentation of this framework holds crucial significance in
devising and implementing observational cohort studies as
well as interventional clinical trials [7]. The working group
partitioned the criteria framework into distinct dimensions,
namely amyloid deposition (A), neurofibrillary tangles (T),
and neurodegenerative lesions (N) [10] (Fig. 1).

2.2 Relationships within the A/T/N Framework
Among the major characteristics of brain imaging

analysis are neurodegenerative lesions (cortical atrophy and
hypometabolism), amyloid plaques, and Tau burdens. Due
to the alterations in neuroanatomy induced by AD, mag-
netic resonance imaging (MRI) has gained widespread use
for the evaluation of cognitive decline and the differential
diagnosis of dementia owing to its superior spatial resolu-
tion and structural attributes. AD diagnosis can achieve in-
creased precision by utilizing MRI to evaluate gray mat-
ter volumes in specific regions of interest (ROIs), including
the hippocampus, middle temporal gyrus, superior temporal
gyrus, amygdala, parahippocampus, internal olfactory cor-
tex, subparietal, precuneus, and thalamus [24,25]. These
regions aremore susceptible to atrophy [26]. Positron emis-
sion tomography (PET) images of 18F-fluorodeoxyglucose
(FDG) serve as a biomarker that gauges the level of neu-
ronal activity, enabling differentiation between cognitively
stable, healthy older adults and those who experience pro-
gressive decline to mild cognitive impairment [27]. An al-
ternative study has scrutinized the impacts of aging on cere-
bral glucose metabolism and carried out a longitudinal eval-
uation among elderly people with normal cognition. The
findings evinced a reduction in 18F-FDG absorption within
the anterior cingulate, posterior cingulate/precuneus, and
lateral parietal cortex. However, the subjects did not mani-
fest any cognitive impairment, and no direct correlation was
found between the metabolic decrease and cognitive dete-
rioration [28].

In addition to the previously mentioned neurodegener-
ative biomarkers, the correlation between hypometabolism
and amyloid deposition can serve as evidence of disrupted
neuronal function and synaptic activity [29]. Elevated lev-
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Fig. 1. A/T/N framework. The A/T/N framework model divides Alzheimer’s disease (AD) pathology into three dimensions: amyloid
deposition (A), neurofibrillary tangles (T), and neurodegenerative lesions (N). A/T/N, amyloid deposition, Tau, and neurodegeneration
(cortical atrophy or metabolism). Figure was created using Adobe Photoshop (2018 19.1.9, Adobe Inc., San Jose, CA, USA).

els of amyloid plaques and relatively augmented glucose
metabolismwere observed in the cognitively normal elderly
cohort [29]. Comparable findings were reported in another
investigation where participants exhibited diminished cere-
bral glucose metabolism in a region of interest without con-
spicuous amyloid deposition [30]. Aside from amyloid, the
gradual dissemination and age-related upsurge of Tau ag-
gregation in healthy elderly individuals is correlated with
the deterioration of memory function [31,32]. The presence
of amyloid in cognitively normal individuals is a robust pre-
dictor of Tau protein accumulation [33]. The co-occurrence
of amyloid and Tau protein deposition appears to escalate
Tau pathology, particularly in subjects with mild cognitive
impairment or AD dementia [34], where an inverse rela-
tionship between cognitive performance and elevated Tau
deposition has been demonstrated [35,36]. Tau PET has
become an effective tool for predicting cognitive changes
in individuals [37].

2.3 Importance and Application of the A/T/N Framework

A framework of this nature could potentially resolve
the challenge that numerous individuals may have comor-
bid pathological conditions that, if detected and incorpo-
rated, could advance the development of more accurate bi-
ological characterizations of cognitive or behavioral condi-
tions. The framework serves as a universal vocabulary that
enables researchers to investigate the hypothesis of interac-
tions between diverse pathologies represented by biomark-
ers in the progression of AD. We support the notion that
such a framework has the capacity to scrutinize the correla-
tion between biomarkers and cognitive deterioration linked
to AD, as well as the heterogeneity of dementia. Extension
and authentication in assorted populations might facilitate
research in precision medicine and the formulation of indi-
vidualized research protocols for particular demographics.
In a recent study, the A/T/N framework was applied to the
Argentine ADNeuroimaging Initiative (ADNI) cohort. The
objective of the study was to explicate the A/T/N frame-
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work in the ADNI cohort and to prognosticate the likeli-
hood of participant conversion to dementia. The observa-
tions indicate that individuals with mild cognitive impair-
ment (MCI) who have A+/T+/N+ or MCI patients with A–
/T–/N+ will experience the onset of dementia in a short du-
ration. Investigations tailored to specific populations can
supplement and contrast the findings obtained in developed
nations and provide a more comprehensive understanding
of this condition [12].

3. Residual Method to Assess Cognitive
Resilience
3.1 The Resistance and Resilience in the Brain

Numerous recent studies have noted the heterogeneity
in both cognitive decline and brain function, highlighting
the existence of individuals with varying degrees of sus-
ceptibility to age-related or neurodegenerative pathologi-
cal alterations. Such studies suggest that some individu-
als demonstrate better preservation of cognitive function
than expected, while others exhibit cognitive impairment
beyond anticipated levels. Several theoretical frameworks
and conjectures, such as cognitive/brain reserve, neural
compensation, and brain maintenance, have been posited to
elucidate the variegated concepts and hypotheses concern-
ing the disparities in cognitive trajectories among individ-
uals [38,39]. There has been recent research that proposes
a framework that summarizes the above phenomena as re-
sistance and resilience [40,41]. Cognitive resilience refers
to the brain’s ability to maintain cognitive function (cogni-
tive resilience) in the face of accumulated aging and neu-
rodegenerative changes when confronted with significant
neuropathology. Resistance is defined as the brain’s ability
to maintain structural integrity in response to age-related
aging and pathological changes. Cognitive resilience pri-
marily describes the preservation of individual macro-level
learning, memory, and analytical abilities, while brain re-
sistance focuses on maintaining the integrity of brain struc-
tures. These two concepts describe individual brain func-
tions on different scales [9].

3.2 The Concept of Residual Method
A consensus on the optimal definition and measure-

ment of resistance and resilience to brain and cognitive
aging has yet to be reached. However, a novel approach
known as the residual method, which involves statistical
analysis of residuals via regression analysis, has been in-
troduced. Residual measurement is based on statistical
models that correlate predicted brain state variables (such
as gray matter volume or Tau protein accumulation) with
participant-specific features (such as age or cognition).
Typically, resistance is assessed through the identification
of an incongruity between dementia risk factors and brain
integrity. Resilience is identified by the presence of a mis-
match between cognitive ability and aging/neuropathologic
changes. The derivation of residuals is obtained by em-

ploying regression models to investigate brain state vari-
ables and individual characteristics. These residuals de-
note the disparities between individual observations and the
anticipated outcomes of the overall regression model. In
consequence, the degree of positive or negative deviation
between observed outcomes and normative values can be
quantified, and individuals who exhibit outcomes that sur-
pass expectations are deemed to have resilience or resis-
tance [9]. Regarding the issue of the adaptability of residual
models, existing studies have also proposed some solutions.
A study has derived measures of resilience unrelated to ed-
ucation, capturing cognitive resilience beyond education-
related aspects [42]. Similarly, researchers have measured
cognitive resilience while controlling for apolipoprotein E
(APOE) genotype, thereby isolating cognitive resilience in-
dependent of this genetic component [43]. Therefore, for
other types of covariates, the above-mentioned method can
be referenced to eliminate potentially influential factors and
enhance the adaptability of the residual method. The com-
bination of the A/T/N framework and the residual method
is also intended to directly investigate potential regulatory
factors affecting cognitive resilience through the hetero-
geneity among multidimensional pathologies in the brain,
which can to some extent mitigate the impact of covariates.

3.3 The Main Model of the Residual Method

There are three main models in the residual method.
Age-based residuals refer to models that use variables re-
flecting brain state or aging to estimate the apparent age of
an individual. A canonical aging model is constructed for
healthy individuals and subsequently applied to new indi-
viduals, with residual measures calculated as the difference
between the actual and predicted ages. These residuals cap-
ture the extent of deviation of the individual from the popu-
lation norm and quantify the maintenance of brain integrity
in the presence of aging. Different biomarkers, whole brain
voxel maps of gray [44–46] or white matter [47–49], or re-
gional cortical thickness [50–52] or surface area [53–55]
can represent brain integrity. Conversely, brain state can
also be predicted by age, as evidenced by a study that uti-
lized structural and functional magnetic resonance imaging
data and subjected them to regression analysis with actual
age as the predictor variable [56]. To estimate cognitive
ability and quantify the disparity between predicted and ac-
tual cognitive function, measurements of brain pathology
or structure can be utilized, providing insights into cogni-
tive resilience or vulnerability. Deviations from individual
and group regression models may be calculated to capture
resilience. Among the initial models put forward was the
memory residual model, which defines cognitive resilience
as positive or negative residuals based on memory perfor-
mance [57]. Likewise, cognitive resilience can be captured
by structural MRI data, with commonly used brain metrics
being whole brain gray matter volume, hippocampal vol-
ume, and white matter hyperintensities [58–60]. Numerous
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Fig. 2. The interaction between Tau (T) and neurodegeneration (N) in AD pathology and their impact on cognitive resilience.
Figure was created using Adobe Photoshop (2018 19.1.9, Adobe Inc., San Jose, CA, USA).

analogous investigations have correlated cognitive abili-
ties with neuropathological markers [61,62]. An alternative
promising avenue is the application of somatic biomarkers
of AD pathology [63,64]. In addition, there are inquiries
into a multimodal approach that integrates brain structure
and neuropathology to predict cognitive ability [42]. In
summary, the residual method shows promise as a tool for
gauging brain resilience. Residuals can be computed using
various methods. Enhanced resistance and resilience are
correlated with a reduced risk of clinical disease progres-
sion. These findings imply that residual measures account
for divergences in brain and aging courses across individu-
als.

3.4 Application and Advantage of Residual Method
In clinical research and applications, the use of the

residual method conveniently facilitates the study of deter-
minants and mechanisms of aging, aiding in the advance-
ment of early intervention measures for cognitive impair-
ment. This, in turn, enhances resilience and resistance ca-
pabilities. Similarly, the level of resilience in participants
enables a more personalized prognosis assessment of clini-
cal treatment outcomes (e.g., the risk of developing demen-
tia) [64]. By utilizing cerebrospinal fluid biomarkers from
patients with cognitive impairment, robust resilience indi-
cators can be defined to predict slower rates of cognitive
decline. These resilience indicators are defined by the resid-
uals from linear regression models that correlate brain ag-
ing outcomes (hippocampal volume and cognitive scores)
with cerebrospinal fluid biomarkers (Tau, Amyloid). Pos-
itive residuals indicate outcomes that exceed expectations
at given pathological levels (high resilience), allowing this
metric to be used clinically to predict the risk of disease con-
version. Moreover, the value of resilience measurement in

prognosis assessment suggests its potential role in patient
management and cohort selection for clinical drug trials.
Despite some limitations, the use of the residual method is
increasing because it offers unique advantages over estab-
lished biomarkers. Residual methods provide a direct and
objective way to quantify individual heterogeneity, offering
a specific numerical value reflecting its magnitude. This is
a more efficient approach, as continuous phenotypes are su-
perior to discretely grouping patients based on thresholds,
providing a more accurate reflection of the dynamic nature
of cognitive resilience. With disease progression, nonlinear
changes in brain resilience occur, and the residual method
can capture these patterns, thereby capturing clinical infor-
mation relevant to future changes in cognitive abilities.

4. Application of Residual Method in A/T/N
Framework
4.1 Mismatch between Tau and Cortical Atrophy

The residual method represents a valuable means to
investigate the variability of individual cognitive trajec-
tories and dementia progression. Meanwhile, the A/T/N
framework has emerged as a recent and powerful approach
that not only captures AD pathology but also incorpo-
rates the complexities of individual comorbidities and neu-
ropathologies. The convergence of both pathways is ex-
pected to facilitate the development of more precise and ro-
bust biomarkers. Tau neurofibrillary tangles (T or NFT)
are considered a crucial factor in driving neurodegenera-
tive lesions (N) and associated cognitive impairment in the
dementia process (Fig. 2). Nonetheless, the relationship be-
tween T and N exhibits substantial variability, with varying
Tau levels in a given brain region compared to the expected
cortical atrophy. This heterogeneity offers the possibil-
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ity of identifying possible modifying factors or co-morbid
pathologies. In this regard, cortical thickness (N) and 18F-
Flortaucipir SUVR (T) were computed for each gray mat-
ter region of a cohort comprising cognitively impaired and
amyloid-positive individuals, with the aim of establishing
region-specific residuals for a robust linear fit between the
T and N (Fig. 2). The residuals were then employed to de-
fine the T-N mismatch relationship [65] (Fig. 3). Hence,
the A/T/N framework postulates that the absence of Tau
neurofibrillary tangles (NFT) in neurodegenerative lesions
indicates the existence of underlying non-AD pathology,
irrespective of the amyloid presence or absence [66,67].
Residual measures between Tau burden in individual brain
regions and neurodegenerative lesions along the AD con-
tinuum possess the capability to encapsulate the heteroge-
neous pathology resulting frommultiple underlying factors,
in addition to facilitating the identification of factors be-
yond Tau proteins that potentially contribute to cognitive
impairment (Fig. 3). These residual measures are of consid-
erable value in selecting cohorts for clinical trials [65]. Ad-
ditionally, the utilization of data-driven clustering based on
the spatial patterns of T-Nmismatch indicators results in the
identification of diverse groups, thereby offering valuable
insights into the existence of varied underlying pathologies
or brain resilience. Numerous investigations have indicated
that the T-N mismatch relationship is significantly linked
to two potential factors that could serve as drivers of corti-
cal atrophy outside the ambit of AD-related pathology: age
[68] and cerebrovascular disease [69,70], respectively. A
greater magnitude of cortical atrophy than anticipated was
observed in individuals with a specific Tau protein concen-
tration and was found to be associated with poorer cognitive
performance. Conversely, a lesser degree of cortical atro-
phy was associated with superior cognitive performance at
the same level of Tau protein accumulation. These investi-
gations substantiate the notion that, in the context of a non-
linear association with neurodegenerative lesions, residual
measurement remains unaffected by disease severity.

4.2 Mismatch between Tau and Cortical Metabolism

Assessment of neurodegenerative lesions can also
be achieved through the evaluation of neuronal hy-
pometabolism (NM) based on 18F-fluorodeoxyglucose
(18F-FDG) [71]. Extensive research supports the spatial
and quantitative correlation between Tau protein (T) and
NM [72–74]. At a given level of T, patients with lower or
higher levels of NM experience a dissociation between T
and NM. Measuring the degree of T/NM mismatch may pro-
vide valuable insights into the resilience and susceptibility
of neuronal metabolism to Tau pathology [71]. Remark-
ably, the T/NM cohort displayed notable differences in cor-
tical atrophy (NS). Given the interconnectedness of NS and
NM, it is plausible to anticipate interrelationships between
the T/NS and T/NM associations. Employing clustering
methods based on the T/NS methodology produces groups

that are relatively robust or vulnerable to T. In contrast,
T/NM discrepancies may furnish exclusive insights. For
example, neuronal metabolism may be more responsive to
Lewy body pathology [75,76]. Moreover, metabolism may
signify the functional reserve of neurons and the strength of
synaptic activity that are not captured by structural markers,
while structure may be less susceptible to non-dementia-
related pathology than metabolism. Therefore, T/NS and
T/NM disparities may complement each other, furnishing
unique attributes.

Furthermore, we believe that the immune response
of the brain should be considered as part of the A/T/N
framework, in addition to the three dimensions involved
(Fig. 4). The accumulation of toxic proteins activates mi-
croglia, which in turn results in an elevated metabolism
and changes in 18F-FDG standardized uptake value ratio
(SUVR) that may interfere with previous diagnostic meth-
ods [77] (Fig. 4). Fig. 4A represents the resting state of
glial cells, corresponding to a better cognitive resilience
condition. Fig. 4B represents the activated state of glial
cells, which may cause neuronal damage and subsequently
lead to a decline in cognitive resilience. According to pre-
vious studies, the amplitude of low frequency fluctuations
(ALFF) is sensitive to the intensity of neuronal activity, and
can serve as a valuable indicator of synaptic activity, and is
incorporated into the A/T/N framework [78,79].

4.3 Other Pathologies Involved in the A/T/N Framework

T and N biomarkers provide information on both con-
tinuous and spatial changes. Considering the distinct sites
of neurodegenerative alterations in these diseases, such in-
consistent spatial patterns may support different underlying
neuropathologies. Anterior temporal lobe atrophy is greater
than expected for the local neurofibrillary tangle pathology,
suggesting potential coexistence with limbic-predominant
age-related TDP-43 (transactive response DNA-binding
protein of 43 kDa) encephalopathy (LATE). Participants
with cognitive resilience exhibit a lower frequency of TDP-
43 pathology compared to cognitively vulnerable groups
[80]. The mismatches between T and N and the TDP-43
pathology biomarkers are consistent. Furthermore, fewer
neurodegenerative alterations than expected for a given de-
gree of Tau pathology may indicate resilience or cognitive
reserve against AD pathology. The situation where NM
> T may involve the presence of α-synuclein and TDP-
43 pathology, which independently leads to NM, with lev-
els higher than those in the canonical group. The cingu-
late island ratio (relative preservation of 18F-FDG SUVR
in the posterior cingulate cortex compared to the precuneus)
can serve as an imaging biomarker for α-synuclein pathol-
ogy. The I/medial temporal lobe (MTL)/frontal superior or-
bital (FSO) ratio is defined as the metabolic reduction in the
MTL and FSO relative to the inferior temporal gyrus (I). In
a clinical-pathological study, a higher I/MTL/FSO ratio is
associated with TDP-43 pathology [81]. The I/MTL/FSO
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Fig. 3. The application of the residual method in the A/T/N framework. First, the participants’ fluorodeoxyglucose (FDG) positron
emission tomography (PET) and Tau PET images were registered to the corresponding structural magnetic resonance imaging (MRI)
images, followed by segmentation based on a specific brain atlas. In the second step, a linear regression model was constructed between
FDG and (Tubulin associated unit) Tau, and the model residuals (representing the mismatch between FDG and Tau) were input into an
unsupervised clustering algorithm to compute different cognitive resilience groups. Figure was created using Adobe Photoshop (2018
19.1.9, Adobe Inc., San Jose, CA, USA).

ratio and cingulate island ratio in the NM > T group are
higher than in the normal group [71,76]. Thus, α-synuclein
and TDP-43 pathology contribute to the dissociation be-
tween low metabolism and neurofibrillary tangles in the
brain.

4.4 Limitations of the A/T/N Framework

Despite the numerous advantages of the A/T/N frame-
work, the comorbidity between amnestic and non-amnestic
variants of AD may lead to misdiagnosis within the A/T/N
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Fig. 4. The hypothesized role of microglia and astrocytes in brain resilience. (A) In individuals demonstrating cognitive resilience,
a dampened inflammatory response has been observed, which is closely linked to the preservation of neurons and synapses in the face of
the accumulation of plaques and tangles of nerve fibers. Such distinctive reactions to the gradual accumulation of plaques and nerve fiber
tangles may underlie significant clinical variances. (B) In individuals exhibiting clinical manifestations of AD, the gradual accumulation
of soluble hyperphosphorylated Tau protein and amyloid plaque triggers the activation of microglia and astrocytes. With time, the
resulting excessive activation of microglia leads to brain tissue damage, including neuronal cell death and synaptic loss. Figure was
created using Adobe Photoshop (2018 19.1.9, Adobe Inc., San Jose, CA, USA).

framework [11]. The clinical manifestation of most AD pa-
tients is amnestic AD, which is the most common form of
dementia characterized by severe loss of episodic memory.
One possible reason for misdiagnosis is that the widely used
AD pathology may be more likely to capture the features
of amnesia. However, there are several non-amnestic vari-
ants of AD that present with visual-spatial, language, or ex-
ecutive function impairments. Patients with non-amnestic
AD may phenotypically resemble another neurodegener-
ative disease called frontotemporal dementia (FTD) [82–
84]. The A/T/N framework may be insensitive to primary
pathologies other than AD, interpreting A-/T+ or A-/N+
states as non-AD pathologies, but this is inaccurate and fails
to successfully detect other neurodegenerative pathologies
such as FTD [85]. Although the A/T/N framework is as-
sociated with AD and accompanying suspected non-AD
pathological changes, it remains unclear whether it encom-
passes the majority of cases with primary non-AD pathol-
ogy [86]. Considering that clinical syndromes may con-
tribute to improving the diagnostic accuracy of the A/T/N
framework for non-amnestic AD.

Furthermore, there are several factors that can affect
the accuracy of the A/T/N framework. For example, the
off-target effects of Tau protein contrast agentsmay result in
some contrast agents being unable to bind to the receptors,
leading to errors in Tau protein imaging. Developing a new
generation of contrast agents with better affinity can address
this issue.

5. Functional Connectivity of Brain
Networks

The brain is fundamentally distinguished by disparate
and intricate patterns of network connectivity that under-
lie its cognitive and behavioral functions. Advanced non-
invasive imaging modalities have facilitated a comprehen-
sive depiction of these patterns. Nonetheless, the issue at
hand is to unravel the complex relationship between the
brain network connections and their role in supporting cog-
nitive processes, a pursuit of great significance for the per-
sonalizedmanagement of mental health and psychiatric dis-
orders. Commonly utilized tools for the construction of op-
erational brain networks comprise functional magnetic res-
onance imaging (fMRI) [87] and magnetoencephalography
(MEG) [88]. Simultaneously, researchers have discerned
that the functional state of the brain is not solely contingent
upon the individual constituents of the brain but also upon
the interplay among hundreds of neurons across brain re-
gions [89]. Edges within a cerebral network denote the tan-
gible links between two entities, such as synapses, which
facilitate the transmission of information between neurons,
and white matter bundles, which establish paths of com-
munication between distinct brain regions [90,91]. The ar-
rangement of these network connections can ascertain the
macroscopic traits of a system [92], and specifically, the
arrangement of connections within the brain network pre-
dominantly determines the cognitive processes it facilitates
[93,94], including memory [95,96], learning [97,98], vision
[99]. It is of utmost significance to note that the connectiv-
ity structure of the brain is profoundly heterogeneous and,
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as such, poses a distinctive array of challenges. Significant
heterogeneity prevails among brain network modules due
to the imperative need of the brain to strike a balance be-
tween a plethora of motor, energetic, and cognitive aspects
of function [100]. In order to scrutinize this heterogeneity,
researchers are progressively turning towards graph theory
and topology, employing mathematical tools to condense
copious amounts of experimental data into regular organiz-
ing principles [101,102]. This section intends to provide an
overview of certain crucial properties that are taken into ac-
count to depict brain networks. A salient aspect of the brain
that has garnered significant attention is its partitioning into
discrete anatomical locales that correspond to diverse cog-
nitive functionalities [103]. In certain mammalian taxa, the
macroscopic architecture of the neural network is inherently
fragmented into densely interconnected clusters, which are
demarcated by sparse inter-cluster connectivity [104,105].
Notably, these highly cohesive clusters exhibit striking sim-
ilarities to the established anatomical subdivisions of cere-
bral regions [106]. Furthermore, the cluster architecture
engendered by the functional network of the brain necessi-
tates the sustenance of an elevated level of communication
efficiency among its constituent elements. The mean path
length connecting all nodal pairs of a large-scale brain net-
work is significantly shorter than that of a typical random
network. However, this contradicts the characteristics of
the cluster structure [107,108]. This equilibrium between
a high degree of clustering and short mean path lengths is
hypothesized to enable the segregation and integration of
information in the brain [109], while simultaneously min-
imizing the overhead required to process external stimuli
[110,111]. In a “small-world” network topology, the de-
gree of clustering evinces a high value, whereas the average
path length displays a low value. Accordingly, the brain ex-
hibits a small-world network configuration, whereby effec-
tive information exchange ensues from a nuanced equilib-
rium between sub-networks and structural disorder [112].
Moreover, apart from modular clusters and small-world
topologies, numerous brain networks of large scale mani-
fest “hub systems” that give rise to a compactly interlinked
core structure [113]. Functioning as connectors amidst di-
verse modules, these central regions are believed to miti-
gate the total path length of the network while expediting
the incorporation of information [109]. Significant asso-
ciations among seven major cerebral networks have been
ascertained. The interactions amid these network modules
can facilitate the comprehension of neuronal operation and
dysfunctions. The central executive network (CEN) has the
responsibility of electing external objectives and consoli-
dating memories. The default mode network (DMN) acts
as a reserve for the CEN and undertakes the regulation of
the brain’s internal states. These two networks epitomize
the cerebral internal and external states, and they collabo-
rate with additional networks, such as the visual, sensori-
motor, limbic, and attentional networks. It is the respon-

sibility of the salience network (SN) to oversee the tran-
sition between these two control networks and to decide
which network governs the brain’s state at any given mo-
ment [114,115]. Whilst the modular and small-world topo-
logical structures, along with the central architecture of the
brain networks, may offer fundamental principles for orga-
nization, the comprehensive functionality of the brain is as-
certained by the continuous and dynamic interplay between
these principles, resulting in a varying weighting of their
contributions. There is mounting evidence that dynamic
alterations in individual neurons and cerebral regions can
generate noticeable configurations of distant correlations
and collective activity within the brain when integrated into
a network of interconnections [116,117].

6. Cognitive Resilience and Functional
Connectivity
6.1 Topological Structure and Cognitive Resilience

The preclinical phase of neurodegenerative conditions
is characterized by structural alterations in the brain that
lack significant clinical features. During the early stages
of the disease, cognitive decline is influenced by cogni-
tive resilience and compensatory mechanisms, but the func-
tional neural mechanisms that underlie cognitive resilience
are not yet fully understood. This organization is typified by
a “small-world” topology with densely connected hubs that
minimize the topological distance, or path length, between
networkmodules. The path length can serve as ameasure of
global or regional network efficiency. Networks exhibiting
efficient small-world topologies are intrinsically resistant to
disruptions stemming from the removal of network nodes
or connections [118,119]. During the preclinical phase of a
disease, the resilience of the brain to structural changes can
be influenced by topological heterogeneity or active com-
pensation, with some studies proposing that topology may
have a greater impact. Analogous to many ecological and
artificial networks, the small-world topological structure of
the brain network balances the metabolic expense of long-
range connections (path length) between any two points in
the network with common connections between locally in-
terconnected nodes [120] (Fig. 5, Ref. [100]).

6.2 Separation and Integration of Network Modules
Among patients, modifications in network connec-

tivity are consistently linked to a reduction in cognitive
function [121] or a decreased reaction to treatment [122].
Conversely, the integration of network structures confers
resilience in the initial stages of the disease, safeguard-
ing cognitive well-being even in the presence of estab-
lished neuropathology and cerebral atrophy. Specifically,
preserving the effective organization of the brain’s func-
tional network sustains cognitive ability even in the face
of presymptomatic cortical atrophy and decreased network
connectivity [123]. Recent investigations have revealed
novel organizational structures within brain network mod-
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Fig. 5. The network structure characteristics of brain cognitive resilience. The greater the global efficiency of the brain in terms
of information transmission, the more adept it is at mobilizing neuronal resources, albeit at a higher energy cost. Conversely, high
connectivity between local and long-distance brain regions may strike a balance between energy expenditure and efficiency. Adapted
from (Bullmore and Sporns [100]). Figure was created using Adobe Photoshop (2018 19.1.9, Adobe Inc., San Jose, CA, USA).

ules. These structures demonstrate that cognitive resilience
in AD is correlated with increased functional connectivity
of cognitive control and salient network hubs [124,125],
as well as elevated glucose metabolism and brain activa-
tion in the anterior cingulate and temporal cortex [126,127].
To enhance comprehension of the underlying mechanisms
through which global brain functional network topology
promotes cognitive resilience, an approach that utilizes
resting-state fMRI to establish segregation between func-
tional networks as a potential neural substrate for cognitive
resilience is proposed [128]. The brain is comprised of net-
work modules interlinked with each other [129,130], each
corresponding to a set of densely linked regions [131]. This
modular functional organization of the brain, manifested in
the form of segregated functional network modules, is a
critical feature in maintaining cognitive capacity [100,105].

The segregation of networkmodules quantifies the ex-
tent to which major functional networks are isolated from
each other, that is, high intra-network connectivity and low
inter-network connectivity [132]. Higher degrees of sepa-
ration are associated with superior overall cognitive perfor-
mance [133]. In individuals with brain injuries, a positive
correlation has been observed between increased levels of
dissociation and improved cognitive performance follow-
ing rehabilitation. This finding suggests that dissociation
may serve as a protective mechanism, endowing the brain
with heightened cognitive resilience to mitigate the effects
of neuropathology [14]. Other fMRI imaging studies have
demonstrated that the recruitment of additional neuronal re-
sources may be a compensatory mechanism for age- and
AD-related pathology, with the effectiveness of such mech-
anisms being influenced by the underlying structural net-
work connections [15,16]. Furthermore, structural network

efficiency (SNE) has been found to be positively correlated
with intelligence across the lifespan, which is a known fac-
tor in resilience to cognitive decline. The resilience of a net-
work arises from its robust and efficient connections among
brain regions [134]. The allocation andmobilization of neu-
ronal resources could rely on the structural integrity of brain
networks that govern functional reorganization and opti-
mize global network efficiency [135]. This implies a close
relationship between global network efficiency and cogni-
tive performance. Hence, compromised microstructural in-
tegrity of white matter provides a supplementary rationale
for the constraints on cognitive resilience [136].

6.3 The Key Role of the Frontal Parietal Control Network
The preservation of network efficiency is reliant on

the connectivity of particular network modules [137]. Re-
cent research has suggested that the frontoparietal control
network is of significant importance in preserving cognitive
ability andmental health in patients with neurodegenerative
and psychiatric disorders [137]. In individuals with mild
cognitive impairment (MCI), higher overall functional con-
nectivity of the lateral frontal control network (LFC) cen-
ters of the frontoparietal control network and prolonged ed-
ucation were correlated [138]. Additionally, patients with
a higher LFC overall connectivity showed greater cogni-
tive resilience at the same level of dementia-induced hy-
pometabolism [139]. A prior investigation examining task-
related functional connectivity in frontoparietal regions, en-
compassing the LFC, revealed that frontoparietal control
networks couple with networks such as the dorsal-attention
network (DAN) and default-mode network (DMN) during
task execution, facilitating adaptive task demands [140].
The LFC functions as a commanding entity, regulating ac-
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tivity in other cerebral networks (e.g., DAN and DMN)
[141,142], and robust connectivity between the LFC and
both the DMN and DAN is linked to elevated memory re-
serve [78]. These findings imply that LFC connectivity
to particular networks in a pathological context may foster
cognitive resilience [78].

Nonetheless, the etiology of brain network dysfunc-
tion remains incompletely comprehended. Neuroinflam-
mation has emerged as a pivotal factor in inciting dementia,
as evidenced by recent research. While microglia actively
partake in the establishment and upkeep of robust neuronal
networks, their over activation can disrupt such circuits.
Notably, cortical neuroinflammation and brain network dis-
ruption are concomitant with and dissociated from amyloid
deposition and cortical atrophy. These observations inter-
connect aberrant brain connectivity and pathological pro-
cesses in AD, implying a pathophysiological route from
neuroinflammation to widespread brain dysfunction [143].
Drawing on previous research on neuroinflammation, it
is postulated that an individual’s exaggerated immune re-
sponse may culminate in neural impairment, thereby im-
pairing cognitive performance [144]. Consequently, it is
hypothesized that the mechanisms modulating an individ-
ual’s cognitive resilience are influenced by not only the net-
work metric features of brain networks and the interconnec-
tivity between network modules but also by the immune re-
sponse resulting from microglia activation, which may also
partly determine the changes in cognitive trajectories.

Nevertheless, there are some contradictory features
present; individuals exhibiting cognitive resilience demon-
strate a slower progression of cognitive impairment, yet
once neurodegenerative symptoms manifest, they may ex-
perience a more rapid decline in cognitive abilities [145].
This may relate to the ability of some individuals to better
recruit compensatory neural resources. For example, when
cortical atrophy and decreased connectivity between brain
regions occur prior to symptoms, maintaining the effec-
tive organization of brain functional networks can protect
cognitive abilities [123]. Enhanced connectivity between
the left LFC and the DAN and DMN can bolster memory
reserves in individuals with MCI [78]. Functional imag-
ing studies suggest that the recruitment of additional neu-
ral resources may be regulated by underlying network con-
nectivity, which depends on the network efficiency of the
brain. This network efficiency can, to some extent, quantify
the physiological basis of cognitive resilience in the early
stages of AD [134]. However, once individuals with cog-
nitive resilience experience a decline in cognitive ability,
it indicates that the additional recruited compensatory neu-
ral resources can no longer sustain brain function. At this
point, individuals with cognitive resilience may lose more
neurons than those with less apparent cognitive resilience,
potentially leading to a faster progression of neurodegener-
ative changes.

7. Hypotheses about Brain Resilience
Mechanisms
7.1 Synaptic Structure and Cognitive Resilience

The data indicate that certain individuals without sig-
nificant co-occurring brain pathologies or who succumbed
to non-dementia-related maladies prior to the onset of de-
mentia symptoms manifest conspicuous amyloid and Tau
accumulations in the brain, yet remain devoid of cogni-
tive impairment [146,147]. It is possible that this is due
to the different loss of neurons and synapses. Previous re-
search has demonstrated the preservation of synaptic in-
tegrity in the entorhinal cortex and superior frontal gyrus
among aged individuals lacking dementia but possessing
heightened levels of amyloid and Tau deposition, as deter-
mined through post-mortem analyses. Despite no differ-
ences in the mean number of plaques between the resilient
and vulnerable groups, the former presented a significantly
decreased quantity of neurofibrillary tangles in the superior
frontal gyrus. Additionally, no significant loss of synapses
was observed in the entorhinal cortex and superior frontal
gyrus of the resilient group relative to the control cohort
[148]. Notably, the results of immunoblotting assays in-
dicate that participants in the resilient group demonstrated
comparatively elevated levels of synaptophysin [148]. Sim-
ilarly, clinically asymptomatic individuals with AD dis-
played considerable hypertrophy in neuronal cell bodies,
nuclei, and nucleoli throughout the cortex and CA1 region,
which could signify an early neurobiological reaction to the
presence of plaques and tangles or a compensatory mech-
anism that impedes the onset of dementia [149,150]. At a
microscopic level, the brains of resilient individuals exhib-
ited superior preservation of axonal trajectories and mor-
phology, characterized by significantly fewer distorted ax-
ons proximal to amyloid plaques, straight axonal trajecto-
ries distal to plaques, and markedly reduced numbers of
dystrophic axons concomitant with amyloid plaques [147].
Additionally, changes in the structure and density of den-
dritic spines can distinguish individuals’ capacity to resist
neurodegenerative pathology. Compared to cognitively re-
silient individuals, those with cognitive vulnerability ex-
hibit a significant reduction in thin spines and mushroom
spines [151]. The loss of these synapses underlies cogni-
tive decline in neurodegenerative pathology; however, neu-
rons can compensate for this loss. Currently, two primary
compensatorymechanisms have been identified: the expan-
sion and regeneration of adjacent normal synapses. A early
study has shown that following partial synapse loss, the
remaining synapses expand [152]. This compensatory in-
crease in surviving dendritic spines has also been observed
in AD animal models. In P301S transgenic mice, synapse
loss is accompanied by an increase in the size of the remain-
ing dendritic spine synapses [153]. Another compensatory
mechanism for synapse loss in neurodegenerative pathol-
ogy is the regeneration of dendritic spines. A study has re-
ported that dendrites close to plaques exhibit a higher rate
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of synaptogenesis, accompanied by an increase in the rate
of synapse loss, whereas dendrites farther from plaques do
not show this pattern. This may reflect a balance between
pathological synaptic loss and compensatory increases in
synapses, where synaptic elimination is accompanied by a
significant increase in synaptogenesis [154].

These findings lend support to the notion that undis-
closed underlying mechanisms and biological factors may
play a more proximal role in preserving brain function and
driving disease progression. This factor may exert a sub-
stantial influence on the development of future neuroimag-
ing biomarkers that could better prognosticate clinical out-
comes. In light of the presence of amyloid and Tau protein
lesions in the brain, in vivo indicators of neuronal death and
synaptic decline may more precisely forecast the likelihood
of cognitive decline thanmere quantification of plaques and
neurofibrillary tangles.

7.2 Effects of Microglia and Astrocytes on Cognitive
Resilience

The mechanism underlying this phenomenon may be
associated with the activation of astrocytes and microglia
and is temporally and spatially linked to plaques and tan-
gles [155,156]. Glial cell activation commences near amy-
loid plaques and neurofibrillary tangles in the early stages of
AD and increases as the disease progresses [157]. Previous
research has shown that individuals with resilient brains ex-
hibit lower levels of inflammatory markers than those with
dementia, and microglial numbers are more closely corre-
lated with synaptic loss than with plaques and tangles [158].
In accordance with these findings, the brains of individu-
als exhibiting clinical symptoms of AD were characterized
by a marked elevation in the number of astrocytes and mi-
croglia, compared to control participants who did not show
signs of dementia-related lesions [159]. Conversely, the
brains of resilient individuals exhibited a dampened neu-
roinflammatory response [147]. These investigations have
also determined that attenuated glial activation within the
brains of individuals with cognitive resilience was corre-
lated with distinctive cytokine expression profiles within
the entorhinal cortex and superior temporal sulci, which
not only differed from the brains of patients with demen-
tia but also deviated from control participants without de-
mentia neuropathologic lesions [159]. The heterogeneity
of cytokine expression profiles assumes a critical function
in regulating immune responses, thereby indicating mul-
tifaceted and diverse connections between astrocytes and
microglia, as well as the plausible presence of numerous
“protective” cytokine signaling pathways in the adaptable
brain. Despite the presence of amyloid plaques and neu-
rofibrillary tangles, this signaling pathway may be capa-
ble of sustaining neuroinflammatory homeostasis and neu-
ronal integrity, consequently impeding the advancement of
dementia. The occurrence of congenital proinflammatory
cytokines in the periphery has been determined to be a

risk factor for dementia in middle-aged adults with a back-
ground of late-onset AD [160]. It is hoped that the identi-
fication of AD risk loci (single nucleotide polymorphisms,
SNP) from genes associated with innate immunity will con-
tribute to a better understanding of the role of glial cells and
immune-related mechanisms in AD, including PICALM
[161], CR1 [162], TREM2 [163,164], and CD33 [165].
Microglial involvement in synaptic pruning and synaptic
activity regulation also highlights the importance of these
mechanisms for understanding the pathophysiology of AD
[166,167]. In recent studies, it has been demonstrated that
the macrophage stimulating 1 (MST1) gene regulates mi-
croglia activation, and its overexpression results in neuroin-
flammation and dementia-like behavior without affecting
amyloid precipitation [168,169]. Further investigation into
single nucleotide polymorphisms in genes related to neu-
roinflammation could offer greater insight into the underly-
ing mechanisms of cognitive resilience.

8. Genetic Characteristics of Cognitive
Resilience

Approximately one-third of elderly individuals exhibit
the neuropathological features characteristic of AD, while
their cognitive faculties remain unaffected. Some investi-
gations indicate that genetic factors may confer resilience,
enabling these individuals to maintain their cognitive in-
tegrity despite the presence of significant neuropathology.
Additionally, the genetic architecture underlying cognitive
resilience appears to diverge from that of patients afflicted
with clinical AD, proposing that research aimed at the ge-
netic mechanisms of resilience might represent a novel ap-
proach to identify therapeutic targets.

In a single-variant analysis, researchers observed a
genome-wide significant locus (rs2571244) in the ATP8B1
gene located upstream of chromosome 18 in participants
with preserved cognitive function. This locus (rs2571244)
is significantly associated with the methylation of multiple
CpG sites in the prefrontal cortex tissue, suggesting methy-
lation as a potential biological driving factor for this lo-
cus [170]. Another study supported the potential roles of
UNC5C and ENC1 in regulating the susceptibility of differ-
ent neurons to pathological damage [171]. Overexpression
ofUNC5C was associated with increased cell apoptosis and
did not affect the production of amyloid-beta or Tau pro-
teins. Increased UNC5C RNA led to poorer cognitive re-
silience. In addition, the rapid decline of episodic memory
is associated with UNC5C rs3846455, which is consistent
with the specific role of UNC5C in the hippocampus [172].
Similarly, ENC1 is associated with neuroprotection against
various damages; in vitro, ENC1 is upregulated in cases
of neuroinjury such as oxygen-glucose deprivation or toxic
protein aggregation [173]. The ENC1 rs76662990 variant
is correlated with slower cognitive decline in multiple cog-
nitive assessments, and researchers have observed that in-
dividuals with higher levels of ENC1 RNA exhibit greater
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cognitive resilience and fewer depressive symptoms [174].
In the TMEM106B gene, there is an association between
cognitive resilience and rs11509153. The TMEM106B hap-
lotype captured by rs11509153 has been identified to have a
protective effect against FTDwith TDP-43 proteinopathy in
genome-wide association analysis (GWAS) [171]. Besides,
the maintenance of brain network structure is also crucial.
Brain-derived neurotrophic factor (BDNF) is a multifunc-
tional neurotrophic factor in the brain. This factor is cru-
cial for the maintenance of neural networks as it is released
after neuronal activity. Variations in the BDNF locus can
regulate an individual’s susceptibility to neurodegenerative
diseases and cognitive resilience related to dementia pro-
gression [175]. Based on the previous analysis, we spec-
ulate that this genetic mutation may affect the topologi-
cal structure (global efficiency, small-world characteristics,
etc.) of the brain network, thereby influencing the trans-
mission of information and the allocation of neuronal re-
sources in the brain network [176]. Key factors influencing
cognitive resilience also include synaptic plasticity and the
integrity of synaptic structures. The variant rs12056505 af-
fects the expression of genes related to synaptic plasticity
and hippocampal-dependent learning and memory. Under
conditions of amyloid positivity, rs12056505 influences an
individual’s cognitive resilience. rs12056505 is an intronic
variant ofMTMR7, overlapping with the 3′ untranslated re-
gion of VPS37A, near CNOT7 [177]. Another study found
lower cortical DLGAP2 expression in individuals with AD.
DLGAP2 is a crucial component of dendritic spines and
may impact signal transmission in the brain by influenc-
ing synaptic morphology [178]. Recent studies have re-
vealed that neuroinflammation also impacts the progres-
sion of AD. The genetic variant rs1057233 is associated
with delayed onset of AD and low expression of SPI1 in
macrophages. SPI1 is a critical transcription factor encod-
ing myeloid cell development and function. The levels of
this transcription factor influence the phagocytic activity of
microglial cells, and lower SPI1 expression reduces the risk
of AD by regulating myeloid genes [179]. Protein alter-
ations such as TREM2, PLCG2, and ABI3, along with genes
highly expressed in microglia, are correlated and enriched
in an immune-related protein interaction network. These
recent findings suggest that microglia-mediated innate im-
mune responses directly accelerate the progression of AD
[180].

In addition to molecular-level research, investigating
associations between multimodal imaging biomarkers and
genetics will be highly valuable. Brain genomic association
analyses can be conducted atmultiple levels: wemay exam-
ine candidate gene SNPs, relevant biological pathways, or
the entire genome. Similarly, in neuroimaging, we can ex-
plore single regions of interest (ROIs) or circuits involving
multiple ROIs. The relationship between APOE genotype
and structural MRI phenotypes has been well documented
and validated in studies based on the ADNI database. Pa-

tients carrying the APOE ε4 allele exhibit greater medial
temporal lobe atrophy, while non-carriers show more pro-
nounced atrophy in the frontoparietal lobes [181]. The pres-
ence of theAPOE ε4 allele accelerates hippocampal atrophy
rates; however, baseline hippocampal volume does not sig-
nificantly differ across healthy control (HC), MCI, and AD
groups [182]. Other studies have also reported the effects
of specific candidate genes on imaging biomarkers. Two
SNPs, rs914592 and rs2297453, located in the CDK5RAP2
gene, are associated with total cortical surface area [183].
Additionally, genetic variation in the interleukin-3 (IL3)
promoter can influence human brain volume and develop-
ment [184]. The SNPs rs10845840 and rs2456930 are as-
sociated with bilateral temporal lobe volume [185]. Ad-
ditionally, rs1925690 (ZNF292) and rs11129640 (ARPP-
21) are related to olfactory cortex volume [186]. The SNP
rs1795240 in the FMO gene is associated with lentiform
nucleus volume [187], while rs6116869 and rs238295 in
the GPCPD1 gene are closely linked to proportional sur-
face area in the visual cortex [188].

In addition to studying associations between structural
MRI imaging features and genes, researchers have also in-
vestigated how SNPs affect functional neuroimaging char-
acteristics, such as fMRI and PET imaging. Researchers
have found that healthy elderly individuals carrying the
APOE ε4 allele exhibit significantly reduced connectivity
in the brain’s default mode network, whereas APOE ε3 ho-
mozygotes do not show this effect [189]. Another study
based on ADNI participants also indicates an association
between the APOE ε4 allele, amyloid burden measured
by AV45-PET, and glucose metabolism assessed through
FDG-PET [190,191].

The Val66Met polymorphism of the BDNF gene has
a significant effect on regional brain metabolic rates mea-
sured by FDG-PET, with Met allele carriers showing dis-
tinct glucose metabolism differences across several brain
regions compared to non-carriers [192]. In ADNI partici-
pants, analyses of [11C]PiB-PET imaging data revealed that
individuals carrying a protective allele of an intronic SNP
within the DHCR24 gene exhibited lower amyloid burdens
at the whole-brain voxel level than non-carriers [193]. Sim-
ilar results were observed in carriers of the protective al-
lele of the CR1 gene rs3818361 SNP [194]. Furthermore,
an interaction between CR1 and APOE was noted: among
CR1 non-carriers, APOE ε4 carriers displayed significantly
higher [11C]PiB SUVR values than APOE ε4 non-carriers.
The TT genotype of rs6463843 in the NXPH1 gene is asso-
ciated with reduced gray matter density in the brain, likely
because the protein encoded by NXPH1 is essential for pro-
moting adhesion between dendrites and axons, serving as a
key factor in maintaining synaptic integrity [195].

In summary, FDG-PET imaging can reveal the ef-
fects of SNP loci associatedwith glucosemetabolism, while
AV45-PET or PiB-PET SUVR values can reflect the func-
tionality of genes involved in amyloid clearance. Addi-
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Table 1. Single nucleotide polymorphism (SNP) loci associated with cognitive resilience.
Author Gene name Chromosome SNP Polymorphism Function Data set

Dumitrescu L et al. [170] ATP8B1 18 rs2571244 C>G/C>T ATPase phospholipid transporting 8B1;
Methylation in prefrontal cortex tissue at
multiple CpG sites (rs2571244)

A4 study/Alzheimer’s disease neu-
roimaging initiative (ADNI)/religious
orders study and rush memory and aging
project (ROS/MAP)/adult changes in
thought (ACT)

Davis EJ et al. [200] KDM6A X rs12845057 G>A Lysine demethylase 6A hAPP (amyloid precursor protein)
mice/ADNI

Ramanan VK et al. [177] MTMR7/VPS37A/CNOT7 8 rs12056505 T>A/T>C Myotubularin related protein 7/VPS37A
subunit of ESCRT-I/CCR4-NOT tran-
scription complex subunit 7

Mayo clinic study of aging (MCSA)

Eissman JM et al. [201] LOC105376400 10 rs827389 A>T ncRNA A4 Study/ADNI/ROS/MAP/ACT

Egan MF et al. [202];
Chen ZY et al. [203];
Lin Y et al. [204]

BDNF 11 rs6265 C>T Brain derived neurotrophic factor Clinical brain disorders branch “sib-
ling study” of schizophrenia and in-
cluded healthy controls, schizophrenic
probands, and their mostly unaffected
siblings

rs11030104 A>G
rs16917204 G>C
rs7103411 C>T
rs2030324 A>G

Pillai JA et al. [205] TNFRSF1B 1 rs976881 T>A/T>C Tumor necrosis factor (TNF) receptor
superfamily member 1B

ADNI

Hohman TJ et al. [176] NA 5 rs4866650 A>C/A>G Tryptophan-Aspartic acid (WD) repeat
domain 11

ADNI

NA 9 rs7849530 A>G
WDR11 10 rs12261764 G>T
NA 5 rs6887649 G>T

Huang KL et al. [179] SPI1 11 rs1057233 G>A/G>C/G>T Spi-1 proto-oncogene International genomics of alzheimer’s
project/ADNI

Sims R et al. [180] PLCG2 16 rs72824905 C>G/C>T Phospholipase C gamma 2/Abl-Interactor
(ABI) family member 3/triggering
receptor expressed on myeloid cells 2

Alzheimer’s disease in a three-stage
case–control study of 85,133 subjects.ABI3 17 rs616338 T>A/T>C

TREM2 6 rs143332484 C>A/C>T

Ouellette AR et al. [178];
White CC et al. [171]

Downstream DLGAP2 8 rs2957061 C>A/C>G Disk associated large protein 2 The ROS and MAP/MayoRNaseq study/
mount sinai brain bank (MSBB) studyNA 3 rs60328885 G>A Unc-5 netrin receptor C

UNC5C 4 rs3846455 C>G Ectodermal-neural cortex 1
ENC1 (−75.32 kb) 5 rs76662990 A>G Transmembrane protein 106B
TMEM106B 7 rs11509153 G>A/G>C/G>T
AGR2 (+99.33 kb), 7 rs74665712 C>T
AGR3 (+22.46 kb) 7 rs1029576 G>A/G>C
LOC286083 (−27.53 kb) 8 rs34130287 G>A/G>C/G>T
NA 13 rs9527561 G>A/G>C
NA 15 rs7402241 T>A/T>C/T>G

Sheng J et al. [206] PGRN 17 rs5848 C>T Progranulin PubMed databases
NA, not available.
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tionally, the function of genes that regulate synapse forma-
tion, regeneration, and integrity can be captured through
gray matter volume and synaptic density observed in MRI
or SV2A PET imaging. Overall, multimodal imaging data
provide a more intuitive representation of the impact of cer-
tain SNPmutations and abnormal gene expression, offering
more compelling evidence for related research.

In addition to genetic factors, head trauma and alco-
hol intake are also factors contributing to neuroinflamma-
tion. It has recently been observed that ethanol can induce
cell death by triggering inflammatory mediators [196]. An-
other study indicates that alcohol administration in mice
can induce neuroinflammation and intestinal inflammation.
The reduction in gut bacterial load can alleviate alcohol-
related central nervous system inflammation [197]. Simi-
larly, traumatic brain injury (TBI) elicits a complex cascade
of secondary injury responses, with neuroinflammation be-
ing a crucial component [198]. Among them, hippocam-
pal injury serves as the basis for the late complications of
TBI, such as epilepsy, depression, and cognitive impair-
ment. The mechanisms involved in hippocampal neuronal
network reorganization include chronic neuroinflammation
and secondary damage to neural tissue [199].

We provide an overview of the genetic characteristics
that have been associated with cognitive resilience (Table 1,
Ref. [170,171,176–180,200–206]).

9. Outlook
In conclusion, a better understanding of neuroplastic-

ity mechanisms and their effect on the brain and cognitive
aging is of critical importance to the diagnosis and pre-
diction of disease course in aging-related diseases, where
the level of resilience influences the cognitive trajectory
to some degree. Furthermore, resilience must be consid-
ered throughout the disease process since the evolutionary
characteristics of AD biomarkers are not uniform across pa-
tients.

The residual method summarized in this study shares
some similarities with normative modeling approaches;
however, this article places greater emphasis on utiliz-
ing MRI and PET-imaged mesoscopic brain characteris-
tics (such as biomacromolecules, brain structure, neural
networks, and synaptic density) as independent and de-
pendent variables. By examining the relative changes be-
tween mesoscopic variables, the study aims to deepen un-
derstanding of mechanisms that sustain cognitive resilience
and thereby achieve accurate predictions of neurodegenera-
tive disease progression. A biomarker-driven classification
framework based on integrating multimodal images was re-
cently identified by NIA-AA to capture this interindividual
heterogeneity [7]. As a result of the inconsistency between
A (amyloid), T (neurofibrillary tangles), and N (neurode-
generation), additional non-dementia modulators may ex-
ist, as well as relatively large N values that may indicate an
earlier onset of the disease. Additionally, this spatial pat-

tern of inconsistency may be indicative of different non-AD
pathologies, detecting the most significant factor associated
with neurodegenerative disease [207]. The present exigent
issue to be resolved is how to optimally define and quan-
tify the resistance and resilience of the brain and cognitive
impairment, which is pivotal for evaluating the disease pro-
gression and devising individualized treatment strategies.
In order to tackle this predicament, the residual method
can be employed for the A/T/N framework, employing the
residuals of regression models to depict the relative alter-
ations between A/T/N and apprehend the pathological fac-
tors associated with cognitive resilience. T is the primary
instigator of the neurodegenerative lesion (N) in AD and
the ensuing cognitive decline. N incorporates atrophy of
the cerebral cortex and hypometabolism. However, there
exists a notable fluctuation in the T-N correlation, demon-
strated by higher or lower Tau levels than anticipated atro-
phy/metabolism in a particular brain region. Past studies
have recognized prospective controlling factors for cogni-
tive resilience and co-pathology by exploiting mismatches
in the T-N relationship. Additionally, a lesser degree of neu-
rodegeneration than expected at a certain T level could sig-
nify resilience to dementia pathology [65,71].

Notwithstanding, the extant research still exhibits
some inadequacies. The A/T/N framework may disregard
the impact of microglia activation on glucose metabolism
in the brain. Scholars have established that microglia con-
sume more glucose compared to astrocytes and neurons,
and the activation level of microglia governs the modifica-
tion of the FDG-PET (Fludeoxyglucose-positron emission
tomography) signal in the mouse model of neurodegener-
ative disorder. In patients, the activity of microglia is cor-
related with FDG-PET, and its activity must be taken into
account while diagnosing dementia [77]. To surmount this
predicament, we suggest that the elevation in metabolism
resulting from the activation of microglia will diminish the
correlation between metabolism and the amplitude of low-
frequency fluctuations of neurons. The above-mentioned
issue could be resolved by amalgamating this correlation
coefficient into theA/T/N framework. Apart from the struc-
tural and PET imaging characteristics, the functional net-
work interconnections in the brain can also serve as a partial
representation of the cognitive resilience of individuals with
mild cognitive impairment. The interconnections between
certain brain regions or network modules facilitate the flow
and recruitment of neural resources [15]. The high global
network efficiency and conspicuous small world character-
istics in brain networks can efficiently compensate for neu-
ronal damage caused by dementia pathology or inflamma-
tory responses [16]. It is imperative to incorporate neuroin-
flammatory biomarkers with other pathological features, as
the influence of inflammatory reactions on the brain net-
work is autonomous of other pathological factors [143].
The A/T/N framework primarily describes neuropatholo-
gies such as the accumulation of toxic proteins in the brain,
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neurofibrillary tangles, and metabolic abnormalities. How-
ever, during the process of neurodegeneration, compen-
satory mechanisms at the synaptic level are observed, no-
tably the enlargement of surviving synapses and the regen-
eration of dendritic spines. Changes in synapse quantity
are closely related to neurodegeneration and cognitive re-
silience. PET imaging of synaptic vesicle glycoprotein 2A
(SV2A) has emerged as a promising biomarker for assess-
ing synaptic density, allowing for in vivo quantification of
synaptic density, and tracking the progression of cognitive
impairment [208]. The introduction of SV2A PET imag-
ing can provide additional complementary neuropathologi-
cal information to the A/T/N framework, capturing individ-
uals’ levels of cognitive resilience and synaptic compensa-
tion, thereby playing a significant role in the diagnosis and
treatment monitoring of neurological and psychiatric disor-
ders.

Multimodal image characteristics are only one of the
pivotal biomarkers for predicting dementia progression,
and research on genetic characteristics andmolecularmech-
anisms associated with cognitive resilience is also impera-
tive. Investigating SNP loci and related genes that dictate
cognitive resilience is highly efficacious for the early di-
agnosis and prevention of AD. Here, we can concentrate
on the gene and site polymorphism related to neuroinflam-
mation and the activity of microglia or astrocytes based
on the original research. Research on cognitive resilience
could provide another avenue for treatment strategies. In
this respect, the amalgamation of neuroimaging technol-
ogy and molecular biology is pivotal for exploring the in
vivo characteristics of aging-associated processes and fore-
stalling neurodegenerative disorders such as AD.

In addition to early diagnosis through the use of med-
ical imaging, lifestyle improvements are also important for
the prevention of AD. Nutritional management is also cru-
cial for AD. Nutrition throughout the entire lifespan, from
foetal development to old age, influences the risk of devel-
oping AD. Low birth weight and early-life growth retar-
dation are associated with decreased cognitive abilities in
adulthood. Midlife obesity is correlated with an increased
risk of AD in later life. Therefore, interventions are rec-
ommended for prevention and treatment in midlife, but in
old age, being overweight is associated with a reduced risk
of AD, and weight loss is generally not recommended. If
older adults experience unintentional weight loss or are un-
derweight, consulting a physician is advisable. According
to existing evidence, adhering to the Mediterranean diet
has been shown to lower the risk of developing AD. In
the Mediterranean diet, primary components include whole
grains, fruits, vegetables, nuts, legumes, and olive oil, con-
sumed throughout the day [209].

This paper reviews the concept of cognitive resilience
and its measurement methods in the brain. It explains its
biological mechanisms based on neuroimaging biomarkers
of cognitive resilience. These summaries can selectively

explore the determining factors of brain aging and cogni-
tive decline, deepening the understanding of neurodegen-
erative diseases such as dementia. This is crucial for early
diagnosis and intervention in such diseases. Secondly, the
quantification of cognitive resilience can assist in the se-
lection of clinical trial cohorts, formulate more personal-
ized trial protocols, enhance the development of dementia
drugs, and provide assistance in the prognosis assessment
and chronic disease management of neurodegenerative dis-
eases. Finally, we analyze the genetic mechanisms behind
cognitive resilience imaging biomarkers, summarizing SNP
loci related to cognitive resilience. This is of significant im-
portance for screening new dementia treatment targets and
exploring novel therapeutic approaches.

10. Conclusion
This paper primarily summarizes multimodal imaging

biomarkers and their genetic characteristics associated with
cognitive resilience. It begins by reviewing the application
of the residual method in cognitive resilience research, fol-
lowed by an exploration of its use within the A/T/N frame-
work to predict the rate of cognitive decline by capturing
themisalignment between the threeA/T/N dimensions. Ad-
ditionally, this paper discusses the mechanisms underlying
the formation of cognitive resilience from the perspective
of brain functional networks. Finally, it examines the cel-
lular and molecular pathways and mechanisms that sustain
cognitive resilience, and summarizes relevant SNP loci. Al-
though the misalignment between Tau pathology and neu-
rodegenerative changes has provided direction for research
on cognitive resilience, many pathological factors that in-
fluence cognitive trajectories remain uncaptured, and long-
term studies are still lacking. Furthermore, the relationship
between brain network metrics and cognitive resilience re-
mains underexplored, requiring the introduction of more
advanced brain network analysis methods to more accu-
rately depict the information transfer mechanisms between
brain regions. Future research could incorporate multi-
modal brain imaging to visualize key biomolecules in the
brain, exploring the mechanisms underlying cognitive re-
silience from multiple dimensions and tracking these pro-
cesses over longer time spans. The high-order topologi-
cal evolution of dynamic brain networks constructed from
time-series signals can reflect the dynamic changes in brain
functional connectivity, providing more valuable insights
for decoding cognitive resilience. Finally, it is crucial to
focus on how to link newly discovered molecular mech-
anisms of neurodegenerative pathology with more macro-
scopic biomarkers in order to gain a comprehensive under-
standing of the pathogenesis and patterns of neurodegener-
ative diseases.
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