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Abstract

Background: Exercise enhances overall health, playing an important role in protecting against diseases that impact brain function.
Studies show that physical activity influences several key biological processes, including dopamine signaling, brain glucose metabolism
(BGluM), and social behavior. Methods: Male sedentary and chronic exercise rats were examined for dopamine signaling and social
behavior. Tyrosine hydroxylase (TH) immunohistochemistry (IHC), and D1 and D2 receptor (D1R and D2R) autoradiography was used
to assess dopamine signaling; [ 18F]-Fluorodeoxyglucose positron emission tomography (FDG PET) was used to measure brain functional
connectivity; Crawley’s three-chamber sociability test was used to measure social behavior; and Pearson correlation was used to analyze
correlations between social interaction and TH, D1R, and D2R binding. Results: Exercised rats demonstrated greater DIR binding
within several regions of the caudate putamen and nucleus accumbens. PET image analysis showed significantly higher BGIuM in the
exercised rats compared with the sedentary controls across several brain regions. These regions are associated with enhanced functional
connectivity related to movement, olfaction, cardiovascular function, and predator awareness. Exercise had no significant effect on
social interaction. Pearson correlation analysis revealed a significant negative relationship between social interaction and D1R binding.
Conclusions: Chronic aerobic exercise did not significantly alter social interaction, TH, or D2R binding. DIR binding was enhanced in
the exercise group compared with the sedentary group and was negatively correlated with social interaction. We speculate that approach
behavior was attenuated by exercise due to social threat stimulation. Functional connectivity imaging data showed significant glucose
metabolic activation within the cuneiform nucleus, which has been previously shown to be critical in defensive behavior. This may
explain the lack of significant effect of exercise on approach or exploratory behavior. These findings support the potential of exercise
in response to social behavior and the possible attenuation of social behavior towards a social threat or socially inappropriate behavior.
Exercise can induce metabolic transience that may assist rats in detecting odors from larger predatory animals.
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1. Introduction In rodents, exercise increases BGIuM in the hip-
pocampus, caudate putamen, and areas related to audi-

tory sensory processing [11]. Various studies highlight

Physical exercise is known to enhance well-being and
general health. It serves as a protective factor against many

diseases including neurodegenerative, psychiatric and af-
fective disorders, and cardiovascular diseases [1—7]. In hu-
mans, exercise directly affects the brain, increasing cor-
tical thickness [8] and altering brain glucose metabolism
(BGIuM) [9,10].

the effects of exercise on brain function and behavior af-
ter cocaine exposure, including altering BGluM in the hip-
pocampus and substantia nigra [12,13] as well as decreas-
ing cocaine-secking behaviors [14—17]. Moreover, physi-
cal exercise is continuously studied as a potential therapeu-
tic strategy for drug addiction [5,17-24] as well as alcohol
use disorder [25,26].
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It is believed that dopamine can modulate social be-
havior. In humans, polymorphisms in genes associated
with dopamine transmission have been repeatedly associ-
ated with addiction, impulsive and compulsive behaviors,
and conduct disorders involving sociability [27,28]. Specif-
ically, risk alleles of the dopamine receptor D4 (DRD4)
gene have been found to correlate with aggression and anti-
social behaviors [28-31].

Manipulations that enhance dopamine signaling in the
nucleus accumbens (NAc) increase social play behavior in
adolescent rats; likewise, antagonism of D1 receptor (D1R)
or D2R decreases social play [32]. Both DIR-like levels
in the NAc and social play behaviors peak during a similar
developmental window in rats, with declines in D1R levels
corresponding to reductions in social play [33]. DIR acti-
vation also enhanced social recognition [34]. The influence
of exercise on D1R and its subsequent behavioral modula-
tion is also well-documented. Chronic treadmill exercise is
associated with decreased D1R binding in the ventral stria-
tum, including the NAc core and shell [15,17,35]. This
reduction in DR binding is linked to attenuation of drug-
seeking behavior and facilitation of drug extinction [36,37].

D2R mediated signaling is also linked to modulation
of social behavior. Previous research has shown that D2R
overexpression in Purkinje cells decreases sociability and
impairs social preference [34]. Conversely, mice lacking
D2R in Purkinje cells spent more time in social contact
characterized by spending more time engaging in close in-
teraction with another mouse than with an object, and pre-
ferring interaction with an unfamiliar mouse than with a fa-
miliar one [34]. Numerous studies have also outlined ex-
ercise’s ability to significantly affect D2R levels [35,38—
42]. Exercise-induced enhancement of D2R-like binding
has been shown to promote defensive behavior and condi-
tioned place avoidance, reduce drug consumption, increase
motivation, and decrease depressive symptoms [35,43—45].
Additionally, elevated D2R levels are associated with en-
hanced motivation, and conversely, decreased D2R is asso-
ciated with attenuated motivation [44].

Tyrosine hydroxylase (TH) is the rate-limiting enzyme
in the synthesis of catecholamines, notably dopamine, mak-
ing it an important neurobiological marker of dopamine
signaling. This relationship between TH and dopamine
is reflected in the literature by the significant correlation
observed between TH levels and dopamine bioavailabil-
ity [46,47]. Previous research has indicated that exercise-
induced elevation in TH expression is linked to changes
in social interaction, specifically a decrease in hyper-social
behaviors [48]. Conversely, substance abuse is associated
with decreased TH activity and TH levels [49,50]. The
exercise-induced enhancement of TH expression is consis-
tently supported across numerous exercise models [48,51—
53].

Chronic aerobic exercise has been found to modulate
BGIluM in several areas within the rat brain [11-13,54]. Fe-
male rats underwent an exercise regimen identical to the

present experiment [54]. Using [18F]-Fluorodeoxyglucose
positron emission tomography (FDG PET), researchers
found that exercise significantly increases BGIuM in the
caudate putamen, postsubiculum, subiculum transition
area, primary auditory cortex, internal capsule, and exter-
nal capsule. Areas of activation affect several key func-
tions within the brain, including movement and reward, au-
ditory processing, and memory [54]. Chronic exercise fol-
lowing this protocol has also been shown to modulate the
BGIuM response to various doses of cocaine in rats. In
male rats, chronic cocaine exposure led to activation in the
amygdalopiriform transition area, basolateral amygdaloid
nucleus/dorsal endopiriform nucleus piriform cortex layer
1, trigeminothalamic tract, perirhinal cortex/rhinal fissure,
and secondary visual cortex, lateral area. Inhibition was
found only in the primary somatosensory cortex [12]. In
female rats, activation was observed in the postsubiculum,
parasubiculum, temporal association cortex, entopeduncu-
lar nucleus, and granular and dysgranular insular cortex. In-
hibition was observed in the ventral endopiriform nucleus
after an acute dose of cocaine [11,13].

A link has been established between social condi-
tions and exercise. Specifically, exercise has been shown
to provide reparative effects due to social isolation in rat
pups [55,56]. Both voluntary and forced exercises con-
fer restorative effects for impaired sociability, novel explo-
ration deficits, and hypoactivity in diabetic rats [57]. How-
ever, other studies on exercise have found no significant ef-
fect or even impairments, in social interaction, social mem-
ory, and anxiety-like or defensive responses [58,59].

The reparative effects of exercise have also been
shown in memory and exploratory behavior via exercise-
induced changes in selenoprotein [60,61]. Selenoproteins,
specifically selenoprotein P, plays a critical role in neu-
roprotection and cognitive enhancement [60,62] Building
on the established the relationship between exercise, func-
tional dopaminergic connectivity [35] and social behavior
[55], we decided to investigate direct changes in social be-
havior after 6 weeks of forced exercise. Based on previ-
ous findings, we hypothesize that exercised rats will express
more pro-social behavior than sedentary rats. Additionally,
the correlations between social behavior, dopamine signal-
ing, and FDG PET will be examined and compared between
exercised and sedentary rats.

2. Methods
2.1 Animals

Individually housed male Lewis rats (n = 12; mean
weight =201.1 g) (Charles River, Wilmington, MA, USA),
at the age of 8 weeks, were used. The temperature of the
holding room was kept at a constant 22 + 2 °C. Twelve-hour
reverse light/dark cycles (light cycle 8:00 PM to 8:00 AM)
were utilized in the holding room. All twelve rats received
daily handling and unrestricted access to food and water.
The State University of New York at Buffalo Institutional
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Fig. 1. An experimental timeline as well as representations of Crawley’s three-chamber sociability test and a rat undergoing a

positron emission tomography (PET) scan. (A) Experimental timeline: Animals were divided into exercise and sedentary groups.

The sedentary control rats remained in their home cages for 6 weeks while the exercise group completed a 6-week moderate-intensity

aerobic exercise (MIAE) protocol. Five days following the completion of the exercise regimen, all rats underwent Crawley’s three

chamber sociability test. Six days later, microPET scans were completed. On the following day, the rats were euthanized under 3%

isoflurane anesthesia, administered via inhalation, and decapitated. Brains were collected, flash frozen, and sectioned in preparation for

immunohistochemistry (IHC) and autoradiography (ARG) protocols that were completed at a later date. (B) A schematic of Crawley’s

Three Chamber Sociability Test with the left side depicting the habit
positioned in a PET scanner in a supine position.

Animal Care and Use Committee approved all experimen-
tal procedures in accordance with the National Academy of
Sciences Guide for the Care and Use of Laboratory Animals
(1996). A complete experimental timeline can be observed
in Fig. 1A.

2.2 Exercise

Rats in the experimental group (n = 6) underwent a
forced exercise regimen after a one-week habituation pe-
riod. A customized treadmill with four Plexiglas lanes was
employed. Exercise was performed between 11:00 AM and
3:00 PM on all rats in the exercise group. Rats were given
a 10-minute habituation period once loaded into the lanes.
The treadmills’ rate of speed remained constant, at 10 me-
ters per minute, throughout the experiment. The duration
of the exercise session started at 10 minutes and increased
from 10 minutes daily to a maximum of 60 minutes. After
the first 30 minutes of exercise, the rats were given a 10-
minute rest. The exercise regimen occurred five days per
week for six weeks. The rats ran a total distance of roughly
16.5 km [63]. While the experimental rats were exercising,
the control group (n = 6) remained in their cages [15,63].
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uation session and the right side depicting the test session. (C) A rat

2.3 Crawley s Three-Chamber Sociability Test (SI)

A social interaction test was performed 5 days after
the completion of the exercise program, using Crawley’s
three chamber sociability test [64,65] in a room illuminated
only by red light. Testing occurred during the dark cycle
between 1100 h and 1700 h. The test was performed in a
social interaction arena: a square enclosed unit with three
chambers divided by partition, each measuring 20 cm by 60
cm (Fig. 1B). Metal cages (21.59 cm (L) x 12.7 cm (W) X
11.43 cm (H)) were in opposing corners of the outermost
chambers. A 3-minute habituation session preceded testing
where rats were placed in the center of the arena alone and
allowed to explore all chambers. During the habituation
trial, the metal cages in opposing corners of the arena were
empty. Test sessions commenced 30 min after the habitu-
ation ended, and each test animal was again placed in the
center of the same arena, this time with a novel rat in one of
the two previously empty cages. This was the test animal’s
first exposure to a novel rat. Several novel rats were used
and rotated through at the end of each session. Experimen-
tal rats were allowed to freely explore the arena for five
minutes. Test sessions were recorded using D-Link cam-
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eras and software (Model 2132LB; DCS-100 D-ViewCam,
D-Link Corporation, Taipei) and the testing chambers were
cleaned with 70% ethanol between runs. Time spent inter-
acting with both cages and the number of entries into each
of the side chambers were individually rated by two blinded
scorers. Using GraphPad Prism 9 (Dotmatics, Boston, MA,
USA), outliers, if present, were identified and removed us-
ing the ROUT method (Q = 1%). Two-way ANOVAs were
conducted with factors of exercise and social stimulus inter-
action time or exercise and chamber type with significance
setat p =0.05.

2.4 Pet Imaging

Seven days after the completion of the social inter-
action test, all rats (n = 12) were injected with 18F-FDG
(Cardinal Health, Rochester, NY, USA) via intraperitoneal
injection and PET scans were taken (Fig. 1C). 18F-FDG
dosage was 500 pCi as previously described [11-13,54]. In
the 8 hours leading up to the scans, no food was allowed to
facilitate normalization of blood glucose levels. The injec-
tions were followed by a 30-minute uptake period. Anes-
thesia was administered via inhalation using 3% isoflurane
(MWI502017, VetOne, Boise, ID, USA) (maintained at 1%
for the length of the scan). The rats were restrained on the
scanner bed and scanned for 30 minutes. A PET R4 to-
mograph (Concorde CTI Siemens, Munich, Germany) was
used for the scans. Scans were conducted with a transaxial
resolution of 2.0 mm full width at 50% of maximum, and a
transaxial field view of 11.5 cm [66]. Following the scans,
rats were returned to their cages and given unrestricted ac-
cess to food and water.

2.5 Imaging and Statistical Analysis

The MAP algorithm technique (15 iterations, 0.01
smoothing value, 256 x 256 x 256 resolution) was used to
reconstruct the PET scans. Using PMOD imaging software
(Version 2.85, PMOD Technologies, Féllanden, Switzer-
land), stereotaxic coordinates from Paxinos and Watson
were used to manually co-register the PET scans onto a
rat brain functional magnetic resonance imaging (fMRI)
template (63 slices). PET scans of poor quality were ex-
cluded. Then, using MatLab software (Version R2018b,
MathWorks, Natick, MA, USA), PET scans were automat-
ically co-registered and spatially normalized. In order to
identify regional variations in BGluM, statistical paramet-
ric mapping (SPM) software (Version 2.85, PMOD Tech-
nologies, Féllanden, Switzerland) was used. The SPM
analysis employed proportional normalization with grand
mean scaling. A two-sample #-test revealed significant dif-
ferences in BGIuM between the experimental and control
groups (Significant voxel threshold K >50, p < 0.001).
PMOD imaging software was used to view the cluster im-
ages. Hot scale (red, yellow, and white clusters) indicates
activation clusters (greater BGluM in the exercise group).
Cold scale (blue, green, and white clusters) indicates inhi-

bition clusters (lower BGIuM in the exercise group). Using
“The Rat Brain in Stereotaxic Coordinates”, atlas, all clus-
ters were mapped and identified [67].

2.6 Tissue Preparation

Rats were euthanized using inhaled isoflurane anes-
thesia (~3.0%) and decapitation twenty-four hours follow-
ing PET scans. The brains were collected, rapidly frozen
in 2-methylbutane (CAS no. 78-78-4, Sigma Aldrich, St.
Louis, MO, USA), and subsequently stored at a temperature
of —80 °C until they were cryosectioned at 14 pm (sagit-
tal plane) and mounted onto glass microscope slides. The
tissue sections remained stored at —80 °C until they were
utilized for in vitro receptor autoradiography and immuno-
histochemistry (IHC).

2.7 TH Immunohistochemistry

Rat brain section slides were initially dehydrated in
90% ethanol for 10 minutes at room temperature [42,68].
TH IHC was performed similarly to other experiments
[69]. Following dehydration, the slides were washed in 1 x
phosphate-buffered saline (PBS) three times for five min-
utes. The slides were then dipped in a blocking solution
containing 0.4% Trition-X, 10% normal goat serum, and
1% H505 for 30 min at room temperature and subsequently
incubated with Rabbit anti-TH antibody (1:2000, PAS-
85167, Thermo Fischer Scientific, Waltham, MA, USA)
for 24 hours at 4 °C. Following five washes in 1x PBS
(SH3025602, Thermo Fischer Scientific) with 0.4% Triton-
X (HFH10, Thermo Fischer Scientific) (PBS-T), the slides
were incubated in biotinylated goat anti-rabbit antibody
(1:800, BA-100-1.5, Vector Laboratories, Burlingame, CA,
USA) for 1 hour and then in avidin-biotin complex (ABC
Kits, PK-4000; Vector Laboratories) with five washes in
PBS-T occurring after each step. The immunostaining was
visualized using 3,3-diaminobenzidine (DAB) (D12384-
5G, Vector Laboratories), mixed with HoO,. The slides
were then washed four times for five minutes in PBS-T,
dipped into dH>0O, and mounted with Permount mounting
medium (Fisher Scientific, Fairlawn, NJ, USA). Follow-
ing TH staining, striatal sections were imaged using a dig-
ital compound microscope (National DC3-163 Digital Mi-
croscope, National Optical, San Antonio, TX, USA) and
MOTIC imaging software (Version 2.0, Motic, San Anto-
nio, TX, USA). TH density within the striatum was gauged
using Imagel] software (Version 1.52a, National Institutes
of Health, Bethesda, MD, USA). The regions of interest in-
cluded the ventromedial caudate putamen (VM CPU), ven-
trolateral caudate putamen (VL CPU), dorsolateral caudate
putamen (DL CPU), dorsomedial caudate putamen (DM
CPU), nucleus accumbens shell (NAc Shell), and nucleus
accumbens core (NAc Core). All statistical analyses were
conducted using GraphPad Prism 9 software (Dotmatics,
Boston, MA, USA) with significance set at p = 0.05. Out-
liers, if present, were identified and removed using the
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Fig. 2. Crawley’s three-chamber sociability results comparing both the mean interaction time and mean number of chamber

entries for the exercise and sedentary groups. (A) A two-way ANOVA was used to measure social interaction time across exercise

condition (exercise vs sedentary) and environment (novel rat cage versus empty cage). There was a significant effect of exercise [F(1,20)=

6.5; *p < 0.05], on interaction time with the novel cage such that the sedentary control rats (n = 6) showed significantly greater interaction

time with the novel rat cage as compared to the empty cage; while no difference was observed by the exercise treated rats (n = 6) across

these two environments [F(1,20) = 0.82; p > 0.05]. (B) A two-way ANOVA was run with the factors of exercise and chamber type.

There was no significant effect of exercise on chamber entries for either chamber type (p > 0.05).

ROUT method (Q = 1%). Two tailed unpaired ¢-tests were
conducted comparing the binding values of the exercise
group to those of the sedentary group for all regions of in-
terest.

2.8 Autoradiography

DIR and D2R expression were assessed using [3H]
SCH 23390 and [3H] spiperone autoradiography respec-
tively (PerkinElmer, Boston, MA, USA). Binding was per-
formed as previously described [35,42]. All slides were
submerged for 60 minutes in 50 mM Tris HCL preincu-
bation buffer at room temperature (120 mM NaCl, 5 mM
KCl, 2 mM CaCls,, | mM MgCl,, pH=7.4). Specific slides
were then submerged for 60 minutes in 2.5 nM [3H] SCH
23390 (specific activity = 85 Ci/mmol) or [3H] spiperone
(specific activity = 16.2 Ci/mmol) and 40 nM ketanserin
(S006, Sigma Aldrich) buffer solution at room tempera-
ture. Non-specific slides were submerged for 60 minutes in
1 uM flupenthixol (F114, Sigma Aldrich) buffer solution.
Finally, all slides were washed twice for 5 minutes in 4 °C
preincubation buffer followed by a dip in 4 °C in dH5O.
The bound sample slides, as well as tritium standards, were
placed against Kodak MR Film (Eastman Kodak Company,
Rochester, NY, USA). The film was scanned at a resolution
of 1200 dpi, and the images were analyzed using ImageJ
software. The regions of interest included the VM CPU, VL
CPU, DL CPU, DM CPU, NAc Shell, NAc Core, olfactory

&% IMR Press

tubercle (OT), and substantia nigra (SNR), were examined
for [3H] SCH 23390 and [3H] spiperone binding. All statis-
tical analyses were conducted using GraphPad Prism 9 soft-
ware with significance set at p = 0.05. Outliers, if present,
were identified and removed using the ROUT method (Q =
1%). Two tailed unpaired ¢-tests were conducted compar-
ing the binding values of the exercise group to those of the
sedentary group for all regions of interest.

2.9 Correlations

Pearson correlations were conducted to compare so-
cial interaction to TH, D1R, and D2R binding. Time spent
interacting with the novel rat was correlated to mean bind-
ing using GraphPad Prism 9 software with significance set
at p = 0.05. Outliers, if present, were identified and re-
moved using the ROUT method (Q = 1%).

3. Results
3.1 Social Interaction

The results of Crawley’s three-chamber sociability test
are presented in Fig. 2. A two-way ANOVA was run with
the factors of exercise and social stimulus. A significant
difference in social interaction time was found between the
novel and empty cages for sedentary rats [F(1,20) = 6.50; p
< 0.05], however this was not significant for the exercise
rats [F(1,20) = 4.67; p > 0.05]. Tukey’s multiple pairwise
comparisons test revealed that for the sedentary rats, mean
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Fig. 3. Coronal PET images showing brain regions with significant (p < 0.005, df =11, K >50) metabolic activation (hot scale) in

exercised rats (n = 6) compared to sedentary rats (n = 6). T-values represent peak activation (t = 6.16). S1FL, primary somatosensory

forelimb region; CnFV, ventral and dorsal cuneiform nucleus; Ptg, pedunculopontine tegmental nucleus; SimA and SimB, simple lobule

A and B of the cerebellum; prf, primary fissure; MdV, Medullary reticular nucleus, ventral part; fmj, forceps major of the corpus callosum;

M1, primary motor cortex; AOD, anterior olfactory nucleus, dorsal part; AOL, anterior olfactory nucleus, lateral part; AOM, anterior

olfactory nucleus, medial part; EOV, olfactory ventricle; AOV, anterior olfactory nucleus, ventral part; Crus2, crus2 of the ansiform

lobule; ppf, prepyramidal fissure; Post, postsubiculum.

interaction time was significantly greater with the novel rat
cage compared to the empty cage (p < 0.05). There was no
significant effect of exercise on social interaction [F(1,20)
= 0.82; p > 0.05]. There was no significant difference in
novel rat cage interaction time and empty cage interaction
time between the exercised and sedentary groups. A two-
way ANOVA was run with the factors of exercise and cham-
ber type. There was no significant effect of exercise on
chamber entries for either chamber type (p > 0.05).

3.2 PET

A two sample 7-test (p < 0.005, K >50) revealed sig-
nificant increases in BGluM in exercised rats compared to
sedentary rats in the primary somatosensory forelimb re-
gion (S1FL), ventral and dorsal cuneiform nucleus (CnFYV,
CnFD), pedunculopontine tegmental nucleus (PTg), sim-

ple lobule A and B of the cerebellum (SimA, SimB), pyra-
midal tract (py), medial lemniscus (ml), trapezoid body
(tz), primary motor cortex (M1), the medullary reticular
nucleus, ventral part (MdV), postsubiculum (Post), olfac-
tory nucleus (anterior olfactory nucleus, dorsal part (AOD),
anterior olfactory nucleus, lateral part (AOL), anterior ol-
factory nucleus, medial part (AOM), olfactory ventricle
(EOV), anterior commissure (aci), crus2 of the ansiform
lobule (Crus2), 7th and 8th cerebellar lobules (7,8), and the
M1. Images of our activation clusters can be seen in Fig. 3.
Details about cluster size and location can be seen in Ta-
ble 1. PET cluster images can be seen in Fig. 3. A hypoth-
esized circuitry of these clusters can be seen in Fig. 4.
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Table 1. Brain regions showing a significant BGluM activation effect between exercised and sedentary rats at (p < 0.005, df = 11) voxel threshold K >50.

Medial-Lateral — Dorsal-Ventral ~ Anterior-Posterior

Brain region Cluster Location (General) t-Value  z-Score KE
(mm) (mm) (mm)

Primary somatosensory forelimb region (S1FL) Somatosensory cortex 4.4 1.6 1.2 6.16 3.88 63

Cuneiform nucleus: Cn (FV, FD); pedunculopontine tegmental nucleus: (PTg) Midbrain, brain stem -1.8 6.4 8.2 5.81 3.76 119
Simple lobule A of the cerebellum (SimA), SimB, prf Cerebellum -3.6 32 -9.6 5.5 3.65 304
Pyramidal tract (py), medial lemniscus (ml), trapezoid body (tz) Brain stem, hippocampus 0.6 10.8 -9.6 5.22 3.55 145
Primary motor cortex (M1) Motor cortex 2.8 2.2 3.2 5.17 3.53 228
Medullary reticular nucleus, ventral part (MdV) Cerebellum 1 8.8 -14.4 5.08 3.49 83

Post, fmj Hippocampus —4 3 -7.6 5.02 3.47 350
Olfactory nucleus (AOD, AOL, AOM) olfactory ventricle (EOV), anterior commissure (aci) Forebrain -1.2 6.8 4.8 4.99 3.46 275
Crus2 of the ansiform lobule (Crus2), ppf, 7th and 8th cerebellar lobules Cerebellum 2.4 32 -13 4.93 343 150
Ml Motor cortex 1.6 1 0 4.85 3.4 863

Coordinates in stereotaxic space (medial-lateral, anterior—posterior, and dorsal-ventral) are provided for cluster location. The t-values and z-scores were calculated from the average BGluM of all voxels within
the significant clusters. The number of voxels in the significant clusters is noted “KE”, voxel size 0.2 mm isotropic. BGluM, brain glucose metabolism; CnFV, ventral cuneiform nucleus; CnFD, dorsal cuneiform

nucleus.
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Olfactory
Nucleus

Fig. 4. A sagittal brain schematic illustrating the brain circuitry that showed increased BGluM and the connectivity between

these regions in response to exercise and social interaction. Cn, cuneiform nucleus.

3.3 TH Immunohistochemistry

Two-tailed unpaired ¢-tests found no significant dif-
ferences in TH IHC between exercise and controls groups
across the DM CPU [n = 6 (sedentary), n = 5 (exercise), t
=0.705, p = 0.50], DL CPU [n = 6 (sedentary), n = 5 (ex-
ercise), t=0.513, p = 0.62], VM CPU [n = 6 (sedentary), n
=5 (exercise), t = 1.376, p = 0.20], VL CPU [n = 6 (seden-
tary), n=>5 (exercise), t=0.451, p=0.66], NAc Core [n =6
(sedentary), n=5 (exercise), t =0.328, p =0.75], NAc Shell
[n=6 (sedentary), n=5 (exercise), t=0.290, p = 0.78], and
OT [n =6 (sedentary), n = 5 (exercise), t = 0.843, p = 0.42]
(Fig. 5).

3.4 D1 Autoradiography

The results of [3H] SCH 23390 DIR binding are
shown in Fig. 6. Two-tailed unpaired ¢-tests revealed sig-
nificant increases in D1R autoradiography binding levels in
the exercise group across several brain regions compared to
the control group. These brain regions include the DL CPU
[n=51 (sedentary), n = 52 (exercise), t =2.341, *p < 0.05],
VL CPU [n = 48 (sedentary), n = 50 (exercise), t = 3.453,
**%p < 0.001], VM CPU [n = 47 (sedentary), n = 47 (exer-
cise), t =2.848, **p < 0.01], NAc Core [n =21 (sedentary),
n =25 (exercise), t = 2.418, *p < 0.05], and NAc Shell [n
=20 (sedentary), n = 25 (exercise), t = 3.032, **p < 0.01].
No significance was found in the DM CPU [n =51 (seden-
tary), n =46 (exercise), t = 1.742, p > 0.05], dorsal caudate
putamen (D CPU) [n = 19 (sedentary), n = 22 (exercise), t
= 1.468, p > 0.05], ventral caudate putamen (V CPU) [n =
23 (sedentary), n = 24 (exercise), t = 0.757, p > 0.05], OT
[n= 21 (sedentary), n = 32 (exercise), t = 1.272, p > 0.05],
or SNR [n = 32 (sedentary), n = 22 (exercise), t = 0.062, p
> 0.05].

3.5 D2 Autoradiography

The results of [3H] spiperone D2R binding are shown
in Fig. 7. Two-tailed unpaired ¢-tests revealed no signif-
icant changes in D2R autoradiography binding levels be-
tween the exercise and control groups for any of the brain
regions examined: DM CPU [n = 54 (sedentary), n = 59
(exercise), t = 1.488, p > 0.05], DL CPU [n = 54 (seden-
tary), n = 59 (exercise), t = 0.929, p > 0.05], VL CPU [n
= 54 (sedentary), n = 59 (exercise), t = 1.013, p > 0.05],
VM CPU [n = 53 (sedentary), n = 57 (exercise), t = 0.948,
p > 0.05], D CPU [n = 37 (sedentary), n = 26 (exercise), t
=1.875,p > 0.05], V CPU [n = 37 (sedentary), n = 28 (ex-
ercise), t=1.786, p > 0.05], NAc Core [n = 16 (sedentary),
n = 20 (exercise), t = 1.191, p > 0.05], NAc Shell [n = 18
(sedentary), n = 20 (exercise), t = 1.202, p > 0.05], OT [n
=21 (sedentary), n = 35 (exercise), t = 0.640, p > 0.05], or
SNR [n =12 (sedentary), n = 14 (exercise), t = 0.4706, p >
0.05].

3.6 Correlations of Dopamine Receptor Binding and
Social Behavior

A significant negative correlation between DIR bind-
ing and social interaction was found in the NAc Core [r
= -0.601, R? = 0.362, p < 0.05, n = 12] (Fig. 8A). No
significant correlations were observed between TH im-
munohistochemistry or D2R binding and social interaction
(Fig. 8B,C). No significance was found for the DM CPU,
DL CPU, VL CPU, VM CPU, D CPU, V CPU, NAc Shell,
OT, or SNR (p > 0.05).
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Fig. 5. Tyrosine hydroxylase immunohistochemistry results comparing optical density measurements in several brain regions

between exercise and sedentary groups as well as representative images. (A) Two-tailed unpaired #-tests found no significant dif-

ferences in mean tyrosine hydroxylase (TH) DAB Optical Density between exercise (n = 6) and sedentary (n = 5) groups. Each bar

represents the mean £ SEM TH labeling. (B) Representative photo micrographs of TH positive fibers in the striatum of sedentary and

exercise rats. Scale bar = 1 mm. DM CPU, dorsomedial caudate putamen; DL CPU, dorsolateral caudate putamen; VL CPU, ventro-

lateral caudate putamen; VM CPU, ventromedial caudate putamen; NAc Core, nucleus accumbens core, NAc Shell, nucleus accumbens

shell; OT, olfactory tubercle; DAB, 3,3-diaminobenzidine.

3.7 Correlation Between Brain Glucose Metabolism and
Social Behavior

A series of correlation analyses was conducted be-
tween social interaction behavior and BGIuM for multiple
brain regions (Fig. 9). The analyses found a significant cor-
relation between social interaction with the novel rat cage
and mean BGIuM within the exercise group for the pons
[r=-0.769, R? = 0.592, p < 0.05, n = 6]. There were no
significant findings for the sedentary group (n = 6).

4. Discussion
4.1 Exercise and Social Behavior

The present results showed that sedentary rats spent
significantly more time interacting with the novel rat age
compared to the empty cage and this was consistent with
previous research [65,70]. Sedentary rats have also previ-
ously been found to have no significant effect in time spent
with a novel rat compared to a toy [71]. In the current
study, exercised rats did not show a significant increase in
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social interaction compared to sedentary controls. Prior re-
search has shown that treadmill exercise mitigated stress-
induced impairment of social interaction [71,72]. Chronic
exercise has been shown to reduce defensive social behav-
iors in rodents, leading to increases in prosocial behavior
[73,74]. These prior findings are important when assessing
the present results. One possible reason for the discrepancy
between our findings and prior studies may relate to the
characteristics of the novel rat. Our novel rats that acted as
the social stimulus were approximately 4 months older and
typically ~50 g heavier; they were also more socialized as
they were used for breeding. Therefore, one interpretation
is that exercise treatment attenuated time spent interacting
with the social threat of a larger size male rat.

The present PET imaging data also support the above
findings and showed a significant activation (increased
BGIuM) in the cuneiform nucleus (CnF) of the exercised
rats, which is a brain region known to be involved in lo-
comotion and defensive response to natural threats [75,76].
This brain area is also involved in stress-related cardiovas-
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Fig. 6. Dopamine D1 receptor autoradiography comparing [3H] SCH 23390 binding in several brain regions between exercise

and sedentary groups as well as representative images of D1R binding. (A) Two-tailed unpaired z-tests found a significant increase in
[3H] SCH 23390 DI1R binding in the exercise group compared to the control group in the DL CPU [n= 51 (sedentary), n = 52 (exercise),
t=2.341, *p < 0.05], VL CPU [n = 48 (sedentary), n = 50 (exercise), t = 3.453, ***p < 0.001], VM CPU [n = 47 (sedentary), n =
47 (exercise), t = 2.848, **p < 0.01], NAc Core [n = 21 (sedentary), n = 25 (exercise), t = 2.418, *p < 0.05], and NAc Shell [n =20
(sedentary), n =25 (exercise), t =3.032, **p < 0.01]. All values presented are average [3H] SCH 23390 D1R binding levels + SEM, with
units of pCi/g. (B) Representative images of [3H] SCH 23390 D1R binding distribution in the rat brain for the exercise and sedentary

groups. Scale bar: 1 mm. SNR, substantia nigra.

cular responses in rats [77]. The CnF has been documented
to receive input from the periaqueductal grey area to initi-
ate freezing behaviors, as seen in our behavioral analysis.
We speculate that the exercised rats could have a height-
ened sensory processing, leading them to enhanced per-
ception of the older novel rats as a threat and, therefore,
spend less time interacting with them. Further investiga-
tion into this phenomenon, including repeated testing, age
and sex-matched novel rats, and novel rats that are smaller
and younger than the experimental rats is warranted. Pre-
vious PET research has found that rats placed into a novel
environment experience decreases in BGluM in brain ar-
eas associated with motor behavior and increases in areas
associated with anxiety, the motor cortex and stria termi-
nalis respectively [66]. While this contradicts prior research
that has shown rats prefer novel environments, this is in line
with our research finding no significant effect of social in-
teraction when paired with a larger rat that may be treated
as a threat [78].

4.2 Impact of Exercise on Brain Functional Connectivity

Many publications on exercise and PET confirm a
phenomenon referred to as exercise-induced metabolic
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transience (EIMT) [11,54,79]. Presently, we observed
EIMT that was consistent with previous findings. Exercise-
induced BGluM activation was observed in the Post, a hip-
pocampal subregion that is functionally involved in head
direction and cranial orientation [54,80]. We also see acti-
vation of SimA and SimB, cerebellar regions receiving pre-
frontal and hippocampal inputs for spatial working mem-
ory and action decision-making [81]. The connections be-
tween the hippocampus and cerebellum can help establish
a functional circuitry of exercise. Additionally, EIMT was
observed in the Tz of the auditory pathway. This is also
consistent with previous findings that reflect post-exercise
metabolic activation of the temporal lobes and other audi-
tory processing areas [11,54]. However, unlike these pre-
vious findings by Hanna ef al. [11], we did not see any
changes in metabolic activity in highly dopaminergic re-
gions of the basal ganglia and striatum.

Both exercise and social interaction may have played a
role in observed BGluM increases. The PTG is a brainstem
region connected to the striatum and may be involved in
arousal, attention, and reward mechanisms as well as move-
ment [82]. Olfactory stimulation included BGIuM activa-
tion in the AOD, AOL, AOM, and anterior olfactory nu-
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Fig. 7. Dopamine D2 receptor autoradiography comparing [3H] spiperone binding in several brain regions between exercise and

sedentary groups as well as representative images of D2R binding. (A) Two-tailed unpaired #-tests found no significant changes

between the exercise and sedentary groups for [3H] spiperone D2R binding. All values presented are average [3H] spiperone D2R

binding levels + SEM, with units of pCi/g. (B) Representative images of [3H] spiperone D2R binding distribution in the rat brain for the

exercise and sedentary groups. Scale bar: 1 mm.

cleus, ventral part (AOV). These results could be induced
both from EIMT and the introduction of a novel rat. Height-
ened sensory responses are well documented after exer-
cise. Using the same exercise protocol as this paper, ex-
ercise has been shown to increase BGluM in sensorimotor
regions in female rats [54]. Exercise has been shown to
ameliorate methamphetamine induce olfactory dysfunction
in mice [83]. In humans, exercise can improve scores in au-
ditory discrimination tasks and audio-cued labeling [84,85].
In healthy young adults, acute exercise improves sensori-
motor connectivity, which was shown to be sustained after
exercise was completed [86]. Exercise can also preserve
olfactory functioning in older adults [87].

As stated above, we believe the results of the social
interaction test can best be explained by activation of the
CnF and the Crus 2. The CnF is functionally involved in
locomotion and defensive response to natural threats. Ex-
posure to predator’s odor upregulates c-fos expression in
this area, and previous research shows a strong correlation
of c-foes signaling with BGluM and FDG PET signaling
[15]. The CnF also shares connection and function with
the periaqueductal gray matter area [75,76]. It is possible
that EIMT aided the ability to elicit a defensive response
via olfactory sensory processing. The CnF also has shown
involvement in stress-related cardiovascular responses in
rats [77]. Lastly, a meta-analysis of emotional-social re-
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lated fMRI tasks showed that the Crus2 is essential in the
learning of social action [88].

4.3 Exercise and Dopamine Signaling

The present study found that moderate-intensity aero-
bic exercise (MIAE) did not produce significant changes in
TH levels across brain regions. Previous research on the
effect of exercise on TH levels is largely mixed. While
several studies have reported exercise induced increases in
TH levels, these findings were primarily observed in dis-
eased rodent models such as those with Parkinson’s Dis-
ease or attention-deficit/hyperactivity disorder (ADHD),
where baseline TH levels were deficient [48,51-53]. In
contrast, analyses of healthy rodent models have gener-
ally shown that exercise does not significantly increase
TH levels [42]. Furthermore, research directly compar-
ing the effect of exercise on a healthy control versus a
diseased Parkinsonian group found only significant mod-
ulation of TH, dopamine, and neurotrophic factors in the
diseased group [53]. Our findings further support a pre-
viously described phenomenon suggesting an upper limit
to neurotrophic and dopamine modulation. Healthy rats,
already at neurochemical homeostasis, are much closer to
an upper limit than rats of a diseased model with signifi-
cantly impaired baseline dopamine signaling [42]. There-
fore, healthy rodent models may not exhibit significant
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Fig. 8. Representations of Pearson correlations correlating
mean autoradiography binding or Immunohistochemistry la-
beling to social interaction levels during Crawley’s three-
chamber sociability test. (A) A negative correlation of DIR
binding in NAc Core and social interaction [r = —0.601, R? =
0.362, p < 0.05, n = 12]. (B) The correlation of D2R binding
in NAc Core and social interaction [r = —0.307, R? = 0.094, p>
0.05, n = 12]. (C) The correlation between TH binding in NAc
Core and social interaction [r = 0.141, R% = 0.020, p>0.05n=
11].
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Fig. 9. Schematic representations of Pearson correlations cor-
relating BGluM levels to social interaction levels during Craw-
ley’s three-chamber sociability test. There was a significant neg-
ative correlation for the pons for the exercise group [r = —0.769,
R? =0.592, *p < 0.05, n = 6]. CB, cerebellum; InfCol, inferior
colliculus; VTA, ventral tegmental area; Amyg, amygdala; HP,
hippocampus; HYP, hypothalamus; CG, cingulate cortex; Poa,

preoptic area.

positive dopaminergic modulation when diseased models
would because the increase from deficit to the upper limit
in diseased models is much larger than the increase from
homeostasis to the upper limit in healthy models.

D2R levels have been associated with the regulation of
both active and passive defensive behaviors [89—91]. These
findings support the role of D2R as of the primary media-
tors of defensive behavior, as reflected in our study through
freezing behavior observed in Crawley’s three-chamber so-
ciability test. However, we did not reveal any significant
differences in D2R binding levels between the exercise and
control groups. This is dissimilar from other research con-
ducted that has found D2R levels to be significantly af-
fected by exercise [35,38—42]. Robison et al. [35] found
that D2R binding levels were significantly increased in ex-
ercised rats. However, one reason for this difference in D2R
may be due to the age differences between the animals at
the time of euthanasia as the rats in this study were approx-
imately two months older than those in the Robison study
at the time of euthanasia. There is longitudinal evidence
for individual and region-specific differences of dopamine
receptor D2 (DRD2) decline in older age and support for
the hypothesis that social and even cerebrovascular factors
are linked to age-related dopaminergic decline [92]. Tyler
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et al. [42] found significant increases in D2R binding in
the NAc Shell. However, this previous research was con-
ducted using a High Intensity Interval Training (HIIT) pro-
tocol, which differs from the MIAE protocol used in this
study. Current literature suggests that D2R are a mediator
of defensive behavior; however, evidence on DIR suggests
a positive correlation with social behavior.

DIR have been correlated to social conformity and
food seeking but inversely correlated to aggression [93,94].
Interestingly, our study identified increased DIR binding
levels in several brain regions, including the DL CPU, VL
CPU, VM CPU, NAc Core, and NAc Shell. Previous re-
search on D1R binding is largely mixed with reports of in-
significant following a HIIT protocol [42] and decreased
DIR binding [35] following the same MIAE exercise regi-
men.

Changes in brain metabolic activity have been as-
sociated with changes in dopamine levels. The degra-
dation of dopaminergic neurons is a hallmark of Parkin-
son’s disease, contributing to widespread disruptions in
brain function. In parkinsonian rats, dopamine deple-
tion alters brain metabolic connectivity, particularly in an-
imals undergoing treadmill exercise [95]. FDG PET scans
show that dopamine depletion via a chemical abbreviation
for 6 hyrdoxy dopamine lesioning leads to differences in
brain metabolic activity compared to scans completed pre-
lesioning in exercised rats. Compared to pre-lesion scans,
post-lesion scans showed region-specific increases and de-
creases in brain activity.

Increases in brain activity were seen in the thalamus
and several regions of the striatum, while decreases were
noted in the ipsilesional striatum [95]. This study measured
brain activity levels in rats before and after treatment with
a dopamine selective neurotoxin inducing Parkinsons dis-
ease like behavior, not directly testing dopamine signaling
in response to exercise as was done in the current study. The
rats used were also much older than those used in the current
study and included males and females, whereas only males
were used in the current study. We also did not induce dis-
ease as was done in Endepols ez al. [95]. While we also
found that exercised rats showed increases in BGluM and
DIR levels, the increases were not found to overlap in any
brain regions within our study. The observed increases in
DIR levels were observed within brain regions of the stria-
tum, while the increases in BGluM were located in regions
of the brain stem, cerebellum, forebrain, hippocampus, mo-
tor cortex, and somatosensory cortex.

Overall, it is well established that dopamine plays
an important role in cognitive performance, aging, reward
motivation and neurodegenerative disease. A better un-
derstanding of how exercise can modulate this dopamine—
cognition link is needed including effects on synaptic
dopamine levels as well as receptor levels of D1-D5 fol-
lowing chronic exercise procedures. The neurobiological
mechanism is unclear as are the precise exercise interven-
tions to slow down this cognitive/behavioral decline. Fur-
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thermore, exercise largely is being described as a binary
factor (exercise vs sedentary) and not using a dose response
model. Such a dose response model of exercise would
seek to dissect exercise type, intensity, duration, frequency
etc. along with a quantitative assessment of sedentary be-
havior and sleep. This precision approach of exercise in
medicine in future studies will be very valuable in better un-
derstanding exercise interventions aiming to improve cog-
nitive function.

4.4 The Interaction of Exercise and Social Behavior,
Dopamine Signaling and Brain Glucose Metabolism

The present study showed a significant negative corre-
lation between time spent with a social threat stimulus and
DI1R binding in the NAc Core. Prior research has found
that the involvement of DR signaling in social behavior is
supported by findings showing that the infusion of a DIR
antagonist into the NAc attenuated the pro-social effects
of ventral tegmental area (VTA)-dopamine neuron stimu-
lation, suggesting that dopamine signaling through D1 re-
ceptors in the NAc is critical for mediating increases in
social behavior elicited by VTA stimulation [96]. How-
ever, the present study did not use a pharmacological ap-
proach inhibiting D1R levels. In contrast, the present study
performed a quantitative assessment of absolute DI1R lev-
els. In contrast to our DIR findings, there was no signif-
icant correlation between D2R levels and time spent with
a social threat stimulus. Previous research has shown that
deletion of the D2R in mice is correlated to an increase
in social behavior [97]. However, these findings were de-
rived from a longitudinal study conducted over six days,
and did not use the same methodology (Crawley’s three-
chamber sociability test) employed in the present study.
Other methodological differences also may explain the dif-
ferences in results (the D2 ligand used, genetic knockout
model versus wild type). Correlation of social interaction
and Tyrosine Hydroxylase levels found no significant re-
sults. Previous research analyzed this potential link in the
Balb/c and C57BL/6 strains through chronic treatment of
mice with BC19, a noreburnamine previously known as
RU24722. Cambon ef al. [98] found a significant link be-
tween aggressive behavior during social interaction and TH
modulation. In ADHD rodent models, rats that underwent
treadmill exercise exhibited enhanced TH expression and
decreased hyper-social behaviors [48]. However, it is im-
portant to note that neither of these studies utilized healthy
rodent models. This distinction could explain our lack of
significant effect as previously explained due to an upper
limit phenomenon. Research investigating this correlation
in healthy models remains scarce and further research is
warranted.

Significance was found within the exercise group
when correlating social interaction with BGluM for the
pons. The pons is a brainstem structure connecting the
medulla to the midbrain. The pons innervates functions in-
cluding breath control, coordination of muscle movement,
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and equilibrium [99]. The brainstem has been shown to
play a critical role in autism spectrum disorder (ASD) with
symptomatology specifically ascribed to hypoplasia of the
pons [100]. Additionally, brain areas closely connected to
the pons, notably the amygdala, are directly affected both
structurally and functionally by microstructural abnormali-
ties in the pons [100]. These findings paired with our corre-
lation highlight a potential connection between the pons and
social interaction or in the case of ASD, social communi-
cation deficits. Through the locus coeruleus-noradrenaline
(NA) system, the pons is also associated with arousal, atten-
tion, and decision-making, all involved processes of social
interaction [101]. More research is needed to understand
the link between social interaction and the pons.

5. Conclusion

Exercise significantly increased D1R binding in the
rodent brain without a significant effect on social response.
However, DIR binding levels were found to negatively cor-
relate with social interaction. These results suggest that
exercise may not have a pro-social effect in some situa-
tions, especially in response to an older, larger male rat that
would be considered a social threat. This finding could have
important implications of the potential of Exercise in re-
sponse to social behavior and may attenuate social behavior
towards a social threat or socially inappropriate behavior.
Exercise can induce metabolic transience that may assist
rats in detecting odors from larger predatory animals. Fur-
ther investigation into this phenomenon, including repeated
testing, is warranted. This includes testing with age and
sex-matched novel rats and novel rats that are smaller and
younger than the experimental rats. Future studies could
look at repeated social interaction measures.
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