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Methods
Results included in this manuscript come from preprocessing performed using fMRIPrep 1.5.8
(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is
based on Nipype 1.4.1 (Gorgolewski et al. (2011); Gorgolewski et al. (2018);
RRID:SCR_002502). The anatomical and functional neuroimaging data preprocessing sections
below are based on boilerplate text generated by fMRIPrep.

Anatomical neuroimaging data preprocessing using fmriprep

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.2.0 (Avants et al. 2008,
RRID:SCR _004757), and used as T1w-reference throughout the workflow. The T1w-reference
was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow
(from ANTs), using OASIS30ANTS as target template. Brain tissue segmentation of
cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the
brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR 002823, Zhang, Brady, and Smith 2001).
Volume-based spatial normalization to one standard space (MNI152NLin6Asym) was performed
through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions
of both T1w reference and the T1w template. The following template was selected for spatial
normalization: FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain
Stereotaxic Registration Model [Evans et al. (2012), RRID:SCR_002823; TemplateFlow ID:
MNII52NLin6Asym)].

Functional neuroimaging data preprocessing using fmriprep

For each BOLD run per subject, the following preprocessing was performed. First, a reference
volume and its skull-stripped version were generated using a custom methodology of fMRIPrep.
A BO-nonuniformity map (or fieldmap) was estimated based on a phase-difference map calculated
with a dual-echo GRE (gradient-recall echo) sequence, processed with a custom workflow of
SDCFlows inspired by the epidewarp.fsl script and further improvements in HCP Pipelines
(Glasser et al. 2013). The fieldmap was then co-registered to the target EPI (echo-planar imaging)
reference run and converted to a displacements field map (amenable to registration tools such as
ANTs) with FSL’s fugue and other SDCflows tools. Based on the estimated susceptibility
distortion, a corrected EPI (echo-planar imaging) reference was calculated for a more accurate co-
registration with the anatomical reference. The BOLD reference was then co-registered to the T1w
reference using flirt (FSL 5.0.9, Jenkinson and Smith 2001) with the boundary-based registration
(Greve and Fischl 2009) cost-function. Co-registration was configured with nine degrees of
freedom to account for distortions remaining in the BOLD reference. Head-motion parameters
with respect to the BOLD reference (transformation matrices, and six corresponding rotation and
translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9,
Jenkinson et al. 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207
(Cox and Hyde 1997, RRID:SCR _005927). The BOLD time-series (including slice-timing
correction when applied) were resampled onto their original, native space by applying a single,
composite transform to correct for head-motion and susceptibility distortions. These resampled
BOLD time-series will be referred to as preprocessed BOLD in original space, or just preprocessed
BOLD. The BOLD time-series were resampled into standard space, generating a preprocessed
BOLD run in [*‘MNI152NLin6Asym’] space. First, a reference volume and its skull-stripped



version were generated using a custom methodology of fMRIPrep. Automatic removal of motion
artifacts using independent component analysis (ICA-AROMA, Pruim et al. 2015) was performed
on the preprocessed BOLD on MNI space time-series after removal of non-steady state volumes
and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-
maximum). Corresponding “non-aggresively” denoised runs were produced after such smoothing.
Additionally, the “aggressive” noise-regressors were collected and placed in the corresponding
confounds file. Several confounding time-series were calculated based on the preprocessed BOLD:
framewise displacement (FD), DVARS and three region-wise global signals. FD and DVARS are
calculated for each functional run, both using their implementations in Nipype (following the
definitions by Power et al. 2014). The three global signals are extracted within the CSF, the WM,
and the whole-brain masks. Additionally, a set of physiological regressors were extracted to allow
for component-based noise correction (CompCor, Behzadi et al. 2007). Principal components are
estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine
filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). tCompCor components are then calculated from the top 5% variable voxels within a
mask covering the subcortical regions. This subcortical mask is obtained by heavily eroding the
brain mask, which ensures it does not include cortical GM regions. For aCompCor, components
are calculated within the intersection of the aforementioned mask and the union of CSF and WM
masks calculated in T1w space, after their projection to the native space of each functional run
(using the inverse BOLD-to-T1w transformation). Components are also calculated separately
within the WM and CSF masks. For each CompCor decomposition, the k components with the
largest singular values are retained, such that the retained components’ time series are sufficient
to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal).
The remaining components are dropped from consideration. The head-motion estimates calculated
in the correction step were also placed within the corresponding confounds file. The confound time
series derived from head motion estimates and global signals were expanded with the inclusion of
temporal derivatives and quadratic terms for each (Satterthwaite et al. 2013). All resamplings can
be performed with a single interpolation step by composing all the pertinent transformations (i.e.
head-motion transform matrices, susceptibility distortion correction when available, and co-
registrations to anatomical and output spaces). Gridded (volumetric) resamplings were performed
using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the
smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer). Functional data were then highpass filtered with a
cutoff period of 100s.

GLM specification

In addition to the task events indicators described in the main text (gain, loss, and no outcome),
the first level GLM included 1 regressor indicating onset of the response phase of each trial
(duration equal to the trial response time), and 1 regressor indicating missed trials where no
response was made during the 2s response window (if any responses were missed). Each of these
previously specified regressors was convolved with a standard hemodynamic response function
(double gamma function in FSL; Smith et al., 2004) and included in the first level GLM along with
its temporal deriviative. 24 expanded head motion-related confound regressors (6 rigid body
translation and rotation parameters, square of the 6 parameters, temporal derivative of the 6
parameters, and square of the temporal derivative of the 6 parameters) were included in the model.
Additionally, outlier volumes were identified and removed by including a regressor for each outlier



volume. Outlier volumes were identified by root-mean-square intensity difference of each volume
relative to the next (DVARS in fsl motion outliers, Jenkinson et al., 2012; Smith et al., 2004)
using a boxplot threshold: 75th percentile plus 1.5 times the interquartile range).

Supplementary Results

Additional Regions of Interest. Regions of interest were defined from a meta-analysis of
neuroimaging studies examining fMRI responses to rewards and punishment (Bartra et al.,
2013). 8 additional regions were defined from this meta-analysis (Figure 3A-B in Bartra et al.,
2013 identified regions that show consistent representations of reward or punishment value): left
ventral striatum, right ventral striatum, left VMPFC, right VMPFC, left anterior insula, right
anterior insula, left pre-SMA, right pre-SMA, left amygdala, right amygdala, left posterior
cingulate, and right posterior cingulate. A time series plot of fMRI BOLD signal change
following monetary gain and loss outcomes is included above an image of each region. Statistics
(F-statistic, uncorrected p-value, partial n?) are below each image to show main effects of group
and group by time point interactions from the group (POUD, control) by time point (0-12s)
ANOVA conducted on responses to gain and loss in each region (age and sex were included as
covariates).
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Right anterior insula signal change following gain and loss
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Right pre-SMA signal change following gain and loss
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Left amygdala signal change following gain and loss
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Group by time interaction in responses to loss: F(7.74, 309.7) = 1.497, p = .160, 5> = 0.034
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Left posterior cingulate signal change following gain and loss
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Main effect of group in responses to loss: F(1,40) = 0.398, p = .532, n° = 0.001
Group by time interaction in responses to loss: F(6.25, 250.06) = 0.738, p = .625, 5’ = 0.016
Right posterior cingulate signal change following gain and loss
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