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Supplemental Online Materials 
Methods 
Results included in this manuscript come from preprocessing performed using fMRIPrep 1.5.8 
(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is 
based on Nipype 1.4.1 (Gorgolewski et al. (2011); Gorgolewski et al. (2018); 
RRID:SCR_002502). The anatomical and functional neuroimaging data preprocessing sections 
below are based on boilerplate text generated by fMRIPrep. 
 
Anatomical neuroimaging data preprocessing using fmriprep 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 
N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.2.0 (Avants et al. 2008, 
RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-reference 
was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow 
(from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of 
cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the 
brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith 2001). 
Volume-based spatial normalization to one standard space (MNI152NLin6Asym) was performed 
through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions 
of both T1w reference and the T1w template. The following template was selected for spatial 
normalization: FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain 
Stereotaxic Registration Model [Evans et al. (2012), RRID:SCR_002823; TemplateFlow ID: 
MNI152NLin6Asym]. 
 
Functional neuroimaging data preprocessing using fmriprep 

For each BOLD run per subject, the following preprocessing was performed. First, a reference 
volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. 
A B0-nonuniformity map (or fieldmap) was estimated based on a phase-difference map calculated 
with a dual-echo GRE (gradient-recall echo) sequence, processed with a custom workflow of 
SDCFlows inspired by the epidewarp.fsl script and further improvements in HCP Pipelines 
(Glasser et al. 2013). The fieldmap was then co-registered to the target EPI (echo-planar imaging) 
reference run and converted to a displacements field map (amenable to registration tools such as 
ANTs) with FSL’s fugue and other SDCflows tools. Based on the estimated susceptibility 
distortion, a corrected EPI (echo-planar imaging) reference was calculated for a more accurate co-
registration with the anatomical reference. The BOLD reference was then co-registered to the T1w 
reference using flirt (FSL 5.0.9, Jenkinson and Smith 2001) with the boundary-based registration 
(Greve and Fischl 2009) cost-function. Co-registration was configured with nine degrees of 
freedom to account for distortions remaining in the BOLD reference. Head-motion parameters 
with respect to the BOLD reference (transformation matrices, and six corresponding rotation and 
translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, 
Jenkinson et al. 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 
(Cox and Hyde 1997, RRID:SCR_005927). The BOLD time-series (including slice-timing 
correction when applied) were resampled onto their original, native space by applying a single, 
composite transform to correct for head-motion and susceptibility distortions. These resampled 
BOLD time-series will be referred to as preprocessed BOLD in original space, or just preprocessed 
BOLD. The BOLD time-series were resampled into standard space, generating a preprocessed 
BOLD run in [‘MNI152NLin6Asym’] space. First, a reference volume and its skull-stripped 
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version were generated using a custom methodology of fMRIPrep. Automatic removal of motion 
artifacts using independent component analysis (ICA-AROMA, Pruim et al. 2015) was performed 
on the preprocessed BOLD on MNI space time-series after removal of non-steady state volumes 
and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-
maximum). Corresponding “non-aggresively” denoised runs were produced after such smoothing. 
Additionally, the “aggressive” noise-regressors were collected and placed in the corresponding 
confounds file. Several confounding time-series were calculated based on the preprocessed BOLD: 
framewise displacement (FD), DVARS and three region-wise global signals. FD and DVARS are 
calculated for each functional run, both using their implementations in Nipype (following the 
definitions by Power et al. 2014). The three global signals are extracted within the CSF, the WM, 
and the whole-brain masks. Additionally, a set of physiological regressors were extracted to allow 
for component-based noise correction (CompCor, Behzadi et al. 2007). Principal components are 
estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine 
filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical 
(aCompCor). tCompCor components are then calculated from the top 5% variable voxels within a 
mask covering the subcortical regions. This subcortical mask is obtained by heavily eroding the 
brain mask, which ensures it does not include cortical GM regions. For aCompCor, components 
are calculated within the intersection of the aforementioned mask and the union of CSF and WM 
masks calculated in T1w space, after their projection to the native space of each functional run 
(using the inverse BOLD-to-T1w transformation). Components are also calculated separately 
within the WM and CSF masks. For each CompCor decomposition, the k components with the 
largest singular values are retained, such that the retained components’ time series are sufficient 
to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). 
The remaining components are dropped from consideration. The head-motion estimates calculated 
in the correction step were also placed within the corresponding confounds file. The confound time 
series derived from head motion estimates and global signals were expanded with the inclusion of 
temporal derivatives and quadratic terms for each (Satterthwaite et al. 2013). All resamplings can 
be performed with a single interpolation step by composing all the pertinent transformations (i.e. 
head-motion transform matrices, susceptibility distortion correction when available, and co-
registrations to anatomical and output spaces). Gridded (volumetric) resamplings were performed 
using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the 
smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface) resamplings were 
performed using mri_vol2surf (FreeSurfer). Functional data were then highpass filtered with a 
cutoff period of 100s. 
 
GLM specification 

In addition to the task events indicators described in the main text (gain, loss, and no outcome), 
the first level GLM included 1 regressor indicating onset of the response phase of each trial 
(duration equal to the trial response time), and 1 regressor indicating missed trials where no 
response was made during the 2s response window (if any responses were missed). Each of these 
previously specified regressors was convolved with a standard hemodynamic response function 
(double gamma function in FSL; Smith et al., 2004) and included in the first level GLM along with 
its temporal deriviative. 24 expanded head motion-related confound regressors (6 rigid body 
translation and rotation parameters, square of the 6 parameters, temporal derivative of the 6 
parameters, and square of the temporal derivative of the 6 parameters) were included in the model. 
Additionally, outlier volumes were identified and removed by including a regressor for each outlier 
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volume. Outlier volumes were identified by root-mean-square intensity difference of each volume 
relative to the next (DVARS in fsl_motion_outliers, Jenkinson et al., 2012; Smith et al., 2004) 
using a boxplot threshold: 75th percentile plus 1.5 times the interquartile range).  
 
Supplementary Results 
 
Additional Regions of Interest. Regions of interest were defined from a meta-analysis of 
neuroimaging studies examining fMRI responses to rewards and punishment (Bartra et al., 
2013). 8 additional regions were defined from this meta-analysis (Figure 3A-B in Bartra et al., 
2013 identified regions that show consistent representations of reward or punishment value): left 
ventral striatum, right ventral striatum, left VMPFC, right VMPFC, left anterior insula, right 
anterior insula, left pre-SMA, right pre-SMA, left amygdala, right amygdala, left posterior 
cingulate, and right posterior cingulate. A time series plot of fMRI BOLD signal change 
following monetary gain and loss outcomes is included above an image of each region. Statistics 
(F-statistic, uncorrected p-value, partial η2) are below each image to show main effects of group 
and group by time point interactions from the group (POUD, control) by time point (0-12s) 
ANOVA conducted on responses to gain and loss in each region (age and sex were included as 
covariates). 
 
Left anterior insula signal change following gain and loss 
 

 
 
Main effect of group in responses to gain: F(1,40) = 7.181, p = .011, η2 = 0.015* 
Group by time interaction in responses to gain: F(7.59, 303.43) = 1.953, p = .056, η2 = 0.043 
Main effect of group in responses to loss: F(1,40) = 0.398, p = .532,  η2 = 0.001 
Group by time interaction in responses to loss: F(6.25, 250.06) = 0.738, p = .625, η2 =  0.016 
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Right anterior insula signal change following gain and loss 
 

 
Main effect of group in responses to gain: F(1,40) = 2.284, p = .139, η2 = 0.007 
Group by time interaction in responses to gain: F(7.42, 296.75) = 1.490, p = .166, η2 =  0.032 
Main effect of group in responses to loss: F(1,40) = 0.240, p = .627, η2 = .001 
Group by time interaction in responses to loss: F(12, 480) = 1.339, p = .193, η2 =  .028 
 
 
Left pre-SMA signal change following gain and loss 
 

 
Main effect of group in responses to gain: F(1,40) = 2.284, p = .139, η2 = 0.007 
Group by time interaction in responses to gain: F(7.42, 296.75) = 1.490, p = .166, η2 =  0.032 
Main effect of group in responses to loss: F(1,40) = 0.240, p = .627, η2 = .001 
Group by time interaction in responses to loss: F(12, 480) = 1.339, p = .193, η2 =  .028 
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Right pre-SMA signal change following gain and loss 
 

 
Main effect of group in responses to gain: F(1,40) = 4.388, p = .043, η2 = 0.013* 
Group by time interaction in responses to gain: F(4.36, 174.23) = 0.637, p = .650, η2 =  0.014 
Main effect of group in responses to loss: F(1,40) = 0.030, p = .864, η2 < .001 
Group by time interaction in responses to loss: F(4.69, 187.54) = 1.325, p = .257, η2 =  .027 
 
Left amygdala signal change following gain and loss 
 

 
Main effect of group in responses to gain: F(1,40) = 0.383, p = .539, η2 = 0.001 
Group by time interaction in responses to gain: F(12, 480) = 1.415, p = .155, η2 =  0.034 
Main effect of group in responses to loss: F(1,40) = 0.580, p = .451, η2 = 0.001 
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Group by time interaction in responses to loss: F(7.74, 309.7) = 1.497, p = .160, η2 =  0.034 
 
Right amygdala signal change following gain and loss 
 

 

 
Main effect of group in responses to gain: F(1,40) = 2.582, p = .116, η2 = 0.001 
Group by time interaction in responses to gain: F(12, 480) = 1.588, p = .091, η2 =  0.034 
Main effect of group in responses to loss: F(1,40) = 6.451, p = .015, η2 = 0.010* 
Group by time interaction in responses to loss: F(7.38, 295.24) = 1.375, p = .212, η2 =  0.031 
 
 
Left posterior cingulate signal change following gain and loss 
 

 
Main effect of group in responses to gain: F(1,40) = 1.368, p = .249, η2 = 0.004 
Group by time interaction in responses to gain: F(6.41, 256.32) = 0.454, p = .853, η2 =  0.001 
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Main effect of group in responses to loss: F(1,40) = 0.398, p = .532, η2 = 0.001 
Group by time interaction in responses to loss: F(6.25, 250.06) = 0.738, p = .625, η2 =  0.016 
Right posterior cingulate signal change following gain and loss 
 

 
Main effect of group in responses to gain: F(1,40) = 1.705, p = .199, η2 = 0.005 
Group by time interaction in responses to gain: F(6.69, 267.52) = 0.628, p = .725, η2 =  0.013 
Main effect of group in responses to loss: F(1,40) = 0.046, p = .832, η2 < 0.001 
Group by time interaction in responses to loss: F(6.32, 252.67) = 0.370, p = .905, η2 =  0.008 
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