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Abstract

There is a growing body of evidence that the interaction between various microbial organisms and the human host can affect various
physical and even mental health conditions. Bidirectional communication occurs between the brain and the gut microbiome, referred
to as the brain-gut-microbiome axis. During aging, changes occur to the gut microbiome due to various events and factors such as the
mode of delivery at birth, exposure to medications (e.g., antibiotics), environmental exposures, diet, and host genetics. Connections
to the brain-gut-microbiome axis through different systems also change during aging, leading to the development of chronic diseases.
Disruption of the gut microbiome, known as dysbiosis, can lead to a reduction in beneficial bacteria and a corresponding increase in
more harmful or even pathogenic bacteria. This imbalance may predispose or contribute to the development of various health conditions
and illnesses. Targeted treatment of the gut microbiome and the brain-gut-microbiome axis may assist in the overall management of
these various ailments. The purpose of this review is to describe the changes that occur in the gut microbiome throughout life, and to
highlight the risk factors for microbial dysbiosis. We discuss the different health conditions experienced at various stages of life, and how
dysbiosis may contribute to the clinical presentation of these diseases. Modulation of the gut microbiome and the brain-gut-microbiome
axis may therefore be beneficial in the management of various ailments. This review also explores how various therapeutics may be
used to target the gut microbiome. Gut biotics and microbial metabolites such as short chain fatty acids may serve as additional forms
of treatment. Overall, the targeting of gut health may be an important strategy in the treatment of different medical conditions, with
nutritional modulation of the brain-gut-microbiome axis also representing a novel strategy.
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1. Introduction
1.1 Brain-Gut-Microbiome Axis

A variety of microorganisms are found throughout the
human body, including bacteria, viruses, fungi, archaea,
and protozoa; together, these comprise the human micro-
biome [1]. The microbiome refers to the collection of
genomes from all microorganisms present in the environ-
ment, while the microbiota usually refers to all microorgan-
isms found within a specific environment, including bacte-
ria, viruses, and fungi. The largest population and most di-
verse community of microbes in humans is found in the gas-
trointestinal (GI) tract, widely known as the gutmicrobiome
(GM). The GM is considered a virtual organ and can weigh
up to 1.5 kg, with themost common species belonging to the
phyla Firmicutes and Actinobacteria, and in particular the
genera Bacteroides and Bifidobacterium [2,3]. Throughout
life, a variety of factors and exposures can shift the micro-
bial population within the gut, which is often referred to
as microbial dysbiosis [4]. Disruptions in the GM can al-
ter the metabolites they produce, such as short-chain fatty
acids (SCFAs), and even neurotransmitters that affect the
brain through the brain-gut-microbiome (BGM) axis [5,6].

The BGM axis refers to the interaction between the
GM and the human host. This occurs through a variety of
mechanisms that can impact the brain to influence mood,
behavior, and cognitive function (Fig. 1) [7]. The BGM
axis involves bidirectional communication, via the vagus
nerve, through immune and inflammatory pathways, neu-
rotransmitters, microbial by-products, neuroendocrine sig-
naling, enteroendocrine signaling, and the stress response
pathway (hypothalamic-pituitary-adrenal [HPA] axis) [7–
11].

1.2 Direct Neural Signalling Through the Vagus Nerve
The vagus nerve interacts with the GM, allowing in-

formation to be transferred to and from the central nervous
system [12,13]. Several studies have examined the influ-
ence of bacterial populations on mood and anxiety. Cer-
tain species of bacteria, such as Lactobacillus rhamnosus
JB-1, were shown to reduce stress-induced anxiety and de-
pression in mouse studies. However, these benefits were
reduced in animals that underwent a vagotomy [14]. It has
also been reported that individuals treated for peptic ulcer
disease with a full truncal vagotomy had a decreased risk of
developing Parkinson’s disease [15], suggesting a possible
role for the vagus nerve in various neurological conditions.
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Fig. 1. Microbial dysbiosis and its influence on the brain-gut-microbiome axis. This axis forms a bidirectional communication
channel between the brain and the gastrointestinal tract through the vagus nerve. Communication can occur throughmultiple mechanisms,
including the release of microbial metabolites, short-chain fatty acids (SCFAs), peptidoglycans, lipopolysaccharides (LPS), and even
neurotransmitters. Endocrine messengers via specialized cells in the epithelial layer (enteroendocrine cells) are also utilized. During
eubiosis, there is a resting inflammatory state between the gut microbiome and the host immune system. Disruption of this state (red
arrow) can lead to dysbiosis. Factors such as stress can impact the epithelial and mucus layer, resulting in bacterial translocation into the
systemic circulation. This can lead to exposure of the immune system to bacterial products, such as LPS, causing activation of the host
immune system and systemic inflammation. Subsequently, the resulting neuroinflammation can give rise to mood and cognitive changes,
alterations to the hypothalamic-pituitary-adrenal axis, and β-amyloid deposition. These changes may contribute to the development of
mental health and neurocognitive conditions. This image was created using Microsoft PowerPoint (Microsoft 365, Microsoft, Redmond,
WA, USA). HPA, hypothalamic-pituitary-adrenal.

1.3 Interaction With Immune and Inflammatory Pathways

A resting inflammatory state is needed to maintain and
regulate bacteria populations in theGI tract. Under this con-
dition, the GM stimulates immune cells to release various
cytokines and chemokines [16], which help prevent the po-
tential spread of bacteria throughout the body. Thus, the
immune system contributes to the development of a healthy
GM [17]. The development and composition of the GM can
change throughout an individual’s life from infancy to old
age. This process may be essential for the overall function
and maturation of the host immune system [18]. At the time
of birth, the immune system is relatively immature, and its
subsequent exposure to foreign challenges causes it to de-
velop further [19]. With aging, declines in both immune
system function and healthy GM populations can predis-
pose elderly patients to oxidative and inflammatory disor-
ders, suggesting that an intricate link exists between the hu-
man immune system and the GM [18].

The immune system and GM regulate each other
through the epithelial layer of the gut, enterocytes, and Toll-
like receptors [20,21]. Various mechanisms exist through
which the GM can prevent bacterial overgrowth, pathogen
colonization, and damage/infection to the host. Gut bac-
teria are able to establish colonization resistance whereby
the commensal microbiota help to prevent potential in-
vading organisms from competing for resource availability
and niche opportunities [17]. This competition is achieved
through communication between bacterial cells that sense
population density, and subsequently adjust gene expres-
sion in a process known as quorum sensing [17,22]. These
changes produce chemical signals that result in pheno-
typic changes in the bacteria, thereby influencing adher-
ence, motility, intestinal density, and the secretion of pro-
tective compounds. Quorum sensing has also been asso-
ciated with gut hemostasis [17]. However, most studies
to date have been conducted in vitro, which has only lim-
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ited ability to fully replicate the complex, dynamic inter-
actions found within the living gut environment. In vivo
studies are necessary to investigate the multifactorial nature
of host-microbe interactions, including immune responses,
gut motility, and the diverse microbial community that are
difficult to replicate outside the body. Therefore, while in
vitro models can provide valuable insights, their findings
must be interpreted with caution until further in vivo stud-
ies confirm these mechanisms in the context of the entire
gut ecosystem.

The gut epithelial layer is also important in providing
protection from invading pathogens and infections. This
layer serves as a barrier that separates commensal bacteria
in the gut from the host via a monolayer of cells connected
through tight-junction protein complexes [17]. The gut ep-
ithelial layer, and in particular the tight-junction complexes,
can be disrupted by toxins released by certain bacteria [23].
An important component of this barrier is the mucus layer,
which acts as a form of reinforcement. Both the mucus
and epithelial layers serve as first lines of defense to protect
the host from invasion, including translocation of the com-
mensal bacteria into the systemic circulation [24]. How-
ever, prolonged periods of stress can increase inflamma-
tion and adversely impact the intestinal barrier. This leads
to bacterial translocation and an increased level of plasma
LPS, thereby activating the immune response [25]. It can
also lead to activation of the hypothalamic-pituitary-adrenal
(HPA) axis and have an impact on blood brain barrier per-
meability [10,26], resulting in a chronic neuroinflammatory
state. Several studies have reported that neuroinflammation
may play a role in various mental health and neurological
conditions, including Alzheimer’s disease, schizophrenia,
obsessive-compulsive disorder, and post-traumatic stress
disorder [27–30].

1.4 Neurotransmitters and Microbial By-Products
Bacterial populations in the GM have been found

to produce various bioactive compounds, such as bacte-
riocins, bile acids, choline, and SCFAs [16]. In particu-
lar, the production of SCFAs is important for microglial
function in the brain. SCFAs are involved in various
mental health conditions, such as anxiety, depression, and
Alzheimer’s disease [31,32]. Various gut bacteria have also
been shown to produce several different neurotransmitters,
such as gamma-amino butyric acid (GABA) (Lactobacillus
and Bifidobacterium), norepinephrine (Escherichia, Bacil-
lus, and Saccharomyces spp.), dopamine (Bacillus), acetyl-
choline (Lactobacillus), and serotonin (Escherichia, Ente-
rococcus, Candida, and Streptococcus) [11,33]. Other bac-
terial populations play a key role in the metabolism of tryp-
tophan, which is a precursor of serotonin [34]. Changes in
the levels of bacterial metabolites could serve as possible
markers for disease diagnosis and outcome [35].

1.5 Neuroendocrine and Enteroendocrine Signalling
The GM is also involved in various neuroendocrine

and enteroendocrine signaling pathways via the BGM axis.
The vagus nerve (specifically afferent fibres) communi-
cates with the central nervous system (CNS) via chemo-
sensing through gut endocrine cells [36]. Specific cells
known as enteroendocrine cells (EEC) respond to signals
from the gut bacteria, causing them to release neuropeptides
and hormones such as orexin and ghrelin, which influence
peripheral neural communication, and also act centrally to
impact behavior [16,36].

2. Changes in the Gut Microbiome Over
Time

The intrauterine environment was originally thought
to be a sterile environment. However, microbial DNA has
been found in the placenta (controversial based on current
literature) [37], amniotic fluid [38], umbilical cord [39], and
the meconium of neonates born via Cesarian section [40].
A study by Li et al. (2020) [41] examined the possibility
of a fetal intestinal microbiome. by determining if bacterial
DNA and even microbial metabolites could be detected in
the second trimester from human intestinal samples. The
study was unable to amplify bacterial DNA, however, they
were able to establish a fetal metabolomic intestinal pro-
file, with findings suggestive of bacterial and hot-derived
metabolites that are often produced in response to the mi-
crobiota [41]. The authors of this study hypothesize that
these microbial-associated metabolites originate from the
maternal microbiome and are vertically transmitted to the
fetus in order to prime the fetal immune system and prepare
the fetal GI tract for microbial encounters postnatally [41].
Moreover, the acquired microbiome may be influenced by
the birth route (vaginal delivery versus Cesarian section).
Coelho et al. (2021) [42] found that infants born via vagi-
nal delivery had a greater abundance of bacteria belong-
ing to the Bacteroides, Bifidobacteria, and Lactobacillus
genera whereas those born via Cesarian section were col-
onized with bacteria similar to those found on the maternal
skin and even within the hospital environment, which are
primarily the Staphylococcus, Streptococcus, and Clostrid-
ium species. A study by Zhou et al. (2023) [43] looked
at the use of a vaginal microbiota transfer (VMT) for new-
borns delivered via Cesarean section and found that infant
neurodevelopment was significantly higher at 6 months in
those that received the VMT compared to a placebo control
(saline). Infant neurodevelopment was assessed using the
Ages and Stages Questionnaire (ASQ-3) and at 6 months
the total score in the VMT group increased by 10.09%; sig-
nificantly higher than that in the control (Con) group (mean
difference (MD) of VMT-Con, 24.87; 95% confidence in-
terval (95% CI): 5.16–44.58; p = 0.014) [43]. It has been
overall, it has been suggested that the microbiomes of in-
fants born vaginally differ from infants born via cesarean-
section and that these disruptions can last from 6 months
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Table 1. Factors that influence the gut microbiome at different stages of life.
Stage of development Factors affecting the gut microbiome

Pediatric (prenatal, neonate, infant, child, adolescent)

•   Maternal health status
•   Maternal diet and microbiome
•   Intra-uterine environment
•   Delivery method (vaginal versus Cesarean section)
•   Gestational age at delivery
•   Type of feeding (breast or formula)
•   Exposure to animals
•   Exposure to other children (siblings, daycare, etc.)
•   Puberty

Adulthood

•   Health status
•   Diet
•   Activity level
•   Sexual activity
•   Substance use

Elderly/geriatric
•   Healthy versus frail
•   Living situation (independent, community living, supported living, etc.)
•   Polypharmacy

Throughout life

•   Host genetics
•   Geographical location
•   Diet
•   Substance use
•   Lifestyle (active versus sedentary)
•   Infections and antibiotic use
•   Stress (acute versus chronic)

[44] up to 7 years [45] and alterations can be associated
with increased risk for disease [43].

The composition of the GM changes with age, par-
ticularly during the first few years of life. A study of the
GM in 1-year-old children by Odamaki et al. (2016) [46]
found abundant bacteria from the Actinobacteria phylum,
which decreased following weaning and then approached a
more adult-like GM profile by the age of 3 years. One study
has reported that the GM continues to develop throughout
childhood and adolescence [47]. Hollister et al. (2015) [47]
found that the fecal microbiota of adolescents was similar
to that of adults, comprising predominantly Bacteroidetes
and Firmicutes. From adolescence onwards, the overall
adult GM appears to be more stable, with Firmicutes be-
ing the predominant phylum [46]. A variety of factors
can influence the overall composition of the GM [35], de-
pending on the stage of development of the individual (Ta-
ble 1). In the pediatric population, important factors are
the infant feeding method (breast versus formula), the pres-
ence of pets in the family home, and attendance at daycare.
In adolescence and adulthood, the influencing factors can
be related to the environment (e.g., air pollution), medica-
tion exposure (e.g., antibiotics), and lifestyle (e.g., dental
hygiene, alcohol intake, smoking exposure, and physical
activity level) [35]. Throughout life, the circadian clock
and the GM are important in maintaining metabolic home-
ostasis. Circadian rhythms help to regulate cell and organ

functions and synchronize physiology with external cues to
establish metabolic homeostasis. In particular, a number
of these mechanisms occur in the GI tract and are impor-
tant for nutrient transport, processing, and detoxification
[48]. It has been suggested that the circadian clock and gut
microbiota influence each other reciprocally, and that gut
dysbiosis can lead to circadian asynchrony, thus impacting
the homeostasis in either system [48]. Geographical loca-
tion also appears to have a strong influence on the varia-
tion observed in the human gut microbiota [49–51]. How-
ever, it should be highlighted that this evidence was mostly
obtained from comparisons across different countries and
continents with varying levels of urbanization and included
populations with different ancestral backgrounds [49]. In-
deed, the host genotype may play a role in determining the
population and composition of the GM [52]. The most pro-
found modulator of the composition and function of the hu-
man GM is likely to be an individual’s diet [53]. Dietary
intervention has been shown to cause rapid changes in the
GM within the first 24 hours. However, these changes tend
to be transient, and the distinct bacterial groupings of the
core microbial profile are thought to remain stable through-
out any intervention [54].

Disruptions to the GM (dysbiosis) can occur through-
out an individual’s life, with many of these microbiome
changes leading to various health conditions (Table 2, Ref.
[55–71]). Dysbiosis can influence numerous various physi-
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cal and mental health conditions through bidirectional com-
munication with the brain, enteric nervous system, vagus
nerve, and microbial metabolites via the BGM axis. These
changes can occur throughout life, contributing to chronic
inflammation and disease [72]. This review focuses on
how dysbiosis can impact a multitude of illnesses afflicting
the pediatric population through to the geriatric population.
Overall, the GM appears to be an important target in the
treatment of disease, opening the way for modulation using
biotics. Methods that promote the return of the GM to a
more eubiotic state may help to improve GM-related health
conditions.

3. Literature Search
We conducted a literature search using the electronic

databases MEDLINE (1966–November, 2024), EMBASE
and SCOPUS (1965–November, 2024), and DARE (1966–
November, 2024). Themain search itemswere gut bacteria;
gut microbiome; gut microbiota; gut dysbiosis; gut biotics;
and pediatric, adult, and geriatric medical conditions.

4. Dysbiosis in the Pediatric Population
Alterations in the GM are often referred to as gut dys-

biosis/microbial dysbiosis, leading to an imbalance in mi-
crobial populations. This imbalance can also affect the by-
products produced by microbes, such as SCFAs and neu-
rotransmitters that influence the brain through the BGM
axis. During pregnancy, dramatic changes occur in the ma-
ternal microbiota in parallel with brain development in the
fetus [73]. An increased abundance of Proteobacteria and
Actinobacteria was found in pregnant women, thus promot-
ing energy storage to support fetal growth [65]. In non-
pregnant women, this type of microbial dysbiosis would be
associated with metabolic syndrome. The GM is believed
to play an important role in brain development due to its
indirect effect on tryptophan metabolism, which serves as
a precursor for serotonin synthesis [74]. The establishment
of a healthy GM is therefore vital for fetal development and
growth into infancy. Disruption of the GM/dysbiosis has
been observed to affect various health outcomes [75].

4.1 Allergies and Asthma
There is emerging evidence that the development

of asthma and even allergies are associated with micro-
bial dysbiosis. Early-life exposure to antibiotics has been
suggested to be a risk factor for childhood asthma. A
study presented at the 2025 American Academy of Al-
lergy Asthma and Immunology/World Allergy Organiza-
tion (AAAAI/WAO) Joint Congress screened the electronic
medical records of 14,807 healthy, full-term children born
to mothers with positive Group B Streptococcus vaginal
culture between 2006 and 2018. A total of 311 children
received antibiotic treatment, which was associated with
a significantly higher risk of asthma both in a regression
model (relative risk (RR) = 1.3, 95% confidence interval

(CI): 1.04–1.6, p = 0.018) and in a propensity model (RR =
1.31, 95% CI: 1.01–1.69, p = 0.039) [76]. Children ex-
posed to antibiotics early in life also had higher rates of
short-acting beta-agonist (SABA) use and allergic rhini-
tis. The study concluded that postnatal antibiotic therapy
for maternal indication, not confounded by infant infec-
tions, was associated with an increased risk of childhood
asthma [76]. Penders et al. (2007) [55] reported that in-
fants colonized with Escherichia coli had a higher risk of
developing eczema, while those colonized with Clostrid-
ioides (previously Clostridium) difficile were more likely
to develop atopic outcomes, including eczema, recurrent
wheeze, and allergic sensitization. C. difficile was also re-
ported to lead to the development of asthma at around 6
years of age, even when the individual was colonized at
1 month of age [77]. During an infection, the beneficial
gut bacteria are replaced by pathogenic C. difficile bacte-
ria. The reduction in bacterial diversity may interfere with
the development of immunogenic tolerance, resulting in the
absence of normal immunosuppressive mechanisms by reg-
ulatory T-cells [77]. The subsequent imbalance between T-
Helper 1 and T-Helper 2 cells can lead to T-Helper 1- and T-
Helper 2-mediated inflammatory diseases, such as allergies
and asthma [77]. Antibiotic exposure, particularly during
the first year of life, can impact development of the gut mi-
crobiota, leading to an increased risk of asthma in children
[78].

4.2 Metabolic Conditions
Microbial dysbiosis has been associated with vari-

ous metabolic conditions, including obesity. This has also
been observed in children, and infants with low levels of
Bifidobacterium spp. and increased Staphylococcus au-
reus were found to be more likely to be overweight by the
age of 7 years [56]. Other studies have found that obese
children have larger SCFA-producing bacterial populations
[79], while children with a normal body-mass index (BMI)
have more Bifidobacterium spp. in their gut during their
first year of life compared with those with a higher BMI
[80].

Gut dysbiosis has also been linked to type 1 diabetes
mellitus (T1DM). In a study by Yuan et al. (2022) [81], gut
microbiota from children with T1DM were transferred into
antibiotic-treatedmice, resulting in elevated fasting glucose
and reduced insulin sensitivity in the test animals. The same
study also showed that LPS induced a pancreatic inflam-
matory response, while SCFAs and butyrate induced ex-
pression of the insulin1 and insulin2 genes [81]. Individ-
uals with type 2 diabetes mellitus (T2DM) and metabolic
syndrome (MetS) displayed significant changes in their gut
microbiota at both the genus and family levels. In partic-
ular, the relative abundance of Faecalibacterium and Os-
cillospora was higher in the MetS population, while an in-
creased abundance of Prevotella and Dorea was seen in the
T2DM group compared with controls [57]. This study also
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Table 2. Selected studies showing changes in the gut microbiome in various health conditions.
Demographic Health condition Change in the gut microbiome Study

Pediatric

Allergies and asthma Increased Clostridioides difficile Penders et al. (2007) [55]
Obesity Decreased Bifidobacterium spp. Kalliomäki et al. (2008) [56]

Increased Staphylococcus aureus
Metabolic syndrome Increased Faecalibacterium and Oscillospora Carrizales-Sánchez et al. (2023) [57]
Type 2 diabetes mellitus Increased Prevotella and Dorea Carrizales-Sánchez et al. (2023) [57]
Autism spectrum disorder Increased Bacteroidetes Finegold et al. (2010) [58]

Decreased Firmicutes
Attention deficit hyperactive disorder Decreased Faecalibacterium and Veillonellaceae Wan et al. (2020) [59]

Adult

Hypertension Increased Bacteroides Yang et al. (2015) [60]
Crohn’s disease Increased Enterobacteriaceae and Ruminococcus gnavus Hedin et al. (2014) [61]

Decreased Faecalibacterium prausnitzii, Bifdobacterium adolescentis, Dialisterinvisus, and Clostridium
Diabetes mellitus Decreased butyrate-producing bacteria and Firmicutes McLean et al. (2015) [62]
Generalized anxiety disorder Decreased SCFA-producing bacteria and Firmicutes Jiang et al. (2018) [63]

Increased Fusobacteria and Bacteroidetes
Depression Increased Actinobacteria, Proteobacteria, and Bacteroidetes Dinan and Cryan (2017) [64]

Decreased Firmicutes Chen et al. (2018) [65]
Naseribafrouei et al. (2014) [66]

Geriatric

Normal aging Decreased butyrate-producing bacteria Ghosh et al. (2022) [67]
Alzheimer’s disease Decreased Firmicutes and Bidobacterium Alkasir et al. (2017) [68]

Increased Bacteroidetes Vogt et al. (2017) [69]
Mild cognitive impairment Increased Bacteroides Saji et al. (2019) [70]
Parkinson’s disease Increased Ruminococcaceae, Bifidobacteriaceae, Christensenellaceae, and Verrucomicrobiaceae Shen et al. (2021) [71]

Decreased Prevotellaceae, Lachnospiraceae, and Faecalibacterium
SCFA, short-chain fatty acid.
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identified positive correlations between Prevotella, Dorea,
Facecalibacterium, and Lactobacillus, with hypertension,
abdominal obesity, and high glucose and triglyceride levels
[57].

4.3 Neurodevelopmental Disorders
4.3.1 Autism Spectrum Disorder

A growing number of studies have explored the po-
tential association between GM and the development of
autism spectrum disorder (ASD). A greater abundance of
Bacteroidetes and lesser amounts of Firmicutes were found
in children with autism compared with neurotypical con-
trols [58]. Another study found that children with regres-
sive (late-onset) autism had increased numbers of fecal
clostridial species and non-spore-forming anaerobes and
microaerophilic bacteria compared with control children
[82]. A study by Wan et al. (2024) [83] used various mi-
crobial markers (taxonomy and genome) to help distinguish
children with ASD from typically developing peers, with
predicted risk scores significantly correlated to symptoms
measured with the Social Responsiveness Scale-2. Ongo-
ing studies are currently needed, however, this may serve
as a potential validity of the fecal microbiome being an aid
in the diagnosing of ASD [83]. Kang et al. (2017) [84]
reported improvements in social skills and adaptive behav-
ior following fecal transplantation therapy in children with
ASD. A follow-up study of these individuals found that
they continued to show improvement in both GI and ASD
symptoms 2 years after treatment, alongwith increased bac-
terial diversity and a relative abundance of Bifidobacteria
and Prevotella [85]. The authors of this study highlight the
need for “double-blind, placebo-controlled randomized tri-
als with a larger cohort” which will be beneficial in sup-
porting the use of fecal transplantation in the treatment for
ASD. Thus, further studies are need. However, these and
similar studies are limited by the differences between the
metabolic and immune systems of mice and humans. It is
often this translational medicine/research that allows the re-
sults from these animal studies to be applied to human dis-
eases/conditions.

4.3.2 Attention Deficit Hyperactive Disorder
Several studies have investigated the association be-

tween the GM and the development of attention deficit hy-
peractive disorder (ADHD). Disruptions in the GM have
been reported in children with ADHD, with a lower abun-
dance of Faecalibacterium and Veillonellaceae, and sig-
nificantly increased levels of Enterococcus and Odoribac-
ter [59]. Faecalibacterium has been associated with anti-
inflammatory effects. A decreased abundance of these bac-
teria may therefore lead to higher levels of inflammatory
factors that contribute to ADHD [86]. Another study found
that children with ADHD had an increase in Clostridium-
like species and a decrease in butyrate-producing bacteria
compared with healthy children [87].

4.4 Gastrointestinal Disorders
4.4.1 Infantile Colic and Non-Specific Abdominal Pain

Infantile colic is often associated with prolonged peri-
ods of crying with no identifiable cause. Some of the pro-
posed causes include GI, psychological, or potentially neu-
rodevelopmental factors [88]. One recent study suggests
that gut dysbiosis may contribute to infantile colic, with an
increased population of Proteobacteria and a reduction in
Lactobacillus and Bifidobacterium [89].

Abdominal pain is a frequent complaint in children. In
many cases a specific cause cannot be identified, and it may
be associated with conditions such as irritable bowel syn-
drome (IBS). Rigsbee et al. (2012) [90] found that children
diagnosed with IBS had a greater abundance of Prevotella,
Lactobacillus, Veillonella, and Parasporo, and a reduced
number of Verrucomicrobium and Bifidobacterium. Chil-
dren may also experience episodes of constipation in asso-
ciation with the abdominal pain, with a proportion being
functional with no etiology identified. The GM has been
investigated as a potential contributing factor, with a cross-
sectional pilot study conducted on children with obesity
and suffering from constipation. This found a lower abun-
dance of Prevotella and an increased number of butyrate-
producing bacteria (Roseburia, Coprococcus, and Faecal-
ibacterium) in such individuals compared with controls
[91]. The authors speculated that the observed changes in
the GM may be related to a diet lower in fiber in these chil-
dren.

4.4.2 Necrotizing Enterocolitis
Necrotizing enterocolitis (NE) is a condition in which

inflammation of the intestine can lead to bacterial translo-
cation, resulting in cellular damage, death, and necrosis of
the colon and intestine. It has been suggested that microbial
dysbiosis in the preterm neonate may be associated with a
higher risk of NE, as well as to complications from this con-
dition [92]. In particular, lowmicrobial diversity may allow
the overgrowth of pathogenic bacteria, which is a major risk
factor for the development of NE [93]. An increased abun-
dance of Citrobacter koseri and/or Klebseilla pneumonia,
along with reduced diversity in preterm infants, has also
been associated with NE [94]. In addition, a lower abun-
dance of Lactobacillus and an altered microbial-network
structure were observed during the first few days of life
[94]. Oral administration of probiotics was found to sig-
nificantly reduce the incidence of NE [95].

5. Dysbiosis in the Adult Population
A variety of factors can impact the GM and lead to

potential dysbiosis during adulthood (Table 1). These may
be related to lifestyle factors, such as activity level, stress,
medication, and diet. However, even substance use and
sexual activity can affect the microbial composition [35].
Cigarette smoking can disrupt both the oral and intestinal
GM, but both of these improve following cessation [96,97].
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Chronic alcohol consumption can lead to a reduction in
Clostridia, Bacilli, and Bacteroidetes, and an increase in
Gammaproteobacteria [98]. It can also impact intestinal
mucosal integrity and the BGM axis, leading to mental
health conditions such as depression, anxiety, and cravings
[98,99].

Adults often experience disruptions in the amount and
quality of sleep, and prolonged sleep disturbance can im-
pact the GM [100]. Improvements in sleep efficiency, to-
tal sleep time, and good sleep hygiene have been posi-
tively correlated with total microbiome diversity, particu-
larly with Bacteroidetes and Firmicutes [100]. With re-
gard to physical activity, individuals with a more seden-
tary lifestyle were found to have less microbial diversity
and more pathogenic bacteria, such as E. coli, whereas
individuals with a more active lifestyle had more SCFA-
producing bacteria [101]. Stress can also impact the GM.
Prolonged stress leads to activation of the HPA axis, leading
to the release of various hormones and increased inflamma-
tion, thereby affecting gut permeability [102]. Dysbiosis
can therefore affect a variety of health conditions in adults
through alterations of the GM caused by various lifestyle
factors.

5.1 Cardiovascular Disease

Several studies have examined the role of the GM
in relation to cardiovascular disease [103]. Research has
shown the presence of bacterial DNA in atherosclerotic
plaques [104], with a possible contribution to the develop-
ment of cardiovascular disease. GM dysbiosis can reduce
the number of butyrate-producing bacteria, thus increasing
intestinal permeability and allowing bacterial translocation
and increased LPS in the bloodstream [105]. This in turn
leads to the activation of various inflammatory pathways
that also play a role in the development of atherosclero-
sis. The oral microbiota observed in periodontal disease
has been found to play a role in cardiovascular disease
[106,107]. There is current research investigating the asso-
ciation between the GM and hear failure. Bacterial translo-
cation from the gut into the bloodstream can increase the
level of endotoxins in the blood, which has been associ-
ated with heart failure [108]. Certain bacterial metabolites
can also influence heart health. Various cardiac conditions
have been associated with altered bacterial populations that
generate increased levels of trimethylamine, which can be
oxidized in the gut to increase the level of trimethylamine-
N-oxide (TMAO) [35].

5.2 Hypertension

The GM has also been linked to hypertension, with a
greater abundance of Bacteroides found in hypertensive in-
dividuals [60]. Hypertension may also affect the GM, lead-
ing to dysbiosis. Elevated blood pressure can increase in-
testinal permeability, with a reduction of SCFA-producing
bacteria and increased generation of hydrogen sulfide and

LPS [109]. Overall, the available evidence indicates that
dysbiosis is closely related to the occurrence and develop-
ment of hypertension.

5.3 Gastrointestinal Conditions
Microbial imbalance has often been studied in vari-

ous GI diseases, in particular inflammatory bowel disease
(IBD). A study that examined Crohn’s disease amongst
siblings found an increased abundance of the Enterobac-
teriaceae family and Ruminococcus gnavus, and a de-
creased abundance of Faecalibacterium prausnitzii, Bifi-
dobacterium adolescentis, Dialisterinvisus, and Clostrid-
ium cluster XIVa [61]. Individuals with Crohn’s disease,
ulcerative colitis, and ischemic colitis have reduced Fae-
calibacterium prausnitzii and Prevotella sp. populations,
and increased Enterococcus faecium, Enterococcus fae-
calis, and Escherichia coli [110]. Individuals with Crohn’s
disease have altered gut microbiota, along with increased
mucin breakdown and epithelial permeability [111]. Break-
down of the mucosal membrane and increased permeability
are likely to disrupt one of the first lines of defense of the
human host and allow the escape of luminal bacteria, sug-
gesting that this may be a prelude to the development of
Crohn’s disease [103,111]. Specific bacterial populations
are thought to play a key role in the pathogenesis of Crohn’s
disease, with a reduced number of butyrate-producing bac-
teria often being observed. The resulting decrease in bu-
tyrate level, which is an energy source for epithelial cells,
may contribute to degradation of the intestinal epithelial
layer [61]. An increased abundance of sulfate-reducing
bacteria has also been found in patients with IBD. These
metabolize sulfate into hydrogen sulfate, which can affect
butyrate consumption and phagocytosis by immune cells,
and also kill bacteria, leading to further dysbiosis [112].

5.4 Obesity and Metabolic Conditions
Considerable research has explored the role of the GM

in the development and progression of obesity in humans.
A specific pattern of microbiota has been observed in obese
individuals, typically accompanied by reduced diversity. A
reduction in Bacteroidetes and an increase in Firmicutes has
been associated with changes in weight and fat distribution,
with obese individuals having an abnormally higher ratio of
these bacteria [113]. Restoration of the microbial balance,
particularly an increase in Bacteroidetes, has been corre-
lated with weight loss in obese individuals. Although the
Firmicutes/Bacteroidetes ratio is often cited as a hallmark
of obesity, contradictory results have been reported in the
literature [114]. These discrepancies may be the result of
interpretative bias arising from methodological differences
in sample processing and DNA sequence analysis, the gen-
erally poor characterization of recruited subjects, and espe-
cially the lack of consideration of lifestyle-associated fac-
tors known to affect microbiota composition and/or diver-
sity [114]. While some studies have found that gut micro-
biota may contribute to the development of obesity, the ev-
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idence suggesting an association between obesity and alter-
ation of the Firmicutes/Bacteroidetes ratio is not convincing
[114].

Changes in the gut microbial populations can also
be observed in subjects with diabetes mellitus (DM). Re-
ductions in microbial diversity, butyrate-producing bacte-
ria, and Firmicutes have been observed in both insulin-
dependent and non-insulin dependent diabetes, together
with increased intestinal permeability in both mice [115]
and human studies [116]. Adults with insulin-dependent
DM were found to have more abundant Bacteroidetes and
Clostridium, and reduced Bifidobacteria, Lactobacillus,
and Prevotella. Non-insulin dependent DM adults with-
out obesity displayed lower levels of Clostridium and Bac-
teroidetes, and increased Lactobacillus [62].

5.5 Cancer

A growing body of evidence suggests that infections,
particularly viruses, may play a role in about 20% of all
cancers. As one of the most common infectious agents,
bacteria are considered an emerging factor for the de-
velopment of malignant cells [117]. The GM may con-
tribute to the development of certain cancers, such as col-
orectal cancer (CRC), through various mechanisms includ-
ing immune modulation and activation of cell prolifera-
tion pathways [118–120]. Microbial infections can affect
the transformation of host cells and promote the develop-
ment of malignant features. This can occur through the
production of carcinogenic metabolites that participate in
the inflammation response, leading to disruption of cell
metabolism and genomic or epigenetic changes [117]. Dys-
biosis can reduce protective bacteria and increase the abun-
dance of pathogenic and cancer-promoting bacteria (Strep-
tococcus bovis, Sulfidogenic bacteria, Fusobacterium nu-
cleatum, Bacteroides fragilis, Clostridium septicum, Es-
cherichia coli, Helicobacter pylori, Enterococcus faecalis)
and viruses (human papilloma virus, John Cunningham
virus, and Epstein Barr virus) [35,120]. Adults with CRC
show a decrease in butyrate-producing bacteria, with in-
creased levels of Firmicutes, Bacteroidetes, Enterobacte-
riaceae, and Fusobacteria [121]. Two bacterial species,
Akkermansia muciniphila and Fusobacterium nucleatum,
are often increased in CRC biopsy samples. Fusobacterium
may be an opportunistic pathogen at immune-compromised
sites. Recent studies have examined the use of F. nuclea-
tum as a biomarker in the detection for GI malignancies.
A Meta-analysis by Huangfu et al. (2021) [122] deter-
mined that elevated levels of F. nucleatum in tumor tis-
sue were strongly associated with lower overall survival,
disease-free survival, and cancer-specific survival in CRC
patients. Thus, the detection and determination of the over-
all abundance of F. nucleatum in various patient samples
(stool, saliva) may aid in the detection and diagnosis of cer-
tain GI malignances and potential help prognosis monitor-
ing (Yu et al. 2024) [123].

5.6 Multiple Sclerosis

There is evidence that disruption in the GM may play
a role in certain inflammatory-mediated diseases. Multiple
sclerosis (MS) is a chronic inflammatory neurodegenera-
tive conditionwith a strong autoimmune component. A sys-
tematic review by Ordoñez-Rodriguez et al. (2023) [124]
found that adults with MS had an altered GM compared
with controls. This included decreases in the abundance of
Firmicutes, Lachnospiraceae, Bifidobacterium, Roseburia,
Coprococcus, Butyricicoccus, Lachnospira, Dorea, Fae-
calibacterium, and Prevotella; increases in Bacteroidetes,
Akkermansia, Blautia, and Ruminocococcus; and a reduc-
tion in the amount of SCFAs, particularly butyrate produc-
ing bacteria [124]. It was hypothesized that such alterations
in theGMmay lead to the chronic inflammation seen inMS.

5.7 Mental Health Conditions

There is growing evidence for involvement of the GM
and BGM axis in various mental health conditions, such
as anxiety, depression, bipolar disorder, and schizophre-
nia [6]. Putative associations between the microbiota and
psychiatric disorders are multifaceted and involve complex
mechanisms, including the regulation of neurotransmitters,
modulation of the immune system, influence on the stress
response, and production of microbial metabolites that af-
fect brain function. Neuroimaging is not commonly used
in studies examining the effects of probiotics on mental
health due to the complex and indirect interaction of the
BGM axis. Probiotics primarily affect the gut by influenc-
ing microbiota composition, immune function, and gut bar-
rier integrity. These changes do not always result in mea-
surable brain activity detectable by neuroimaging, although
some studies have used neuroimaging to evaluate the ef-
fects of probiotics. A systematic review by Crocetta et al.
(2024) [125] of task-based functional magnetic resonance
imaging (fMRI) studies in healthy individuals revealed that
probiotics can modulate brain activity related to emotional
regulation and cognitive processing. Moreover, task-based
fMRI studies in clinical populations showed that probiotics
could normalize brain function in patients with major de-
pressive disorder and IBS [125].

5.7.1 Depression, Anxiety, and Obsessive-Compulsive
Disorder

Compared with healthy controls, adults with major
depressive disorder were found to have increased popula-
tions of Actinobacteria, Proteobacteria, and Bacteroidetes,
but decreased levels of Firmicutes [64–66]. Changes in the
GM may also play a role in depression through the BGM
axis, and hence strategies that normalize the microbial bal-
ance using probiotics may help with treatment [126,127].
Individuals with generalized anxiety disorder were found
to have decreased levels of SCFA-producing bacteria, de-
creased Firmicutes, and increased Fusobacteria and Bac-
teroidetes [63]. Alterations in microbial populations can
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affect the concentrations of various metabolites, such as
phenylalanine, tyrosine, and tryptophan, which are impor-
tant components of serotonin metabolism and BGM axis
signaling [128,129]. Studies on patients with obsessive-
compulsive disorder (OCD) have found that microbial dys-
biosis influences the BGM axis through changes to neu-
rotransmitters [30,130]. There is also emerging evidence
that neuroinflammation may play a role in conditions such
as OCD, which may be the result of bacterial translocation
causing the activation of systemic immune and inflamma-
tory processes [30].

5.7.2 Bipolar Disorder and Schizophrenia
In addition to depression and anxiety disorders, the

BGMaxis andmicrobial dysbiosis may be involved in bipo-
lar disorder and schizophrenia. The GM could play a role in
the chronic inflammation that is often seen in patients with
bipolar disorder [131]. These patients showed decreased
Faecalibacterium populations and increased Flavonifrac-
tor compared with healthy controls [132,133]. Both treated
and nontreated schizophrenia patients show altered gut mi-
crobiota, with the abundance of certain bacterial phyla such
asVeillonellaceae and Lachnospiraceae being related to dis-
ease severity [134]. Another study showed that patients pre-
sentingwith a first episode of psychosis had altered levels of
Lactobacillaceae compared with the healthy controls [135].

5.7.3 Personality Traits
There is some recent evidence to suggest that the

GM and BGM axis may affect personality. Kim et al.
(2018) [136] found that microbiota diversity is related with
certain personality traits. Individuals with greater neu-
roticism or low conscientiousness showed a high abun-
dance of Gammaproteobacteria and Proteobacteria, respec-
tively [136]. Individuals that exhibited more conscien-
tiousness were also found to have an increased abundance
of some universal butyrate-producing bacteria, including
Lachnospiraceae [136].

6. Dysbiosis in the Geriatric (Older Adult)
Population

As with pediatric (younger) and adult populations,
multiple factors can affect the GM in elderly patients, lead-
ing to dysbiosis and alterations to the BGM axis (Table 1).
While many of these factors can occur together, it should
be noted that polypharmacy, poorer living conditions, frail
health, and aging itself can contribute to dysbiosis. Med-
ication with antibiotics have the greatest impact on the
GM, although drugs such as proton pump inhibitors, antide-
pressants, antipsychotics, Non-steroidal Anti-inflammatory
Drugs (NSAIDs), and opioids can also cause dysbiosis [35].
Somemedications, such asmetformin and statins, may have
a positive impact on the GM. Metformin promotes SCFA-
producing bacterial growth [137], while improvement of
the GM by statins may enhance the therapeutic effects of

these medications [138]. In brief, changes to the human
GM can affect the development and/or progression of cer-
tain physical and neuropsychiatric conditions.

6.1 Healthy Aging
A variety of changes occur in the GI tract during the

normal aging process, including decreased colonic motil-
ity, decreased absorption of certain vitamins, and bacterial
overgrowth. Healthy older individuals show a reduction
in the more prominent butyrate-producing bacteria, such
as Faecalibacterium, Roseburia, Coprococcus, and Eubac-
terium spp. (especially E. rectale) [67]. Butyrate may have
important roles during healthy aging, such as preventing
inflammation, improving intestinal barrier function, serv-
ing as an energy source for colonocytes, and suppress-
ing endocannabinoid-regulated adipogenesis, insulin resis-
tance, cognitive decline, and cancer onset [67].

6.2 Neurocognitive Disorders
Studies of older adults with neurocognitive disorders

such as Alzheimer’s disease (AD) have found a decreased
abundance of Firmicutes and Bifidobacterium, along with
increased Bacteroidetes. Such changes may increase the
risk of dementia [68,69]. A higher abundance of Bac-
teroidetes was also found in patients with mild cognitive
impairment (MCI) [70]. Gut dysbiosis has been hypothe-
sized to play a role in amyloid pathogenesis, which forms
part of the disease process observed in AD. LPS and E. coli
have been found in amyloid plaques from brain tissue sam-
ples of patients with AD [139]. The BGM axis could there-
fore be involved in the development of AD. Increased gut-
permeability allows bacterial LPS translocation, thus stim-
ulating the systemic immune system and leading to neu-
roinflammation [69]. A chronic neuroinflammatory state
may lead to deposition of β-amyloid in the brain. More-
over, microbial dysbiosis can reduce the bacterial popu-
lation that produces SCFAs. These are important for mi-
croglial phagocytic function, resulting in defective amyloid
clearance [140,141].

Cognitive decline is often associated with behavioral
and psychological symptoms of dementia (BPSD), such
as perceptual disturbances, as well as affective and im-
pulse control behaviors. Disruptions in eating are common,
which can then influence the GM and the BGM axis and
potentially contribute to BPSD [142,143].

6.3 Parkinson’s Disease
Parkinson’s disease (PD) is the second most common

neurodegenerative disease affecting older adults. It is often
characterized by motor dysfunction due to the degeneration
of dopamine-producing neurons in the brain, primarily in
the substantia nigra. Evidence from animal studies suggests
that the BGMaxismay be involved in the onset and progres-
sion of PD through an increase in intestinal permeability,
aggravation of neuroinflammation, abnormal α-synuclein
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fibrils, increased oxidative stress, and a decrease in neu-
rotransmitter production, particularly dopamine [144,145].
Disruption of the bacterial populations in PD patients have
been reported, with a higher α-diversity [146]. Signif-
icant decreases were observed in Prevotellaceae, Lach-
nospiraceae, and Faecalibacterium in PD patients com-
pared with individuals without PD, whereas Ruminococ-
caceae, Bifidobacteriaceae, Christensenellaceae, and Ver-
rucomicrobiaceae were increased [71]. A meta-analysis re-
ported that PD patients show an increased abundance of
Megasphaera and Akkermansia, and a reduced abundance
of Roseburia [147]. Among the studies that examined the
GM in PD patients, the most consistently reported change
was a reduction in Prevotellaceae [145]. It was speculated
that decreased levels of Prevotellaceae can lead to the de-
velopment of α-synucleinopathies due to reduced produc-
tion of SCFAs. Lower levels of SCFAs have been found
in patients with PD compared with healthy controls [148].
The decreased SCFA concentration can affect intracellular
and extracellular protein clearance mechanisms associated
with SCFA-dependent gene expression [149]. Furthermore,
reductions in SCFAs such as butyrate can affect the expres-
sion of occludin, a key tight junction protein. This leads to
intestinal permeability and endotoxin exposure, resulting in
overexpression and aggregation of α-synuclein, which is a
major component of PD pathogenesis [145]. In addition to
butyrate, other SCFAs such as acetate and propionate are
also involved in BGM axis communication and can mod-
ulate α-synuclein aggregation [148]. These findings high-
light how the BGM axis may be an important component in
the development and progression of PD.

6.4 Stroke

Several studies have indicated that microbial dysbio-
sis following an ischemic stroke may affect patient out-
come. Sun et al. (2022) [150] investigated the GM in
patients following a stroke. Patients that had a bad out-
come showed a reduced α-diversity, with an increased
abundance of more pathogenic bacteria such as Enterococ-
caceae and Enterococcus, along with a decrease in SCFA-
producing bacteria such as Bacteroidaceae, Ruminococ-
caceae, and Faecalibacterium [150]. In clinical trials that
examined the GM in stroke patients, alterations were found
in microbial populations, particularly in the Firmicutes-to-
Bacteroidetes ratio. An increased abundance of Megas-
phaera, Enterobacter, and Desulfovibrio was observed, to-
gether with a decreased abundance of Blautia, Roseburia,
Anaerostipes, Bacteroides, Lachnospiraceae, and Faecal-
ibacterium (SCFA-producing bacteria) [151]. Another clin-
ical study that investigated the GM of patients after cere-
bral stroke showed a reduced abundance of Roseburia,
Bacteroides, and Faecalibacterium prausnitzii, and an in-
creased abundance of Enterobacteriaceae, Bifidobacteri-
aceae, andClostridium difficile compared with healthy sub-
jects, intensive care patients, and patients with active ulcer-

ative colitis or IBS [152]. A decrease in commensal bacte-
ria and an increase in opportunistic pathogenic bacteria can
contribute to a pro-inflammatory state and lead to increased
levels of TMAOwith reduced SCFAs, thereby contributing
to inflammation and atherosclerosis, and increasing the risk
of stroke [153,154].

7. Management of Microbial Dysbiosis
Throughout life, the GM encounters a myriad of in-

sults and influences that can disrupt bacterial populations,
which in turn disturbs the BGM axis. This imbalance can
affect the development and progression of various physi-
cal and mental health conditions. Bringing the GM to a
more eubiotic state may therefore be a potential therapeutic
option. For many of these illnesses, conventional therapy
does not always lead to a complete resolution of symptoms,
or fully address patient management. Methods that tackle
dysbiosis and the BGM axis could thus be considered as po-
tential adjuvant therapy, including dietary modification, gut
biotics, or even fecal microbiome transplantation (FMT).

7.1 Diet
Modification of an individual’s diet has one of the

largest impacts on bacterial populations in the human gut.
Certain food products and specific diets have been studied
with the aim of restoring bacterial imbalance and managing
dysbiosis.

7.1.1 Dietary Modification in Pediatric Populations
Fermented foods have been shown to improve the GM

and provide a wide variety of benefits to human health. In
a study of 73,522 pregnant Japanese women, Tanaka et al.
(2024) [155] correlated the consumption of fermented foods
(miso soup, fermented soybeans, yogurt, and cheese) with
the neurodevelopment of their child during the first year of
life. Maternal intake of miso soup and fermented soybeans
was associated with a reduced risk of the infant having de-
lays in communication skills, while the intake of fermented
soybeans and cheese was associated with a reduced risk of
delays in developing fine motor skills, and the intake of yo-
gurt was associated with a reduced risk of delays in devel-
oping personal-social skills [155]. A systematic review and
meta-analysis examined the role of fermented foods in the
treatment of diarrheal diseases in children younger than 5
years. Based on seven randomized-controlled trials (RCTs),
the consumption of fermented foods was found to signifi-
cantly reduce the mean duration of diarrhea by –0.61 days
(95% CI, –1.04, –0.18) and the length of hospitalization
by –0.35 days (95% CI, –0.69, –0.02) compared with non-
treated controls, but not the mean daily frequency of bowel
movements (–2.00; 95% CI, –7.03, 3.04) [156]. Another
study used a porcine model to compare formula-fed versus
sow-fed piglets and the impacts on gut health and the GM.
Sow-fed groups showed five-fold higher levels of Lacto-
bacillaceae spp. and three-fold higher levels of Clostridia
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spp. compared with formula-fed piglets, while the latter
had 5-fold higher levels of Enterobacteriaceae app. [157].
Formula-fed piglets also showed alterations in GI morphol-
ogy, microbial abundance, and expression of the intesti-
nal barrier protein VE-cadherin and the anti-inflammatory
molecule IL-10 [157]. A human study compared fermented
formula with cow milk-based formula (control) and ex-
clusively breast-fed infants [158]. The study examined
whether these diets affect the concentration of secretory
immune-globulin A (SIgA), which contributes to the de-
velopment of intestinal immunity. The level of SIgA was
found to be significantly higher in the fermented formula-
fed infants (p = 0.03), with similar amounts to the breast-
fed infants [158]. A notable increase in Bifidobacterium
was observed over time in all three groups, with the mi-
crobiota composition and metabolic activity of the gut in
the fermented formula-fed group being more similar to the
exclusively breastfed group [158]. Current research aims
to develop guidelines concerning the use and exposure to
fermented foods in the diets of children [159]. Supplemen-
tation with some fermented foods, such as fruit kefir, fer-
mented sweet potatoes, apple sauce, and sauerkraut may
help to broaden palates and perhaps even reduce the de-
sire for “sweets” [159]. There is also some evidence that
consumption of fermented foods, mushroom biomass sup-
plements, and probiotics may help with upset stomach and
digestive problems (leaky gut) in children with neurobe-
havioral disorders such as ADHD, Asperger’s, and process-
ing disorder. This could even help to improve brain func-
tion, psychosocial behavior, cognition, and learning ability
in such cases [159].

7.1.2 Dietary Changes in Adults and Older Adults

The consumption of fermented food in the adult and
elderly population has been found to promote the displace-
ment of pathogenic bacteria within the GM, leading to alter-
ations in the digestibility and tolerance of certain foods, as
well as benefits from metabolites related to immune func-
tion [160]. Another study suggested that eating more plant-
based, fiber-rich food can reduce opportunistic and inflam-
matory bacteria, and induce a shift to more beneficial bacte-
ria and metabolites [161]. Certain plant-based foods, such
as beetroot juice, can affect the GM by increasing the pop-
ulation of Akkermansia muciniphila and decreasing Bac-
teroides fragilis, which is thought to have a positive im-
pact on reducing the risk of diabetes and obesity in human
subjects [162]. The consumption of orange juice has also
shown positive impacts on the GM by promoting more pro-
biotic strains, such as Bacteroides xylanisolvens, and reduc-
ing the number of Clostridia spp. strains [163]. Certain
whole fruits, such as kiwis, can influence the GM and im-
prove GI function, including relieving constipation [164].
A more vegan diet that is rich in fiber can help to promote
the growth of SCFA-producing bacteria, which in turn in-
hibits the growth of more pathogenic bacteria [165].

Individuals may consume various types of diets, each
of which can affect the GM. Typically, the Western diet is
often compared with the Mediterranean diet in relation to
health benefits. TheWestern diet consists of processed food
with a higher abundance of salt, saturated/trans fats and sug-
ars, and less fiber-rich foods, whole grains, and fish. This
can have a negative impact on the GM, often promoting the
growth of endotoxin-producing bacteria [166]. The West-
ern diet can also affect the intestinal epithelial barrier to
increase permeability, allowing harmful bacterial compo-
nents such as LPS to enter the bloodstream and leading to
systemic inflammation, which contributes to various health
conditions [166].

In comparison, the Mediterranean diet has often been
associated with health benefits, including a positive effect
on the GM. This diet contains reduced amounts of pro-
cessed foods and more fruit, vegetables, fish, nuts, and
seeds. Meat is also a component, but often at a reduced fre-
quency. The Mediterranean diet also includes more fiber,
omega-3 fatty acids, and low-glycemic index foods, and
has been associated with reduced risks of cardiovascular
disease, diabetes, obesity, cancer, and inflammatory com-
plications [167,168], as well as improvement of the GM.
The Mediterranean diet promotes microbial diversity, par-
ticularly an increased abundance of Bacteroides,Prevotella,
Lactobacillus, Faecalibacterium, Clostridium, and Oscil-
lospira, while decreasing Firmicutes [169]. Dietary modi-
fications and adjustments in the intake of specific foods can
therefore help to restore a healthy balance in the GM and
improve overall gut health. More direct bacterial modifica-
tion can also be considered, such as the use of gut biotics.

7.1.3 Gut Biotics: Nutritional Modulation of the Gut Brain
Axis

Nutritional modulation of the BGM axis and the gut-
organ axis can be achieved using gut biotics [170]. This
term is used to describe food or food constituents that af-
fect the GM, or the direct administration of live microbes
for the purpose of therapeutic benefit, including probiotics,
prebiotics, and synbiotics [171]. Probiotics are live mi-
croorganisms, typically bacteria, that help to maintain or
restore the gut microbiota. In comparison, prebiotics are
non-digestible fibers that help to promote the growth of ben-
eficial gut microbes, while synbiotics are compounds that
contain both prebiotics and probiotics to help improve gut
health. Postbiotics are metabolic by-products of the gut mi-
crobiota, and in particular the crude extracts from these mi-
crobes that can elicit a biological response [171]. The term
“gut biotics” was coined in the literature by Alagiakrishnan
and Halverson in 2021 [171] and refers to food constituents
that can affect gut microbes, or to live microbial adminis-
tration or their products for therapeutic purposes. The term
“psychobiotics” has often been used to described probiotics
and prebiotics that can benefit mental health. However,
other literature also refers to psychotropics and antibiotics
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as part of the psychobiotic class [171]. Currently there is
no consensus regarding the definition of psychobiotics, and
therefore gut biotics is a more encompassing term when re-
ferring to a product that directly influences the GM to pro-
mote beneficial effects within the GI tract and throughout
the host [171]. Probiotics ferment prebiotic dietary fiber
and help to colonize gut probiotic bacteria. They also gen-
erate fermented by-products called proteobiotics that affect
the growth of enteropathogens by producing inhibitory bac-
teriocins and lowering the pH. Following completion of
their life cycle, the dead remnants of probiotics, such as cell
wall glycoproteins, are known as postbiotics. These inhibit
the adhesion and biofilm formation of pathogens on the gut
epithelium. In addition to the beneficial effects seen in the
gut, systemic responses are also observed at different gut-
organ axes [172,173].

7.1.4 Probiotics

Probiotics are a commonly used gut biotic consist-
ing of a non-pathogenic microorganism, typically bacterial,
that is designed to improve human health. The most com-
monly used probiotic bacteria belong to the Lactobacillus
and Bifidobacterium genera [174]. Probiotics are used in
various individuals and age groups to help treat and man-
age a number of different health conditions.

Yang et al. (2020) [175] examined the role of oral pro-
biotics in pregnant women and in particular their impact on
the vaginal microbiota, as vaginal dysbiosis is associated
with spontaneous preterm birth. They found a flux in the
vaginal microbiome, regardless of the treatment arm (pro-
biotic versus placebo), with no adverse effects noted in the
women receiving probiotic treatment. The use of probiotics
in pregnancy has been suggested to help reduce the risk of
developing gestational diabetes, metabolic syndrome, and
preeclampsia [176]. Probiotics in the pediatric population
have often been used for the treatment of infectious gas-
troenteritis, the prevention of antibiotic-associated diarrhea,
and for Clostridioides difficile-associated and nosocomial
diarrhea [177]. In children and adolescents considered to be
overweight or obese, treatment with a probiotic was found
to improve BMI, adiposity, metabolic parameters, inflam-
matory markers, fatty liver, transaminase levels, and glu-
cose metabolism [178]. The Probiotics in Pediatric Asthma
Management (PROPAM) study reported two strains of pro-
biotics, Ligilactobacillus Salivarius LS01 (DSM 22775)
and Bifidobacterium Breve B632 (DSM 24706), that sig-
nificantly improved asthma exacerbations and wheezing
episodes in children [179].

Multiple studies have examined the role of probiotics
in relation to weight gain and obesity in adults. A sys-
tematic review by Torres et al. (2024) [180] found evi-
dence that probiotic treatment, typically with a combina-
tion of strains from the Bifidobacterium and Lactobacil-
lus genera, can help to reduce excess weight or obesity.
Other studies have found that probiotic treatment can al-

leviate functional GI symptoms [181], as well as improve
various cognitive and psychiatric symptoms [171]. Den
et al. (2020) [182] performed a meta-analysis involving
297 subjects with cognitive decline (either MCI or AD)
and found a significant improvement in cognition (Stan-
dard mean difference (SMD): 0.37; 95% CI: 0.14–0.61; p
= 0.02) in subjects receiving a probiotic compared with the
control group. Patients with a history of major depressive
disorder showed improvement in mood symptoms after re-
ceiving a probiotic mixture of Bifidobacterium longum and
Lactobacillus helveticus [183]. Moreover, healthy individ-
uals who received this probiotic mixture showed a reduc-
tion in obsessive-compulsive sub-scores based on the Hop-
kins symptom checklist [184]. Hence, despite the limita-
tions, there is some evidence of benefit from probiotics in
the treatment of various health conditions. However, not
all studies have consistently used the same probiotic strain,
which could account for some variation in results. Often
there is also strain-specific variability, even amongst mem-
bers of the same genus. For example, Lactobacillus rham-
nosusGG (LGG) and Lactobacillus casei are both effective
probiotics but have distinct strain-specific benefits. LGG
is especially well known for its strong immune-modulating
effects, ability to prevent diarrhea, and potential benefits in
managing stress and mental health, including anxiety and
depression. On the other hand, L. casei is beneficial for di-
gestive health, improving gut motility, reducing inflamma-
tion in GI disorders such as IBS and IBD, and enhancing
overall immune function. While both strains support gut
health and immunity, their unique mechanisms make them
suited for different therapeutic applications. The mode of
probiotic delivery (e.g., capsule, tablet, powder, or fer-
mented food) can influence survival of the probiotic cul-
ture in the large intestine. Certain probiotic strains may not
colonize the gut permanently and must therefore be taken
regularly for sustained benefit. Finally, the overall safety
of probiotics needs to be considered, due to instances of
opportunistic infections occurring in immunocompromised
or critically ill individuals [171].

In summary, probiotics are useful in a number of med-
ical conditions affecting adults and pediatric subjects, in-
cluding genitourinary, skin, mental health, and gut-related
conditions. Probiotics are available as fermented foods and
commercial probiotic strains. In contrast to commercial
products, fermented foods are not strain specific. Probi-
otics generally lack adverse effects, except on rare occa-
sions when infections may occur in immunosuppressed in-
dividuals, and when antibiotic-resistance genes are trans-
ferred to other organisms in the gut [185].

7.1.4.1 Role of Probiotics in Healing of the Intestinal Mu-
cosa. Dysbiosis is involved in the development of chronic
inflammation in the intestine, leading to disruption of the
mucosal layer and increased gut permeability [186], which
is involved in the pathogenesis of a number of medical
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conditions. Gut biotics (probiotics, prebiotics, synbiotics,
and postbiotics) can help to restore leaky intestinal barrier
function. Since dysbiosis contributes to increased gut per-
meability, interventions that alter the gut microbiota and
correct dysbiosis may also restore intestinal barrier func-
tion [187] and play a role in intestinal mucosal would clo-
sure [186,188]. Administration of certain strains of probi-
otics in animals is associated with a reduction in inflamma-
tion markers [189]. Recombinant probiotics have also been
shown to promote wound healing in the intestinal lumen
[190]. Many in vitro and in vivo studies have demonstrated
the positive role of probiotics in mucosal gut homeostasis
and intestinal wound healing [187,188,191,192].

7.1.4.2 Role of Probiotics as Bio-Preservatives. Probiotic
microorganisms can be used as protective cultures in food
preservation and to extend the shelf-life of food. Bio-
preservation can occur through the production of metabolic
products or post biotics, such as bacteriocins. These foods
are broadly classified as functional foods due to their higher
functionality in maintaining good human health [193–195].

7.1.4.3 Next Generation Probiotics. Advances in engi-
neering and synthetic biology, such as sequencing, bioin-
formatics, and omics, have enabled the development of next
generation probiotics that can be used to prevent various
medical disorders [196].

Whelan et al. (2024) [197] reported that only a small
number of probiotic and prebiotic trials have provided di-
etary data. Experts from the International Scientific Associ-
ation for Probiotics and Prebiotics recommend that dietary
factors need to be considered in future probiotic and prebi-
otic research [197]. In particular, diets that include func-
tional foods are a promising area of research that should be
explored in future clinical trials.

7.2 Prebiotics and Synbiotics

Another strategy for restoration of the GM and the
BGM axis is to provide a fuel source that promotes the
growth of beneficial bacteria in the GI tract. In this re-
gard, prebiotics are designed to provide a direct benefit to
the microorganisms, thus improving human health. Cer-
tain supplements contain a combination of probiotic and
prebiotic agents, known as a synbiotics. Typically, dietary
fiber is often used as a prebiotic to promote the growth of
SCFA-producing bacteria [198]. A systematic review and
meta-analysis have evaluated the development of allergies
in pregnant women, breastfeeding mothers, and infants fol-
lowing exposure to prebiotics [199]. Although it did not
find any studies of prebiotics given to pregnant women
or breastfeeding mothers, the use of prebiotic supplemen-
tation in infants was found to reduce the risks of devel-
oping eczema (RR: 0.68, 95% CI: 0.40 to 1.15), wheez-
ing/asthma (RR, 0.37; 95% CI: 0.17 to 0.80), and food al-
lergy (RR: 0.28, 95% CI: 0.08 to 1.00) compared with con-

trols [199]. Daily administration of oligofructose-enriched
inulin for 16 weeks (8 g/day) in a pediatric population was
found to reduce weight gain and improve truncal fat dispo-
sition and body weight z-scores compared with the placebo
group [200]. The use of prebiotics in adults has been found
to alter the gut microbial profile, improve gut microbial
metabolism and function, and improve host physiology to
alleviate diabetes and obesity [201]. It has been suggested
that most prebiotics for the gut require a daily oral dose of
at least 3 g for any benefit to be appreciated [202]. For
fructo-oligosaccharide (FOS) and galacto-oligosaccharide,
the daily dietary target has been suggested to be around
5 g [202]. The dose-effect relationship is variable, and
while some doses may be beneficial, the optimal amount
for achieving metabolic improvement is still under investi-
gation, with potential differences in individual needs.

There is some evidence that the use of gut biotics (both
prebiotic and probiotic) in the pediatric population may im-
prove anxiety, stress, and cognition. However, the results
of such interventions have been inconsistent between stud-
ies [203]. A study involving 40 adult patients withmoderate
depression were given 20 mg/day of fluoxetine for 4 weeks,
then given a synbiotic (plus fluoxetine) or placebo (plus flu-
oxetine) for 6 weeks. The treatment with the synbiotic was
found to have a greated reduction in participant’s Hamil-
ton Rating Scale for depression scores (Mean ± Standard
deviation (SD) = –19.25 ± 1.71) compared to the placebo
group (Mean ± SD = –17.75 ± 2.05; p = 0.024). [204].
However, several limitations were noted with this study, in-
cluding a short follow-up period, a potentially insufficient
sample size, and limited generalizability due to participant
demographics. Additionally, the study did not fully address
potential confounding variables and further independent re-
search is needed to confirm the findings and strengthen the
evidence for synbiotics as an adjunct in the treatment of de-
pression. The use of oligofructose-enriched inulin (a pre-
biotic) has also been reported to improve cognition, with
better performance in recognition memory and both imme-
diate and delayed recall [205]. The use of prebiotics and
synbiotics may promote the growth of beneficial bacteria
and thus help to restore normal BGM axis function, which
could in turn improve many neuropsychiatric symptoms.

7.3 Fecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) is a treatment
that transfers fecal bacteria from an otherwise healthy donor
to a recipient, with the purpose of repopulating the recipi-
ent’s GI tract with beneficial bacteria. It is used most no-
tably in the treatment of recurrentClostridioides difficile in-
fections and antibiotic-associated diarrhea (AAD). The use
of FMT has also been studied in regard to treatment for obe-
sity and glycemic control. Hu et al. (2023) [206] found that
individuals treated with FMT showed significantly lower
weight (Weighted mean difference (WMD) equals –4.77,
95% CI: –7.40~–2.14), BMI (WMD equals –1.59, 95% CI:
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–2.21~–0.97), Homeostatic Model Assessment for Insulin
Resistance (HOMA-IR) score (WMD equals –0.79, 95%
CI: –1.57~–0.00), and HbA1c (WMD equals –0.65, 95%
CI: –0.75~–0.55) compared with their pretreatment data.
In animal studies, mice that received FMT from patients
with a psychiatric diagnosis, such as anxiety or depres-
sion, showed anxiety and depressive-like symptoms, along
with behavioral changes [207]. Moreover, patients that re-
ceived FMT from a healthy donor exhibited less depressive
and anxiety-like symptoms [208]. A case report of an 82-
year-old patient that received FMT for treatment of infec-
tion with C. difficile showed improved cognitive function
at 6 months post treatment, particularly in memory and the
mini-mental status exam (MMSE) [209]. The use of FMT
may therefore help to restore microbial balance and serve as
a treatment for physical conditions such as obesity and dia-
betes, as well as mental health disorders including anxiety
and depression.

7.4 Microbial Metabolites: Short-Chain Fatty Acids
(SCFAs)

Bacteria within the gut are involved in various bio-
chemical processes and produce different metabolites, of
which SCFAs are an important component of the BGMaxis.
SCFAs are generated by bacteria in the microbiota through
the anaerobic fermentation of dietary fibers. Acetate, propi-
onate, and butyrate represent more than 95% of the colonic
SCFAs, where they are found at a molar ratio of approxi-
mately 60:25:15 under healthy conditions [210,211]. SC-
FAs mediate local protective effects in the gut through reg-
ulation of intestinal mucosal immunity, intestinal motility,
and gut barrier integrity, as well as mediating communi-
cation between the gut and brain. Furthermore, SCFAs
serve as signaling molecules throughout the body to acti-
vate many types of cells.

One dietary strategy for modulating the microbiota is
the consumption of dietary fiber and prebiotics that can be
metabolized by microbes in the GI tract. Human alimentary
enzymes are unable to digest most complex carbohydrates
and plant polysaccharides, which are instead metabolized
by microbes to generate SCFAs, including acetate, propi-
onate, and butyrate [212,213].

Prebiotic fermentation in the gut often leads to the co-
production of SCFAs and gases. Excess gas production can
be a potential problem for individuals with functional gut
disorders. Both the chemistry of prebiotics and the compo-
sition of themicrobiota are relevant to gas production [214].

The benefits of SCFAs as a treatment modality have
been observed for conditions such as T2DM [215], psoria-
sis and acne [216], and epilepsy [217]. The use of SCFAs
for the treatment of multiple health conditions and diseases
is therefore a promising strategy, but more research and fur-
ther clinical trials are needed to determine the overall ther-
apeutic potential of SCFAs.

8. Conclusions
A variety of factors throughout life can impact the GM

and lead to dysbiosis. Disruption of the microbial balance
can often derail immune signaling, weaken intestinal barri-
ers, reduce the level of SCFAs, and increase immune and in-
flammatory pathways, thereby contributing to chronic sys-
temic inflammation and neuroinflammation. Hence, these
GM-related factors are likely to play a role in the develop-
ment and progression of various human health conditions.
Chronic diseases could arise due to changes in the GM and
BGM axis over the life continuum. Nutritional modulation
can restore the microbial balance and BGM axis, thus serv-
ing as a synergistic treatment with conventional therapies.
A holistic approach is possible when gut health is included
in the overall management of various health conditions.

However, further research in the form of randomized-
control trials is needed to support the use of gut biotics,
FMT, and bacterial metabolites. Moreover, there is a need
to develop guidelines for standard practice in relation to tar-
geting of the GM and the BGM axis.
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