cal Med

ini

0
[°]
c
©
&
(1]
-
0
(1))
o]
Y
0
©
c
&
-
(o]
1

Case Report

VIR Prass

Prenatal diagnosis of fetal thanatophoric dysplasia type 1
with de novo ¢.2419T > G (p. Ter807Gly) (X807G) gene
mutation in fibroblast growth factor receptor 3 (FGFR3)
showing increased nuchal translucency at the first trimester
of gestation: A case report with review of the literature
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Thanatophoric dysplasia (TD) is a rare form of lethal
skeletal dysplasia with underdevelopment of skeleton and
dwarfism. The femur is curved in subtype 1, and straight
in subtype 2 TD. Other characteristics include a narrow
chest, small ribs and hypoplastic lungs. TD is due to ac-
tivating mutations in fibroblast growth factor receptor 3
(FGFR3), which result in increased receptor activation and
alterations in the process of endochondral ossification in
all long bones. The aim of the present study was to present
the perinatal ultasonographic findings at the 1st and 2nd
trimester of a pregnancy and the underlying molecular de-
fect in a fetus with TD type 1, due to a rare mutation in the
FGFR3 gene. Ultrasonography performed at the 12w2d
week of gestation showed increased nuchal translucency
(NT). Prenatal karyotype was normal for the XX fetus. Ul-
trasonography at 17 weeks and 5 days of gestation re-
vealed narrow thorax, abdominal protrusion and a de-
creased rate of development of the femur (Femur Length,
FL < 5" percentile). Molecular genetic analysis to exclude
possible overlapping syndromes was performed and re-
vealed de novo ¢.2419T > G (p. Ter807Gly) (X807G)
gene mutation in FGFR3. Fetal autopsy confirmed the pre-
natal prediction of lethality. We conclude that a fetus with
a heterozygous ¢.2419T > G mutation in FGFR3, pre-
sented characteristic biometric parameters and ultrasono-
graphic and autopsy findings consistent with the diagnosis
of TD type 1. In addition, the combination of ultrasonog-
raphy, molecular genetic analysis and autopsy is helpful
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for the appropriate genetic counselling and perinatal man-
agement.
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1. Introduction

Thanatophoric dysplasia (TD) is the most common lethal form
of skeletal dysplasias in fetuses and the affected neonates usu-
ally die shortly after birth [1]. The term thanatophoric in Greek
means "death bearing" [2]. Maroteaux et al., (1967) described for
the first time, thanatophoric dwarfism as a definite discrete entity
and differentiated it from achondroplasia [3]. Some years later,
thanatophoric dwarfism was renamed TD at the Second Interna-
tional Conference of the Nomenclature of Skeletal Dysplasias [4].
The estimated prevalence of TD in prenatal cases is between 1
: 12,000 and 1 : 20,000 and in births between 1 : 33,000 and
1 : 50,000 [5, 6, 7, 8, 9]. TD is classified into two subtypes
based on the clinical features of the affected patients: Patients with
TD type 1 present with typical curved femurs, short limbs, nar-
row chest with short thoracic ribs, flattened vertebral bodies and
usually absence of a cloverleaf skull. Whereas, patients with TD
type 2 present with straight femurs, short limbs, a narrow chest,
taller vertebral bodies and a cloverleaf shaped skull. Both types of
TDs have additional features including macrocephaly, distinctive
facial features, redundant skin fold, brachydactyly and hypotonia
[8, 10, 11, 12, 13, 14, 15, 16, 17].
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Figure 2. Prenatal ultrasonographic image at 17w5d of gestation in a fetus with TD type 1 demonstrating a narrow chest and protrusion of

the abdomen.(A): A narrow chest and protrusion of the abdomen. (B): A protrusion of the abdomen.

Both types of TDs are inherited autosomal dominant skeletal
disorders that are caused by a finite number of mutations in the
fibroblast growth factor receptor 3 (FGFR3) gene, which is ge-
nomically located on the short arm of chromosome 4 (4p16.3) and
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consists of 19 exons and 18 introns [8, 9, 13, 18, 19, 20, 21, 22].
Mutations in the FGFR3 gene frequently occur de novo on the pa-
ternal allele during male gametogenesis due to DNA copy errors
and seems to have a paternal age effect [8, 23]. The FGFR3 pro-
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Figure 3. Prenatal ultrasonographic image of a fetus at 17w5d of gestation with TD type 1 demonstrating short and curved legs with a femoral

length measuring 1.06 cm and corresponding to 13w 1d of gestation (< 5th percentile).

tein encoded by this gene is a member of the fibroblast growth
factor receptor family. FGFR3 binds fibroblast growth factors
and serves as a major negative regulator of linear bone growth
[24, 25, 26]. The FGFR3 protein comprises three main parts: an
extracellular domain, a transmembrane segment and an intracel-
lular region. The extracellular region of FGFR3 protein includes
three immunoglobulin-like (Ig) domains, while its intracellular re-
gion is comprised of two tyrosine kinase domains [27, 28]. Ligand
binding occurs between Igll and IgIIl domains [27, 28, 29, 30].

TD cannot be accurately diagnosed and distinguished from
other skeletal dysplasias by prenatal ultrasonography alone.
Therefore, molecular genetic analysis of the FGFR3 gene is
needed [4, 8, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. It has been
found that accurate antenatal diagnosis is achieved in only about
30-50% of cases [42, 43, 44, 45]. Therefore, fetal autopsy and
postmortem radiography are essential for the confirmation of di-
agnosis of TDs because they elucidate the exact phenotype, which
is not detectable by prenatal ultrasonography [46]. The purpose of
the current study was to report the detailed description of the peri-
natal imaging findings and autopsy characteristics of a fetus with
TD type 1 due to a de novo mutation of ¢.2419T > G (p.Ter807Gly)
(X807G) upon DNA analysis.
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2. Case Report

A 25-year-old Caucasian gravida 2, para 0, underwent first
trimester combined screening (maternal age, nuchal translucency,
maternal serum free B-hCG and PAPP-A) at 12w2d was gestation
according to the guidelines of Fetal Medicine Foundation. The
family history of the couple was unremarkable with no history
of skeletal anomalies or other congenital disorders. The mother
was healthy and did not suffer from any medical conditions apart
from a bicornuate uterus with a past history of one first trimester
miscarriage. Her 30-year-old Caucasian husband was healthy and
did not suffer from either congenital or acquired conditions. She
and her husband did not take any medication or any recreational
agents before or during pregnancy. Ultrasound examination was
performed using a Voluson machine (General Electric Healthcare
System) equipped with a transabdominal 2D 4-8MHz probe. Ul-
trasound examination showed a single live fetus with fetal crown-
rum length (CRL) of 60.3 mm and increased nuchal translucency
thickness (NT) of 7.7 mm (Fig. 1). The nasal bone was present.
The fetal thorax was narrowed with a prominent abdomen (Fig. 1)
but these findings were not evaluated at that time. The amount of
the amniotic fluid was normal. The heart rate was 168 beats per
minute, a biparietal diameter (BPD) of 19.5 mm, the abdominal
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Figure 4. Prenatal ultrasonographic image of a fetus at 23w2d of gestation illustrating short arms with a humeral length of 1.80 cm (corre-

sponding to 1éw1d), ulnar length of 1.44 cm (corresponding to 14w5d) and radius length of 1.50 cm (corresponding to 15 weeks) (< 5th

percentile).
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Figure 5. Prenatal ultrasonographic image of a fetus at 23w2d of gestation illustrating severe shortness of lower limbs with a femur length

measuring 1.96 cm (corresponding to 15wéd) and tibial length of 1.76 cm (corresponding to 16 w) (< 5th percentile).

circumference (AC) was 57.4 mm and the femur length (FL) 7.5
mm. The estimated risks for trisomy 21, 18 and 13 were 1 : 292, 1
: 57 and 1 : 257, respectively. The patient gave informed consent
for amniocentesis at 17w5d of gestation, which was uncomplicated
and showed a normal karyotype of a 46, XX fetus. The ultrasound
scan revealed narrow, bell-shaped thorax and protrusion of the ab-
domen (Fig. 2) and shortening of the femur (Fig. 3). The biparietal
diameter was 4.04 cm (18w2d) and the head circumference was
14.57 cm (17w2d). The abdominal circumference was 12.36 cm
(18w) and the femur length 1.06 cm (13w1d) (< 5th percentile).
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We therefore suspected a clinical diagnosis of TD, a lethal form
of skeletal dysplasia and thus suggested termination of pregnancy.
However, the couple was not in contact with the medical staff until
23w2d of gestation. A comprehensive fetal biometric analysis at
23w2d showed: biparietal diameter (BPD) of 58.4 mm and head
and abdominal circumferences of 217.2 mm (23w5d) and 178.2
mm (22w5d), respectively. The arms were short with a humeral
length of 1.80 cm (corresponding to 16w1d), ulnar length of 1.44
cm (corresponding to 14w5d) and radius length of 1.50 cm (corre-
sponding to 15w) (< 5th percentile) (Fig. 4). The femur length
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Figure 6. Prenatal ultrasonographic image of a fetus at 23w2d of gestation with TD 1 demonstrating a narrow thorax and protrusion of the

abdomen.

(FL) was 19.6 mm (15w6d) and the tibial length was 1.76 cm
(corresponding to 16w) (< 5Sth percentile) (Fig. 5). The FL/AC
and FL/BPD ratios were 0.11 and 0.34, respectively. The aver-
age gestational age, including femur length was 21w4d. The fe-
mur showed a typical "French telephone receiver" configuration.
The nuchal fold was increased (10 mm). The thorax was severely
narrowed and irregular with pulmonary hypoplasia. Protrusion of
the abdomen was demonstrated (Fig. 6). The amount of amniotic
fluid was increased.

After extensive genetic counseling, the parents opted for termi-
nation of pregnancy by inducing labor, which was accomplished
by vaginal administration of misoprostol subsequent to hospital
admission and informed consent. She delivered a premature still-
born female fetus with severe short-limbed dwarfism. At autopsy,
the fetus was weighing 490 g corresponding to the 25thpercentile
for the 23rd week of gestation (normal weight 600 + 60 g). The
crown-rump length was 19.3 cm (normal CRL 20.8 £+ 1.9 cm),
the head circumferences was 21 cm (normal HC, 15.1 cm), the
chest circumference (CC) was 15,8 cm (normal CC, 17 cm) and

Volume 3, Number 1, 2020

the circumference of the lower abdomen (AC) was 14.8 cm (nor-
mal AC 15.1 cm). The multiple anomalies included macrocephaly,
macroglossia, depressed nasal bridge, low-set malformed ears and
funnel shaped short neck. Both upper and lower limbs showed rhi-
zomelic and mesomelic brachymelia, humeral and femoral flexion
and brachydactyly. The lungs weight was 5.7 g (normal, 14.4 £+
4.3 g) documenting pulmonary hypoplasia. Postmortem radiogra-
phy revealed macrocephaly with normal ossification, narrow tho-
rax due to short ribs, short bent long bones of the upper and lower
limbs, telephone receiver-like short femur, long bone with sharp
metaphyseal ends and metaphyseal cupping, iliac bones with hor-
izontal wax and sharp deviations, platyspondyly and hypoplastic
vertebral bodies (Fig. 7). Hydrocephalus or clover skull deformity
was not noticed. Microscopic examination showed complete dis-
organization of the epiphyseal growth zone of the cartilage and
pulmonary hypoplasia.

Genomic DNA was extracted from fetal tissues and from pe-

ripheral venous blood of the parents. Subsequently, conserved
coding sequences (CCS) with a size of about 11 Mb, 4,500 of
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Figure 7. Postnatal radiography body gram showing narrow chest, short ribs, bell-shaped rib cage, protruding abdomen, short arms, curved

femora like ""French telephone receiver' and large head. (A) Sagittal view and (B) Coronal view.

specifically selected genes were enriched with > 150,000 ge-
nomic primers designed against the entire human genome (Nextera
Rapid Capture Exome, Illumina). Then, sequencing with Illumina
NextSeq-500 was performed. The average coverage was 30-50X.
Comparison was made with the baseline data of HGMD, ClinVar,
Exac and HPO. The human reference genome hg19 was used. The
molecular genetic analysis showed ¢.2419 T > G (p.Ter807Gly)
heterozygous mutation in the FGFR3 gene. The mutation c.2419T
> G (p. 807Gly) in the FGFR3 gene was caused by a T > G transi-
tion of nucleotide 2419 on exon 19, leading to a Stop807Gly (TGA
> GGA) substitution for proband. This mutation in the chain ter-
mination stop codon for FGFR3 gives rise to protein X807G. This
fetal genotype was compatible with autosomal dominant disease
of lethal type 1 TD. The negative genetic results of the parents
demonstrated that the mutation of the fetus was acquired de novo.

The mother gave birth to a healthy female baby twenty one
months later weighing 3,060 g at birth.

3. Discussion

Skeletal dysplasias constitute a group of heterogeneous disor-
ders affecting growth and morphology of the chondro-osseous tis-
sue [47, 48, 49, 50]. Mutations in FGFR3 are identified in patients
with achondroplasia, hypochondroplasia, severe achondroplasia
with developmental delay and acanthosis nigricans dysplasia,
platyspondylic lethal skeletal dysplasia, San Diego type as well
as TD type 1 and type 2 [51]. TD type 1 is caused by FGFR3 mis-
sense, insertion or stop codon mutations [13, 18, 19, 22, 52, 53, 54,
55, 56, 57]. Remarkably, these point mutations within the FGFR3
gene which cause TD type 1 constitute gain of function mutations
causing ligand-independent overactivation of the FGFR3 recep-
tor by conveying negative signals to chondrocyte and disturbing
cartilage function during linear bone growth. Insertion mutations
are typically the addition of extra DNA nucleobases to the FGFR3
gene and this results in the creation of unpaired cysteine residues
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within the extracellular domain of the FGFR3 protein that replaces
other amino acids such as Arg, Ser, Gly or Tyr. The newly created
cysteine residues allow the formation of disulfide-linked dimers
between the extracellular domains of the mutant monomers, hence
inducing non-physiological continuous activation of the recep-
tor, which normally requires dimerization for signal transduction.
Mutations in the stop codon eliminate the termination codon of
the FGFR3 gene [19, 50, 58, 59, 60]. The most frequent mu-
tations of TD type 1 are c.742C > T (p.Arg248Cys), c.746C
> G (p.Ser249Cys), c¢.1108G > T (p.Gly370Cys), c.1111A > T
(p-Ser371Cys), c.1118A > G (p.Tyr373Cys) all of which contribute
to 90% of the cases [22, 41, 52]. Other mutations of TD type 1 in-
clude ¢.1043C > G (p.Ser348Cys), ¢.2418G > T (p.Ter807Leu),
¢.2419T > G (p.Ter807Gly), c.2419T > C (p.Ter807Arg), c.2419T
> A (p.Ter807Arg), ¢.2420G > T (p.Ter807Leu), c.2420G >
C (p.Ter807Ser), C2421A > T (p.Ter807Cys), c.2421A > C
(p.Ter807Cys) and ¢.2421A > G (p.Ter807Trp) [34].

TD type 2 is caused almost entirely by a single FGFR3 muta-
tion substituting an A to G at the cDNA nucleotide 1948 (c.1948A
> G), causing a lysine to glutamic acid substitution (p.Lys650Glu)
in the second portion of the intracellular tyrosine kinase domain
of the EGFR3 protein, also resulting in ligand-independent acti-
vation [13, 19, 22, 52, 53, 57, 59, 65]. On the other hand, loss of
function mutations in FGFR3 causes autosomal recessive camp-
todactyly, tall stature, scoliosis and hearing loss (CATSHL syn-
drome) [22]. The FGFR3 signaling pathway requires Snaill in
order to regulate normal chondrocyte proliferation and differenti-
ation and interacts with STAT1 (signal transducers and activators
of transcription) pathway, which is involved in the inhibition of
chondrocyte proliferation and the MAPK (mitogen-activated pro-
tein kinase) pathway, which is involved in chondrocyte differenti-
ation [62, 66].

TD is one type of skeletal dysplasia characterized by severe
shortening and deformation of the long bones, macrocrania with

Varras et al.



frontal bossing, a relatively normal trunk length and thoracic hy-
poplasia, leading to severe respiratory failure and generally early
death [26, 34]. TD type 1 is the most common subtype of TD char-
acterized by a curved femur and occasional cloverleaf skull [51].
TD type 2 is characterized by short but straight femur and clover-
leaf skull [51]. Differential diagnosis of TD includes homozy-
gous achondroplasia, achondrogenesis, campomelic dwarfism,
rhizomelic chondrodysplasia punctata, severe hypophosphatasia
and severe osteogenesis imperfecta [23, 67, 68]. Herein, we pre-
sented a case of molecularly proven FGFR3-related TD type 1 ini-
tially suspected by abnormal ultrasonographic findings and con-
firmed with the genetic analysis and autopsy. In our study we
pinpointed the specific prenatal ultrasound findings, which are
potential markers for the prenatal diagnosis of TD type 1. In
the present case, increased nuchal translucency was noticeable at
12w2d of gestation. Increased nuchal translucency was previously
reported in TD type 1 [69, 70, 71, 72]. In addition, there are reports
with prenatal diagnosis of TD at the first trimester of pregnancy
[69, 70, 71, 72, 73, 74]. In cases with increased nuchal translu-
cency and normal karyotype, the possibility for fetal skeletal dys-
plasia should be included. In our case, the mother came for am-
niocentesis at 17w5d of gestation and displayed a normal kary-
otype of a 46, XX fetus. The narrow fetal thorax and short femur
were prominent during the fetal ultrasonographic scans at the sec-
ond trimester of pregnancy and established the diagnosis of TD.
For this reason, we suggested termination of pregnancy. Macro-
cephaly was not apparent by our ultrasound scans at the second
trimester of pregnancy. Also, hydrocephalus or clover skull defor-
mity were not seen. The molecular analysis determined the exact
mutation in the FGFR3 gene and the fetal autopsy and the radio-
logical findings confirmed the prenatal prediction of the diagnosis
of TD type 1. In a series of 27 cases of lethal skeletal dysplasias
by Tretter et al., (1998), 26 were identified antenatally, but only
13 (48%) were given an accurate specific antenatal diagnosis [75].
In addition, in small fetuses with TD type 1 before 20 weeks of
gestation, the femoral bowing and the telephone receiver-like con-
figuration may not be prominent [76].

Newborns develop respiratory insufficiency secondary to the
narrowed chest cavity [34]. Therefore, almost all neonates with
TD require oxygen therapy or mechanical ventilation and most of
them die of respiratory failure within one month [77] although 4-9
years' survivals have been reported [78]. Fetal autopsy and post-
mortem radiography are essential for the confirmation of TD diag-
nosis [46]. Postnatal autopsy of the affected fetus revealed disor-
ganized chondrocyte columns, poor cellular proliferation, lateral
overgrowth of metaphyses and increased vascularity of cartilage
[61, 67]. Terasawa et al., (2019) developed a noninvasive prena-
tal test using a multiplex PCR system encompassing five muta-
tion hotspots in the FGFR3 gene using cell-free DNA (cfDNA) in
the maternal circulation in order to identify the responsible muta-
tions. Paternal samples should be used always as negative control.
This system is helpful in early gestation for the distinction between
TD and achondroplasia in fetuses presenting with growth retarda-
tion and short limbs [79]. Also, this system is helpful in couples
with germinal mosaicism for the identification of recurrence of TD
[79]. Terasawa et al., (2019) suggested that in cases with positive
FGFR3 mutation in maternal cell-free DNA (cfDNA) of periph-
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eral blood plasma, confirmation with chorionic villus sampling or
amniocentesis is needed [79].

The prevalence of ¢.2419T > G among all TD type 1 mutations
seems to be 1.6% according to Chen et al., (2017) [41] and 1.7%
according to Xue et al., (2014) [22] including platyspondylic lethal
skeletal dysplasia, San Diego type (PLSD-SD), since it is due to
similar mutations in FGFR3 with TD type 1 [22, 41]. Although the
present report is not novel and confirms previously reported find-
ings by Chen et al., (2017) [41], we described one more extremely
rare case of TD type 1 in a fetus with a ¢.2419T > G (p.Ter807Gly)
(X807G) mutation in FGFR3 gene and to our knowledge this is
the fifth reported case [22, 41]. Comparing our data with those
of Chen et al., (2017), our case presented with increased nuchal
translucency (7.7 mm) during the first trimester prenatal screen-
ing test. Therefore, we suggest that TD type 1 due to a ¢.2419T >
G (p. Ter807Gly) FGFR3 gene mutation should be included in the
differential diagnosis in cases with increased nuchal translucency.
In addition, comparing our data with those of Chen et al., (2017)
we added more information about the ultrasonographic findings at
the 17w5d of gestation of this rare case of TD type 1 due to c.2419T
> G (p. Ter807Gly) FGFR3 gene mutation.

The nomenclature for the variant c.2419T > G is the
rs121913101 (dbSNP, The Single Nucleotide Polymorphism
Database) [80, 81]. The mutation ¢.2419T > G in the FGFR3
gene is caused by a T > G transition of nucleotide 2419 on exon 19
(41). This mutation in the chain termination stop codon in FGFR3
gene eliminates the termination codon. The replacement of a stop
codon with a glycine codon at amino acid position 807 results in
subsequent extension of the protein by 101 amino acids, denoted
p-X807GextX101 [81, 82]. Functional studies by Bonaventure et
al., (2007) and Gibbs et al., (2007) showed that an equivalent
elongated protein by 101 amino acids at the C-terminal domain
(p-X807RextX101) due to a stop codon FGFR3 mutation resulted
in constitutive activation of the FGFR3 receptor [83, 84]. Particu-
larly, Gibbs et al., (2007) suggested that the additional C-terminal
domain in the mutated FGFR3 protein may function by inducing
tyrosine phosphorylation of the FGFR3 receptor in the Golgi appa-
ratus, constitutive activation of this tyrosine kinase FGFR3 recep-
tor and subsequent disruption of bone development [84]. Alterna-
tively, Bonaventure et al., (2007) proposed that hyperactivation of
FGFR3 elongated protein is the result of protein stabilization due
to a different ubiquitination pattern and reduced degradation [83].

4. Conclusions

In the current paper we presented the fetal ultrasonographic
findings and the autopsy characteristics of a rare case of TD type
1 with a stop codon mutation of ¢.2419T > G (p.Ter807Gly)
(X807G) in the FGFR3 gene resulting in elongation of the FGFR3
protein at the C-terminus by 101 amino acids. Our case reveals
that fetuses with TD type 1 may present with increased nuchal
translucency. Therefore, TD should be included in the differen-
tial diagnosis in cases with increased nuchal translucency during
the first trimester prenatal screening test, especially in the pres-
ence of normal fetal karyotype. Search for FGFR3 mutations in
cell-free DNA (cfDNA) in the maternal circulation is useful for
the identification of cases, which will need more search with in-
vasive sampling including chorionic villus sampling or amniocen-
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tesis for the definitive confirmation of this fetal malformation. In
addition, our case shows that a FGFR3 mutation of ¢.2419T > G
(p. Ter807Gly) (X807G) FGFR3 displays typical features of TD
type 1. In our case the fetal autopsy and the postmortem radiogra-
phy confirmed the diagnosis of TD type 1.
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