Journal of Molecular
and Clincial Medicine

J. Mol. Clin. Med. 2025; 8(1): 26902
https://doi.org/10.31083/IMCM26902

Original Research

Edaravone Inhibits Inflammation in Toll-Like Receptor 4-Stimulated
PBMNC:s from Multiple Sclerosis Patients

Luciana Ferreira Antunes'®, Regiane Penaforte Santos'®, Julia Vieira Carvalho!®,
Paulo Pereira Christo! ©, Pedro Henrique Villar-Delfino!' ®,
Caroline Maria Oliveira Volpe!*

1Faculdade de Saude Santa Casa, 30150-240 Belo Horizonte, Minas Gerais, Brazil

*Correspondence: cmovolpe@yahoo.com.br; carolinevolpe@faculdadesantacasabh.edu.br (Caroline Maria Oliveira Volpe)
Academic Editor: Giuseppe Murdaca
Submitted: 11 October 2024 Revised: 30 November 2024  Accepted: 12 December 2024  Published: 21 March 2025

Abstract

Background: Multiple sclerosis (MS) is a neurological disorder that is directly linked to inflammation in the central nervous system
(CNS). The activation of toll-like receptors (TLRs) exacerbates neuroinflammation by increasing the production of reactive oxygen
species (ROS) and proinflammatory cytokines. Edaravone (EDV) has been proposed as a potential therapy for CNS diseases because of
its free radical scavenging and anti-inflammatory properties. This study investigated the effects of EDV on the inflammatory response
in TLR4-stimulated peripheral blood mononuclear cells (PBMNCs) from MS patients and a healthy control group. Methods: The
impact of EDV on ROS production in lipopolysaccharide (LPS)-stimulated PBMNCs was assessed using the 3-(4, 5-dimethylthiazol-2-
yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) reduction and luminol-dependent chemiluminescence assays. The interleukin (IL)-6
concentration in the PBMNC supernatants was measured using enzyme-linked immunosorbent assay (ELISA). Results: The results
showed that ROS production in PBMNCs stimulated using LPS (a TLR4 activator) was significantly inhibited (p < 0.05) by EDV in the
MS patients and control group. Additionally, EDV significantly reduced IL-6 secretion in TLR4-stimulated PBMNCs in these groups
(» < 0.05). No significant differences were observed between the groups. Conclusion: Our findings suggest that EDV may serve as an
adjunctive therapy for MS by reducing ROS and IL-6 production in TLR4-stimulated PBMNCs in MS patients, highlighting its potential

in modulating neuroinflammation and oxidative stress.
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1. Introduction

Emerging evidence has highlighted the crucial role of
the immune system in a wide range of neurological dis-
orders. Indeed, neuroinflammation, the inflammatory re-
sponse within the central nervous system (CNS), involves
immune cells, such as microglia and astrocytes, becom-
ing activated and infiltrating peripheral immune cells. Al-
though this response is a normal mechanism aimed at main-
taining homeostasis by repairing damage and eliminating
pathogens, chronic or excessive inflammation can con-
tribute to the pathogenesis of numerous neurological con-
ditions [1-4]. Multiple sclerosis (MS) is a neurological
disorder directly linked to CNS inflammation. In MS pa-
tients, the immune system targets and damages the myelin
sheath, resulting in nerve damage and impaired neurologi-
cal function; this process results in the gradual loss of mo-
tor, sensory, and cognitive functions. MS primarily af-
fects young adults aged 20 to 50 and exhibits geographic
variability, with a higher prevalence in Europe and North
America. MS also presents a higher incidence in females,
with a sex ratio of 3:1. However, males with MS often
experience a more rapid disease progression and accumu-
late disabilities quicker than females [5-10]. The inflam-

matory response in MS involves both innate and adaptive
immune systems. Subsequently, various pathways initi-
ate inflammation, which promotes the activation of Toll-
like receptors (TLRs), a class of pattern-recognition re-
ceptors (PRRs) expressed by innate immune cells [11,12].
TLR-mediated inflammatory responses occur by detect-
ing pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs). In MS
patients, TLRs recognize myelin debris and CNS antigens,
exacerbating inflammation and increasing blood—brain bar-
rier (BBB) permeability, allowing immune cell infiltra-
tion, which worsens tissue damage [13,14]. TLR4 plays
a key role in various inflammatory signaling pathways,
and its overexpression can result in the development of
neurological diseases [15]. Increased TLR expression in
MS drives neuroinflammation, which promotes the produc-
tion of proinflammatory cytokines, such as tumor necro-
sis factor-alpha (TNF-«), interleukin (IL)-153, and IL-6.
This process also generates reactive oxygen species (ROS)
and nitric oxide (NO), which contribute to oxidative stress
[13,16-19].

ROS, generated primarily by the NADPH-oxidase
(NOX) complex and mitochondria, play a crucial role in
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the pathogenesis of MS. ROS activate diverse signaling
pathways that drive inflammation, including the activation
of nuclear factor-kappa B (NF-xB), which increases the
production of proinflammatory cytokines and chemokines.
Additionally, ROS contribute significantly to demyelina-
tion, axonal/neuronal injury, and the disruption of the BBB
integrity in MS [20-22]. The development of novel thera-
peutic approaches has been driven by advancements in un-
derstanding immune responses and inflammatory mecha-
nisms. Indeed, immunomodulatory and immunosuppres-
sive drugs for MS, such as interferon-beta, glatiramer ac-
etate, and monoclonal antibodies (e.g., natalizumab and
ocrelizumab), target various aspects of the immune re-
sponse to reduce inflammation and slow disease progres-
sion. However, some patients do not respond to these treat-
ments or develop tolerance over time [23,24]. Moreover,
oxidative stress has been implicated in various neurolog-
ical conditions; meanwhile, current treatments do not di-
rectly address the signaling pathways involved in ROS gen-
eration. In this context, the free radical scavenger edar-
avone (EDV) has been studied for its neuroprotective prop-
erties and ability to reduce oxidative stress [24,25]. Origi-
nally approved in Japan for treating acute ischemic stroke,
EDV has also shown promise in treating amyotrophic lat-
eral sclerosis (ALS) [26—31]. Therefore, understanding the
mechanisms through which EDV modulates ROS produc-
tion and cytokine secretion in TLR4-stimulated peripheral
blood mononuclear cells (PBMNCs) could significantly af-
fect inflammation management in MS and other related
pathologies. Thus, this study aimed to evaluate the effects
of EDV on TLR4-stimulated PBMNCs obtained from MS
patients and a healthy control group.

2. Material and Methods
2.1 Study Population

This parallel group cross-sectional study was
approved by the Ethics Committee of Santa Casa
Hospital in Belo Horizonte, Brazil (approval number
69385917.7.0000.5138).  All participants provided in-
formed consent. This study included 30 MS patients and
30 healthy controls. None of the participants with MS
smoked, and all were receiving immunotherapy. The ex-
clusion criteria included pregnancy, dementia, malignancy,
infections, and substance dependence.

2.2 Preparation of PBMNCs

PBMNCs were isolated from peripheral venous blood
using a modified Ficoll-Hypaque density gradient method
described by Bicalho et al. [32]. Cell suspensions were ad-
justed to a concentration of 1 x 10° cells/mL, and viability
was confirmed (>90%) using the trypan blue (Trypan Blue
solution, 1%, T6146, Merck KGaA, Darmstadt, Germany)
exclusion assay.

2.3 Assessment of ROS Production
2.3.1 MTT Reduction Method

A direct 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-
2H-tetrazolium bromide (MTT) reduction assay was used
to measure intracellular ROS levels, reflecting the actions
of both mitochondria and NADPH oxidase. MTT is a yel-
low tetrazolium salt dehydrogenase that is reduced in iso-
propanol to form soluble purple formazan crystals. The
absorbance values after the reaction were analyzed spec-
trophotometrically at 570 nm [33]. PBMNC suspensions
(5 x 10° cells/mL) were incubated at room temperature
(23 °C) for 30 min or under four different conditions at
37 °C for 24 h: (i) phosphate-buffered saline (PBS, con-
trol without stimulation), (i) EDV (3-methyl-1-phenyl-2-
pyrazolin-5-one; cat. #M70800 Merck KGaA; 1 uM) [29],
(ii1) lipopolysaccharides (LPS from Escherichia coli; cat.
#5010 Merck KGaA, Darmstadt, Germany; 50 pg), and (iv)
LPS + EDV (to evaluate the influence of EDV on ROS pro-
duction in TLR4-stimulated cells). Next, 30 pL MTT solu-
tion (cat. #M2128 Merck KGaA, Darmstadt, Germany; 5
mg/mL) was added, and cells were incubated at 37 °C for
2 h. Subsequently, 1.5 mL isopropanol-HCI was added to
each tube, and samples were vortexed vigorously. Follow-
ing centrifugation at 3000 rpm for 5 min, the supernatant
absorbance was measured at 570 nm using an Ultrospec
2100 Pro spectrophotometer (GE Healthcare, Chicago, IL,
USA). Experiments were performed in triplicate for each
condition. PBMNCs were identified based on their mor-
phology. All primary cells used in the study tested negative
for mycoplasma contamination.

2.3.2 Luminol-Based Chemiluminescence Method

Luminol-based chemiluminescence has been exten-
sively used to detect ROS production. Luminol (5-amino-
2,3-dihydro-1,4-phthalazine-dione, 10~% M, A8511, Merck
KGaA, Darmstadt, Germany) is a redox-sensitive molecule
that exhibits blue luminescence upon oxidation. Cells nat-
urally produce baseline luminescence, known as native or
endogenous chemiluminescence. However, this lumines-
cence can be amplified using chemical reagents that emit
intensified luminescence upon reacting with the produced
ROS. This method is highly sensitive and can detect intra-
cellular and extracellular ROS because of its ability to per-
meate cell membranes [34-37]. In each test, 200 pL lumi-
nol (10~* M, dissolved in 0.4 M DMSO, 472301, Merck
KGaA, Darmstadt, Germany) was mixed with 100 pL
PBMNCs (1 x 10° cells/mL) in PBS (P2272, Merck KGaA,
Darmstadt, Germany). Baseline ROS levels were measured
over 20 min, and reactions were monitored using a lumi-
nometer (model 20/20n, Promega, Madison, WI, USA).
The effects of Edaravone (EDV, M70800, Merck KGaA,
Darmstadt, Germany, 1 pM, 100 pL) and lipopolysaccha-
ride (LPS, L4391, Merck KGaA, Darmstadt, Germany, 50
ug/50 puL) on ROS production in PBMNCs were evalu-
ated in sequential reactions for an additional 20 min. To
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Fig. 1. Effect of edaravone (EDV) on intracellular reactive oxygen species (ROS) production in LPS-stimulated peripheral blood
mononuclear cells (PBMNCs) from multiple sclerosis (MS) patients and healthy individuals. PBMNCs were incubated with EDV
for (A) 30 min and (B) 24 h. Values are expressed as E/C (E = PBMNC:s in the presence of LPS as a TLR4 activator; C = PBMNCs in
the absence of the activator) &= SD; n = 20 for each group. Basal levels for ROS production (ODs7o x 102 4= SD): control group 30 min
=31 =£ 10, control group 24 h =32 + 6; MS group 30 min =37 £ 10, MS group 24 h =36.5 &+ 8. ROS, reactive oxygen species; LPS,

lipopolysaccharide; TLR, Toll-like receptor.

Table 1. Study population characteristics.

N Control group  Multiple sclerosis group p-value
30 30 ns
No. of females (as determined at birth) (%)* 23 (76.7%) 19 (63.4%) ns
Age in years® 40 £ 8.6 44 £+ 12 ns
Disease duration in years® na 11+8 -
MS disease course
Relapsing-remitting, N (%) na 21 (70%) -
Primary progressive, N (%) na 6 (20%) -
Secondary progressive, N (%) na 3 (10%) -

@ Values are expressed as a percentage of the total, x 2 test; ® values are expressed as the mean + standard deviation,

Student #-test; MS, multiple sclerosis; na, not applicable; ns, not significant (p > 0.05).

assess the influence of EDV on ROS generation in TLR4-
stimulated cells, a combined treatment using LPS and EDV
was investigated. The results are presented as relative light
units (RLUs) per minute. Cells treated with HoO4 (386790-
M, Merck KGaA, Darmstadt, Germany), a known ROS in-
ducer, were included as a positive control to validate the
assay’s sensitivity.

2.4 IL-6 Detection in PBMNC Supernatants

IL-6 production was analyzed in culture supernatants.
PBMNCs (1 x 10°/100 uL) were incubated in 96-well
plates with or without EDV (1 uM, 100 pL) and LPS (50
ng/50 uL) at 37 °C for 24 h. To assess the effects of EDV
on IL-6 production in TLR4-stimulated cells, a combina-
tion of LPS + EDV was investigated. After incubation, su-
pernatants from PBMNC cultures were collected, and IL-6
concentrations were measured using a human IL-6 DuoSet
ELISA kit (R&D Systems, Inc., Minneapolis, MN, USA).
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2.5 Statistical Analysis

Data were analyzed using GraphPad Prism version 5
(GraphPad Software, Inc., San Diego, CA, USA) and pre-
sented as E/C ratios (in which E = PBMNC:s in the presence
of the TLR4 activator LPS, whereas C = PBMNC:s in the
absence of activators) or mean =+ standard deviation (SD).
An unpaired Student’s ¢-test was used for continuous data,
while the x? test was applied as needed. Statistical signifi-
cance was set at p < 0.05.

3. Results

Table | presents a comprehensive overview of the
study population. The study included 30 healthy individ-
uals (control group) with a mean age of 40 + 8.6 years and
30 individuals with MS with a mean age of 44 £ 12 years
and an average disease duration of 11 + 8 years. No sig-
nificant differences were observed between the groups re-
garding age or sex at birth. According to the International
Advisory Committee on Clinical Trials of MS, 21 patients
were diagnosed with relapsing-remitting MS, six with pri-
mary progressive MS, and three with secondary
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Table 2. Effect of edaravone on ROS production in TLR4-stimulated peripheral blood mononuclear cells from multiple sclerosis patients and healthy controls, determined via

luminol-based chemiluminescence.

Control group Multiple sclerosis group

Experimental conditions
Mean (pg/mL) Standard deviation Standard error Activation 1 Inhibition | (%) Mean (pg/mL) Standard deviation Standard error  Activation 1 Inhibition | (%)

I. PBMNCs + PBS 168.1 26.8 7.1 - 185.6 19 6.5 -
II. PBMNCs + EDV 165.7 24 6.4 - 186.9 7.4 2.5 -
III. PBMNCs + LPS 199.4* 25 73 191¢ 205.9* 23 6.9 111
IV. PBMNCs + LPS + EDV 166.8# 21 5.5 16 ° 182.1# 13 43 1210

N =10 for each group. *p < 0.05 vs. PBMNCs + PBS, Student #-test; #p < 0.05 vs. PBMNCs + LPS, Student #-test. ¢ The activation percentage (1) was calculated as follows: ((mean of PBMNC +
LPS/mean of PBMNC + PBS) — 1) x 100. ® The inhibition percentage () was calculated as follows: (1 — (mean of PBMNC + LPS + EDV/mean of PBMNC + LPS)) x 100. EDV, edaravone; LPS,
lipopolysaccharide (TLR4 activator); PBMNCs, peripheral blood mononuclear cells; PBS, phosphate-buffered saline; RLUs, relative light units; ROS, reactive oxygen species; TLR, Toll-like receptor.

Table 3. Modulation of IL-6 production by edaravone in TLR4-stimulated peripheral blood mononuclear cells from multiple sclerosis patients and healthy controls.

Control group Multiple sclerosis group

Experimental conditions
Mean (pg/mL) Standard deviation Standard error Activation 1 Inhibition | (%) Mean (pg/mL) Standard deviation Standard error  Activation 1 Inhibition | (%)

I. PBMNCs + PBS 323 23 0.34 - 344 2.5 0.38 -
II. PBMNCs + EDV 324 2.0 0.25 - 33.6 2.8 0.46 -

I11. PBMNCs + LPS 41.2% 1.8 0.42 2751 @ 42.8% 2.8 0.65 2441 ¢
IV. PBMNCs + LPS + EDV 32.7# 1.5 0.39 206 |° 33.9# 1.6 0.41 20.8 |

N =15 for each group. *p < 0.05 vs. PBMNCs + PBS, Student #-test; #p < 0.05 vs. PBMNCs + LPS, Student #-test. ¢ The activation percentage (1) was calculated as follows: ((mean of PBMNC +
LPS/mean of PBMNC + PBS) — 1) x 100. ® The inhibition percentage (|) was calculated as follows: (1 — (mean of PBMNC + LPS + EDV/mean of PBMNC + LPS)) x 100. EDV, edaravone; LPS,
lipopolysaccharide (TLR4 activator); PBS, phosphate-buffered saline; PBMNCs, peripheral blood mononuclear cells; TLR4, Toll-like receptor 4.
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progressive MS [38—41]. The sample number in the table
represents the collective number of subjects used across all
tests illustrated in the figures.

3.1 EDV Downregulated ROS Production in
TLR4-stimulated PBMNCs

The oxidative response of PBMNCs was measured us-
ing the MTT reduction method, with values expressed as
E/C £+ SD (Fig. 1). ROS production was significantly en-
hanced in LPS-stimulated PBMNCs from MS patients and
controls (p < 0.05), showing similarly increased levels after
both the 30-minute and 24-hour incubation periods. More-
over, the addition of EDV significantly reduced ROS gen-
eration in TLR4-stimulated PBMNCs in both groups (p <
0.05), with both showing equivalent inhibition during both
each incubation period.

The oxidative response in PBMNCs was also mea-
sured using the luminol-based chemiluminescence method,
and the results are expressed as the mean + SD (Table 2).
These data reveal comparable basal ROS levels in resting
PBMNCs from MS patients and healthy controls. Stimu-
lation with LPS significantly increased ROS production in
the PBMNCs from both groups (p < 0.05). However, this
effect was significantly attenuated when EDV was added
to the assay (p < 0.05). These results highlight the ability
of EDV to effectively suppress ROS production in TLR4-
stimulated PBMNC:s, suggesting a modulation of the innate
immune response.

3.2 EDV Inhibited Cytokine Secretion in TLR4-Stimulated
PBMNCs

IL-6 levels were determined in TLR4-stimulated
PBMNC culture supernatants from MS patients and the
control group treated with or without EDV to explore
whether the EDV-mediated downregulation of ROS pro-
duction in TLR4-stimulated PBMNCs was linked to mod-
ulated proinflammatory cytokine production. As shown in
Table 3, LPS activated IL-6 production to similar levels in
PBMNC:s from MS patients and the control group. Addi-
tionally, LPS-stimulated IL-6 production was similarly in-
hibited in PBMNCs from both the MS and control groups
following EDV treatment.

4. Discussion

The current study investigated the possible im-
munomodulatory effects of EDV on TLR4-stimulated
PBMNCs from MS patients. The results demonstrate that
EDV effectively reduced ROS generation and IL-6 secre-
tion in TLR4-stimulated cells from both MS patients and
the control group (Tables 1,2,3, and Fig. 1). These findings
suggest that the antioxidant and anti-inflammatory proper-
ties of EDV could serve as an adjunctive therapy for MS by
targeting the chronic neuroinflammation that drives disease
progression.

&% IMR Press

MS is an immune-mediated inflammatory demyelinat-
ing disease primarily driven by the inflammatory activity
of recruited peripheral immune cells and resident glial cells
in the CNS [1,9,40]. Although leukocytes play a crucial
role in resolving inflammation or infection, their infiltra-
tion into the CNS can exacerbate inflammation by releasing
ROS, cytokines, and chemokines. This excessive inflam-
mation contributes to demyelination, axonal damage, and
MS symptom progression [14,20,21].

Emerging evidence highlights the critical role of in-
nate immune cells in the progression of MS. TLRs trig-
ger specific intracellular signaling that promotes innate im-
mune responses, contributing to the development of MS and
experimental autoimmune encephalomyelitis (EAE) [41—
43]. Moreover, TLR4 has been linked to MS symptoms,
and studies have shown that silencing TLR4 can alleviate
these symptoms [44—49]. TLR4 activation leads to mito-
chondrial ROS production, alongside NADPH oxidase and
inflammatory cytokine secretion through NF-xB activation
[50-52].

ROS production is essential, given that these
molecules have a physiological role in cellular activity,
proliferation, cell death, inflammation, and infection.
However, excessive ROS levels can cause demyelination,
axonal/neural injury, disrupt BBB integrity, and secretion
of proinflammatory cytokines. Meanwhile, low antiox-
idant enzyme expressions limit the ability to neutralize
ROS in the CNS [53-56]. Additionally, ROS reacts with
lipids, proteins, and nucleic acids, resulting in functional
deficiencies [13,14,16—18]. Our study demonstrated that
EDV significantly modulated ROS production in TLR4-
stimulated PBMNCs from MS patients and healthy controls
(p < 0.05) (Fig. 1 and Table 2). These results suggest
that EDV acts either on the TLR4 signaling pathway or
indirectly on the mitochondrial respiratory chain and NOX
complex.

Dysregulated cytokines such as IL-6 have been shown
to significantly contribute to tissue injury and neurologi-
cal deficits in MS. Indeed, elevated IL-6 levels are often
detected in the cerebrospinal fluid and blood of MS pa-
tients, exacerbating chronic inflammation and demyelina-
tion by promoting Th17 cell differentiation [1,57-61]. In
this study, stimulation using the TLR4 activator LPS caused
a significant increase in IL-6 secretion in PBMNCs from
MS patients and the control group compared to resting cells
(p < 0.05). However, EDV effectively inhibited IL-6 secre-
tion, demonstrating its potential to reduce inflammation (p
< 0.05) (Table 3).

Given that ROS and proinflammatory cytokines are
central to the pathogenesis of MS, leading to severe CNS
damage [62], therapeutic approaches targeting inflamma-
tion and oxidative stress are promising for altering the pro-
gression of MS. Anti-inflammatory and antioxidant ther-
apies are also being explored to protect myelin and neu-
ral cells [28,63,64]. Moreover, EDV, a low-molecular-


https://www.imrpress.com

weight synthetic antioxidant with free radical-scavenging
and anti-inflammatory properties, has high permeability
across the BBB. Intravenous EDV was approved in 2017
by the United States Food and Drug Administration (FDA)
to delay ALS progression, with clinical trials focusing pri-
marily on motor function [25,65,66]. Subsequently, the
FDA approved an oral suspension formulation of EDV in
2022 for use in patients with ALS [67]. Importantly, the
antioxidant properties of EDV may confer neuroprotection
against ALS, acute ischemic stroke, and other comorbidi-
ties [26,31]. The exact mechanism of action of EDV re-
mains unclear; however, it is thought to donate electrons to
free radicals and inhibit lipid peroxidation, which is impli-
cated in autoimmune and inflammatory diseases. Further-
more, the antioxidant and anti-inflammatory effects of EDV
are likely mediated through the nuclear factor erythroid 2-
related factor 2/heme oxygenase-1 (NRF2/HO-1) signal-
ing pathway, which is critical for cellular antioxidant re-
sponses and maintaining BBB integrity. By reducing ROS
levels and inhibiting proinflammatory cytokines such as IL-
6, EDV could provide a general approach to MS treatment,
complementing current therapies that predominantly target
immune cell activity. These properties suggest that EDV
is a promising candidate for reducing the long-term neu-
rodegeneration observed in patients with MS, potentially
improving clinical outcomes and quality of life.

One of the main challenges in developing novel drugs
to treat MS is the complexity and variability of the disease.
Hence, overcoming these challenges requires a deeper un-
derstanding of the MS pathogenesis and therapeutic strate-
gies that can precisely and effectively target specific disease
mechanisms. Immunomodulatory treatments have demon-
strated promising outcomes in reducing the occurrence of
new lesions and relapse rates, thereby slowing disease pro-
gression. However, treatment adherence varies consider-
ably owing to the frequent occurrence of adverse effects,
with most MS patients experiencing increased disability
and persistent symptoms. Therefore, the exploration of
complementary therapies, including the use of vitamins and
dietary supplements, to reduce disease severity and symp-
toms is increasing [25,26,68—-70].

Given that neurodegenerative disorders are devastat-
ing and incurable, it is pivotal that new treatments are con-
tinually developed. Therapies that reduce ROS production
by modulating oxidative stress and regulating inflammation
may be beneficial for treating MS. The neuroprotective ef-
fects of EDV are believed to be related to its antioxidant
properties, particularly the ability to eliminate free radicals.
Immune activation, which is characterized by inflammation
and oxidative damage, contributes to demyelination, axonal
injury, and disease progression in MS patients. Thus, eluci-
dating the mechanisms underlying these processes is essen-
tial to develop effective therapeutic strategies to interrupt
the damage cycle and improve the outcomes of patients with
MS.

This study has several limitations. We did not evalu-
ate the effects of EDV on other cellular pathways or oxida-
tive stress markers, such as malondialdehyde (MDA) and
glutathione (GSH), or the activities of antioxidant enzymes
such as glutathione peroxidase (GPx), superoxide dismu-
tase (SOD), and catalase (CAT). Additionally, cytokines,
such as TNF-a and IL-1/3, were not measured. However,
the evaluation of these markers in future studies could pro-
vide a more comprehensive understanding of the impact
of EDV on oxidative stress and inflammation in MS. Ad-
ditionally, all the patients with MS in this study were re-
ceiving immunotherapy, which likely influenced the acti-
vation state and responsiveness of their PBMNCs. This
could potentially explain the absence of observed differ-
ences between the groups and highlights the need for further
research to improve our definition of the conditions under
which edaravone exerts its effects.

5. Conclusion

Our findings suggest that EDV may serve as an ad-
junctive therapy for MS by reducing ROS and IL-6 produc-
tion in TLR4-stimulated PBMNCs. These results highlight
the potential of EDV in modulating neuroinflammation and
oxidative stress, which are critical drivers of MS progres-
sion. Future studies should explore the long-term benefits
of EDV in clinical settings and investigate its effect on addi-
tional oxidative stress pathways to improve our understand-
ing of its therapeutic potential.
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