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Automatic and accurate segmentation of intravascular op-
tical coherence tomography imagery is of great impor-
tance in computer-aided diagnosis and in treatment of car-
diovascular diseases. However, this task has not been
well addressed for two reasons. First, because of the
difficulty of acquisition, and the laborious labeling from
personnel, optical coherence tomography image datasets
are usually small. Second, optical coherence tomography
images contain a variety of imaging artifacts, which hin-
der a clear observation of the vascular wall. In order to
overcome these limitations, a new method of cardiovas-
cular vulnerable plaque segmentation is proposed. This
method constructs a novel Deep Residual U-Net to seg-
ment vulnerable plaque regions. Furthermore, in order
to overcome the inaccuracy in object boundary segmen-
tation which previous research has shown extensively, a
loss function consisting of weighted cross-entropy loss and
Dice coefficient is proposed to solve this problem. Thor-
ough experiments and analysis have been carried out to
verify the effectiveness and superior performance of the
proposed method.
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tation; encoder-decoder architecture; residual block; boundary segmen-
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1. Introduction
Advanced atherosclerosis in the coronary arteries is now one of

the leading causes of death worldwide although it is preventable
and treatable (Fleg et al., 2012). In order to accurately and ef-
fectively diagnose cardiovascular atherosclerosis (i.e. vulnerable
plaque), Optical Coherence Tomography (OCT) imaging is of-
ten employed (Ambrose and Srikanth, 2010). However, the vast
amount of OCT images acquired in a routine clinical exam makes
it difficult and time-consuming for physicians to diagnose pa-
tients' images manually. Because of this, computer algorithms are
needed to address this dilemma. Image segmentation is a crucial
step in cardiovascular vulnerable plaque diagnose, and there are
two issues which need to be solved.

First, OCT datasets are small compared to typical datasets in

natural image domain; variations in data acquisition make OCT
datasets even more heterogeneous. Deep learning networks can
learn to recognize invariance towards image properties if the
dataset is large enough. However, for a small dataset, deep learn-
ing network may soon over fit. To address this problem, a light
convolutional neural network structure with fewer network param-
eters and high accuracy is needed. This will require a relatively
small image dataset to train and accurately conduct network pa-
rameter optimization.

Second, Some standard clinical acquisition protocols in OCT
still have limitations in visualizing the underlying anatomy due
to imaging artifacts (e.g. guide-wire artifacts, blood artifacts) or
operator-dependent errors (e.g. shadows, signal drop-outs). All of
which increase the complexity of plaque region boundary segmen-
tation. In these circumstances, new methods and functions should
be introduced into the segmentation network, making the network
better able to recognize the object boundary pixels.

1.1 Related Work

In the field of coronary artery plaque segmentation, Lu et al.
(2014) proposed a method based on image feature extraction and
Support Vector Machine (SVM), which realized semi-automatic
segmentation of OCT images and achieved a 83% accuracy on a
test dataset. Shalev et al. (2016) proposed a segmentation method
based on hidden Markov random field (HMRF), which can detect
plaques from OCT cardiovascular images. Wang et al. (2017) pro-
posed a semi-automatic segmentation algorithm using K-means
clustering to obtain points aggregation which is needed for ran-
dom walk in the next stage, then used the obtained points aggrega-
tion as seed points, realizing plaque segmentation by random walk
algorithm of weight function.

Deep learning techniques have made breakthroughs in medi-
cal imaging processing in recent years. Researchers have also ap-
plied deep learning models to the task of OCT image diagnosis.
Gessert et al. (2018) proposed a novel adversarial training network
for plaque classificationwith a small dataset. The presented classi-
fication network is able to learn invariant features from patient im-
ages, which achieved improvements in plaque classification accu-
racy. Abdolmanafi et al. (2017) developed an automatic algorithm
using convolutional neural network as feature extractor, combined
convolutional neural network, SVM and random forest method,
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which is capable to classify the coronary artery (tunica adventitia,
tunica media, tunica intima).

1.2 Contributions
In view of those studies, they still have not addressed our

previously mentioned two concerns. First, this paper constructs
a Deep Residual U-Net for segmentation task, using pre-trained
ResNet101 as a backbone network of encoder and designed resid-
ual blocks as a decoder. The proposed Deep Residual U-Net
achieves a fast convergence rate while the number of network lay-
ers is large. Since the network is very deep, it's able to learn more
abundant image semantic features, thus providing more accurate
segmentation results.

Secondly, a loss function composed of weighted cross-entropy
loss and Dice coefficient is proposed to improve the network seg-
mentations performance on the object boundary. During the al-
gorithm training stage, the proposed loss function gives a greater
penalty on boundary pixels which are inaccurately predicted by
the network than a false predicted pixel within the object, so as to
improve the accuracy of boundary segmentation.

In our experiment, the proposed method is applied to a seg-
mented OCT cardiovascular vulnerable plaque dataset (Guo et al.,
2018), which is provided by the Chinese Academy of Sciences,
the First Affiliated Hospital of China Medical University, and the
Beijing Health Promotion Association. Segmentation results are
qualitatively and quantitatively evaluated, which shows the supe-
riority and effectiveness of our method.

2. OCT Cardiovascular Image Preprocessing
2.1 Description of the OCT Cardiovascular Dataset

The dataset used in our research is collected, dealt, and labeled
by the Chinese Academy of Sciences, the First Affiliated Hospital
of China Medical University, and Beijing Health Promotion Asso-
ciation. All cardiovascular images in the dataset are manually la-
beled by several specialists. Fig. 1 shows four OCT cardiovascular
image samples. Among them, imaging artifacts (e.g. guide-wire
artifacts, blood artifacts and artifacts caused by operational errors)
are marked with white lines and text, while vulnerable plaque re-
gions are marked with red lines and red text.

The dataset comprises of 2000 images in polar coordinates,
1000 of them are positive samples (i.e. images which include vul-
nerable plaques), the remaining 1000 images are negative samples
(i.e. images without vulnerable plaques). The size of each image
is 720 * 352 pixels. For the convenience of algorithm design, the
OCT images used in this paper are transformed from polar coor-
dinate to Cartesian coordinates (Athanasiou et al, 2014), the size
of converted image is 703 * 703 pixels.

2.2 Data Augmentation of OCT Cardiovascular Images
In OCT cardiovascular images, vulnerable plaque regions only

account for a small part of the image, that is to say, the positive and
negative class pixels are extremely unbalanced. The imbalance
between positive and negative pixels makes the classifier inclined
to classify an image pixel into a negative class (Lin et al., 2017),
whichmakes segmentation boundaries inaccurate even identifying
regions containing vulnerable plaque as a region without vulner-
able plaque. Therefore, we discard negative samples directly and
randomly select 800 positive samples as training set. The remain-
ing 200 images were used as test data.

Figure 1. Samples of the OCT cardiovascular dataset (in Cartesian
coordinate) and description of various imaging artifacts.

Figure 2. The structure of U-Net segmentation network.

Data augmentation is necessary because of the relatively small
training set. As shown in Fig. 1, the foreground of OCT image in
Cartesian coordinate is in a circular shape. Considering the geo-
metric properties of circle, it's very suitable to make a rotational
transformation. To be specific, we can rotate the image foreground
clockwise by 30 degrees, 60 degrees, 90 degrees, 120 degrees, 150
degrees, 180 degrees, 210 degrees, 240 degrees, 270 degrees, and
300 degrees. As a result, the amount of image data increases to
8000, 10 times that of the original number.

3. Methodology
3.1 The Design of Encoder

In the field of image semantic segmentation, there is a basic
convolutional neural network structure named U-Net, which has
been widely used in medical image segmentation, satellite image
segmentation, and road scene segmentation. It's advantages and
excellent performance have been analyzed and discussed by re-
searchers.
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U-Net structure consists of a convolutional encoding path and
a symmetrical decoding path, also called ''the Encoder-Decoder
structure'' by the academic world. An image uploaded to the en-
coding path will be processed by several repeated 3 * 3 convolution
layers and 2 * 2 pooling layers. While the feature map is gradu-
ally down sampled, the number of channels increases by multi-
ples. In the expansion path, however, the up sampling operation is
conducted in each step, which increases the resolution of the fea-
ture map and reduces the number of channels by half. The feature
map from the encoding path and decoding path are then concate-
nated together on a channel dimension through the ''skip connec-
tion'' structure, thus accurate positioning can be achieved. The last
layer of U-Net is a 1 * 1 kernel convolutional layer, which maps the
number of channels to the number of pixel categories. The num-
ber of pixel points in each channel suggests the probability that the
pixel belongs to a certain category.

Figure 3. The structure of residual unit utilized in this paper.

Figure 4. Deep Residual U-Net network structure graph.

U-Net structure utilizes several merits for image segmentation.
First, the structure of U-Net is not complicated and easily under-
standable. It's easy to adjust the structure according to the re-
quirements of specific problems. Second, U-Net can utilize both
high-level semantic information and has global positioning abil-
ity, which is very effective for a segmentation task with limited
imaging data.

The function of the encoder is to gradually decrease the resolu-
tion of the feature map and to learn upper level features from im-
age semantic information (Long et al., 2014). Usually, pre-trained
classification networks are adopted as encoders.

ResNet (He et al., 2016)was proposed in 2015 andwon 1st place
in an ImageNet classification competition. Because of its simplic-
ity and practicability, many methods in detection, segmentation,

and recognition fields have been built on the basis of ResNet50 or
ResNet101.

With the increase of network layers, traditional deep learning
networks witness a reduction in training set accuracy while ResNet
solves this problem very well (Russakovsky et al., 2015). The per-
formance improvements of ResNet come from the introduction of
a residual unit with an identity shortcut connection, which is able
to cope with the gradient disappearance problem. In this paper,
ResNet101 is selected as an encoder of segmentationmodel, which
is capable of extracting complex and high level features and then
input them into a decoder.

It's time consuming to train a completely new neural network,
and a common approach is to use a network trained by the Ima-
geNet dataset as the source of weight initialization. This method
is also called transfer learning (Pan and Yang, 2010). Based on
this strategy, pre-trained ResNet101 is used as the encoder of the
proposed segmentation network.

3.2 Deep Residual U-Net Segmentation Network
U-Net with deep layer can provide better segmentation results,

but the increased network layer tends to decrease training set accu-
racy. Thus, we utilized the merits of residual network and added a
residual unit to U-Net (Xie et al., 2016). In addition, the core idea
ofU-Net is to stitch low level features into corresponding high level
features, adding low level texture features to high level semantic
features (Ronneberger et al., 2015). This idea is similar to a resid-
ual network. A residual network is composed of many residual
units. The general equation of residual unit can be expressed as

Y = f (h(x)+F(x,w)) (1)

Where x denotes the input of residual unit, h denotes identity
mapping (i.e. h(x) = x ), and F denotes residual function. The
structure of a residual unit used in our research is displayed in
Fig. 2.

How to add residual units into Deep Residual U-Net is de-
scribed as follows: we utilize ResNet101 in network encoder part,
this is to say that the encoder has already become a residual struc-
ture. In decoder part, we construct the residual decoder block,
adding residual connections in the original decoder. Upsampling
operation between two adjacent residual decoders is realized by bi-
linear interpolation. The last layer, before output, is a 1 * 1 kernel
convolutional layer, which adjusts the number of channels and out-
puts a pixel-level probability map. The structure of a deep residual
U-Net is demonstrated in Fig. 3. As Fig. 3 shows, the encoder is
ResNet101, and we modify each decoder layer to residual decoder
block. The structure of residual decoder block is also shown in
Fig. 3.

3.3 Improved Loss Function for Accurate Boundary Seg-
mentation
The original U-Net achieves superior segmentation results by

calculating cross-entropy loss between feature map and the actual
label in each pixel. However, in the OCT cardiovascular dataset,
vulnerable plaque regions only account for a small part of whole
image. Unbalanced foreground and background makes it easy for
the network to predict a pixel as background, which leads to in-
complete detection of vulnerable plaque regions. In order to im-
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Figure 5. Qualitative evaluation of different segmentation results. Each column utilizes a different method, the quality of segmentation results
can be observed directly.

prove segmentation results, a loss function comprised of weighted
cross-entropy and Dice coefficient is adopted (Papandreou et al.,
2015; Ronneberger et al., 2015).

Weighted cross-entropy loss provides more attention to ob-
ject boundary pixels, making segmentation boundaries more ac-
curate. While Dice coefficients provide high accuracy of pixel
classification, ensuring the general segmentation is in good qual-
ity. Details of the proposed loss function is described as follows.
We use weighted cross-entropy loss to counteract the unbalanced
foreground and background. The expression of weighted cross-
entropy loss is displayed in Eqn. 2:

E = ∑
x∈Ω

w(x) log
(

pl(x)(x)
)

(2)

Where the weightw(x) is an approach to counteract unbalanced
foreground and background, hoping the algorithm will learn more
information about vulnerable plaque boundary. The weight w(x)
is calculated using Eqn. 3:

w(x) = wc(x)+w0 exp

(
− (d1(x)+d2(x))

2

2δ 2

)
(3)

Where denotes the frequency of classes, d1(x) denotes the dis-
tance between a pixel and the nearest vulnerable plaque bound-
ary, and d2(x) denotes the distance between a pixel and the sec-
ond nearest vulnerable plaque boundary. The value of constant pa-
rameterand are determined following literature (Han and Ye, 2018;

Man et al., 2019; Ronneberger et al., 2015). We set w0 = 10 and σ
= 5 pixel.

Dice coefficient is derived from dichotomy and is essentially a
measure of the overlapping parts of two samples. The index ranges
from 0 to 1, in which 1 represents completely overlap. Dice loss
is also appropriate for unbalanced foreground and background.
Eqn. 4 shows the expression of Dice coefficient loss:

D = 1−
2 ∑

pixels
ytrueypred

∑
pixels

y2
true + ∑

pixels
y2

pred
(4)

Where ytrue denotes the real value of a pixel and ypredict denotes
the predicted value of a pixel. Combining the two kinds of losses
together, the total loss is obtained as shown in Eqn. 5:

Ltotal = E +D (5)

4. Experiments and Analysis
Experiments were performed using the OCT cardiovascular

dataset as previously described. 800 samples were randomly se-
lected from 1000 positive images, and the training set was aug-
mented to 8000 images using the data augmentation method stated
above. The remaining 20% of original dataset is used as a test set.

4.1 Evaluation Index of Experiments
The evaluation indexes in our experiment are shown in Table 1.
1) Pixel Accuracy (PA): This is a basic and commonly used

segmentation performance evaluation index, which calculates the
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Table 1. Segmentation evaluation indexes and explanation.

Evaluation indexes Explanation

Pixel Accuracy (PA) The proportion of correctly classified pixels to total pixels.

Mean Pixel Accuracy (MPA)
An improved index based on PA. It calculates the correct proportion of each kind of pixel classification by

category, then takes the average value of all categories.

Mean Intersection over Union (MIoU)
The proportion of the union of predicted region and ground truth region to predicted region plus

ground truth region.

Frequency Weight IoU (FWIoU)
An improved index based on MOU. FWIoU balance the weight of each category according

to the frequency of each category.

Precision Rate (P) Proportion of actual positive samples in the positive samples predicted by the algorithm.

Recall Rate (R) Proportion of positive samples predicted by the algorithm in total actual positive samples.

proportion of correctly classified pixels to total pixels. The calcu-
late equation is the following:

PA =

k
∑

i=1
nii

k
∑

i=1
ti

(6)

2) Mean Pixel Accuracy (MPA): This is an improved segmen-
tation evaluation index from PA. MPA calculates the proportion of
correct classified pixels to total number of pixels in each pixel cat-
egory, then calculates the average value from all categories. The
equation is described as Eqn. 7:

MPA =
1
k

k

∑
i=0

nii

ti
(7)

3) Mean Intersection over Union (MIoU): This index is a mea-
surement which calculates the overlap degree of the algorithm seg-
mented area and the reality area. The equation is listed as equation
Eqn. 8:

MIoU =
1
k

k

∑
i=0

nii

ti −nii +
k
∑

j=1
n ji

(8)

4) Frequency weighted IoU (FWIoU): This is improved index
from MIoU, it balances the weight of each category according to
occurrence frequency of each category. The equation is given as
below:

FWIoU =

(
k

∑
i=1

ti

)−1
1
k

k

∑
i=1

nii

ti −nii +
k
∑

j=1
n ji

(9)

Where k denotes the total number of categories in the image
dataset, ti denotes the total number of pixel belongs to i-th cate-
gory, and ni j denotes pixels that belong to i-th category, but in-
correctly predict as j-th category.

Let TP be the positive class, which the algorithm also predicts
as positive class, FP be the negative class, which the algorithm

also predicts as positive class. FN is the positive class which the
algorithm predicts as negative class. Then the equations of preci-
sion rate and recall rate can be obtained as following:

precisionrate : P =
T P

(T P+FP)
(10)

recallrate : R =
T P

(T P+FN)
(11)

4.2 Experiment Detail of Deep Residual U-Net
Input images are normalized after subtracting the mean value.

We utilize the SGD optimization algorithm, where the param-
eter momentum of SGD is set to 0.0005, and the parameter
weight_decay is set to 0.0002. Learning rate of the network is
set to 0.001 and batch-size is set to 1 during training.

The segmentation results of deep residual U-Net are evaluated
qualitatively and quantitatively. Qualitative evaluation is shown in
Fig. 4. and quantitative evaluation is shown in Table 2.

4.3 Experiment and Analysis of Boundary Segmentation
To verify the effectiveness of the proposed loss function on ob-

ject boundary, several experiments are conducted as described be-
low:

1) Prototype U-Net and prototype U-Net with proposed loss
function.

2) Deep Residual U-Net + ResNet101 andDeep Residual U-Net
+ ResNet101 with proposed loss function.

The experiment results are shown as follows:
From Fig. 6, it can be seen that (d) has improved boundary

segmentation results than (c). Comparing (e) with (f), both of
them utilized Deep Residual U-Net proposed in this paper, the
difference is that (e) only used common loss function while (f)
used the proposed loss function. Results demonstrate that (f) has
a smoother boundary shape and is closer to manual labeling .

After qualitative evaluation, we investigate further to see how
much the proposed function improves boundary segmentation ac-
curacy. Quantitative evaluation is conducted as following. We
contour object boundary pixels from manual image labeling as
shown in Fig. 7, and pay close attention to the boundary pixels
only.

We recorded IoU rate of boundary pixels during network train-
ing iterations and plotted the IoU value-Iteration curve, which is
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Table 2. Quantitative evaluation of different U-Net based segmentation methods.

Pixel Accuracy

(PA)

Mean Pixel

Accuracy (MPA)

Mean Intersection

over Union (MIoU)

Frequency Weight

IoU (FWIoU)

Precision Rate

(P)

Recall Rate

(R)

Prototype U-Net 0.6253 0.6514 0.4207 0.5023 0.8245 0.7438

U-Net + VGG16 0.7829 0.8042 0.6511 0.7356 0.8633 0.8267

U-Net + ResNet50 0.8931 0.824 0.7748 0.8627 0.8721 0.8384

U-Net + ResNet101 0.9195 0.9005 0.777 0.8587 0.8965 0.8691

Deep Residual

U-Net ( The proposed

method in this paper)

0.9331 0.9011 0.8548 0.864 0.9433 0.9135

Figure 6. Original image in OCT cardiovascular image dataset is
shown in (a), the manual label segmentation boundary from special-
ists is shown in (b), prototype U-Net segmentation result are shown in
(c), prototype U-Net with proposed loss function segmentation result
are shown in (d), Deep Residual U-Net + ResNet101 segmentation
result are shown in (e) and Deep Residual U-Net + ResNet101 with
proposed loss function segmentation result are shown in (f).

also known as a ``learning curve''. As discussed before, IoU rate
is a common object segmentation indicator, giving quantitative
evaluation of segmentation accuracy. Fig. 8 shows the IoU value-
Iteration curve of Deep Residual U-Net with the proposed loss
function and Deep Residual U-Net with common loss function.
It's not difficult to see that Deep Residual U-Net with proposed
loss function gets a higher IoU value than with common loss func-
tion. Also, Deep Residual U-Net with the proposed loss function
converges faster and gets less fluctuation in the curve.

Based on the experiment above, we can draw a conclusion that a
novel loss function combiningweighed cross entropy loss andDice
coefficient can improve the classification accuracy of boundary

Figure 7. (a) is an original image, (b) is the manual label of (a), (c)
displays contoured object boundary.

Figure 8. IoU value-Iteration curve of Deep Residual U-Net with the
proposed loss function and Deep Residual U-Net with common loss
function.

pixels, reduce error classification, thus providing more accurate
boundary segmentation.

5. Conclusion
In this paper, a Deep Residual U-Net segmentation network

is proposed for OCT cardiovascular image segmentation. We fo-
cused on solving two problems in the application of deep learning
to vulnerable plaque diagnose in OCT images. (1) Compared with
typical datasets in natural image domain, the OCT cardiovascular
dataset is smaller and variables in the image acquisition process
make the OCT cardiovascular dataset more complex. In this case,
deep learning network will overfit easily. (2) Owing to imaging ar-
tifacts (e.g. guide-wire artifacts and blood artifacts) or operational
error, which cause image information loss and partial shadow, vul-
nerable plaque segmentation becomes more complex (Prakash et

176 Li and Jia



al., 2013). To solve these problems, a Deep Residual U-Net seg-
mentation network is proposed where the backbone network of
encoder is replaced by pre-trained ResNet101 and the decoder is
comprised of designed residual blocks. The deepening of the net-
work layer and the introduction of residual block provide superior
segmentation results. Furthermore, a novel loss function consists
of weighted cross entropy and Dice coefficient is proposed to im-
prove the segmentation accuracy of object boundary.

We conducted qualitative and quantitative evaluation to the
proposed Deep Residual U-Net. Qualitative evaluation by ran-
domly selecting four images from the test set and compared seg-
mentation results using different methods. Quantitative evaluation
uses Pixel Accuracy (PA), Mean Pixel Accuracy (MPA), Mean In-
tersection over Union (MIoU), Frequency Weight IoU (FWIoU),
Precision Rate (P) and Recall Rate (R) as indicators and compared
the value of different methods.

The proposed Deep Residual U-Net and loss function which
consisted of weighted cross entropy and Dice coefficient received
the highest score in all of the indicators we choose for quantitative
evaluation. Besides, in qualitative evaluation, the proposed ap-
proach demonstrated the most accurate segmentation results. Both
quantitative and qualitative evaluation prove the feasibility and ad-
vantage of the proposed method. Finally, the conclusion can be
made that the method proposed in this paper is valuable and use-
ful for automatic OCT cardiovascular image segmentation.
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