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Artificial Intelligence (AI) performs human intelligence-dependant
tasks using tools such as Machine Learning, and its subtype Deep
Learning. AI has incorporated itself in the field of cardiovascu-
lar medicine, and increasingly employed to revolutionize diagnosis,
treatment, risk prediction, clinical care, and drug discovery. Heart
failure has a high prevalence, and mortality rate following hospital-
ization being 10.4% at 30-days, 22% at 1-year, and 42.3% at 5-years.
Early detection of heart failure is of vital importance in shaping the
medical, and surgical interventions specific to HF patients. This has
been accomplished with the advent of Neural Network (NN) model,
the accuracy of which has proven to be 85%. AI can be of tremen-
dous help in analyzing raw image data from cardiac imaging tech-
niques (such as echocardiography, computed tomography, cardiac
MRI amongst others) and electrocardiogram recordings through in-
corporation of an algorithm. The use of decision trees by Rough
Sets (RS), and logistic regression (LR) methods utilized to construct
decision-making model to diagnose congestive heart failure, and
role of AI in early detection of future mortality and destabilization
episodes has played a vital role in optimizing cardiovascular disease
outcomes. The review highlights the major achievements of AI in re-
cent years that has radically changed nearly all areas of HF preven-
tion, diagnosis, and management.
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1. Introduction
Artificial Intelligence (AI) possesses the capability to per-

form human intelligence-dependant tasks such as receiving
perspicuity, learning semantics, and formulating an analy-
sis using various algorithms and cognitive computing [1].

AI uses the concept of Learning, which can be classified
into supervised, unsupervised, and re-enforcement. Machine
Learning (ML) is the core of AI that uses a model based on
training data to make decisions, and program algorithms to
solve the problem [2]. The commonly utilized classifica-
tion models include Binary, Multi-class, Multi-label and Im-
balanced Classification. Binary classification uses algorithms
like Logistic Regression, k-nearest neighbors, decisions tree,
support vectormachine and naïve bayes to classify two labels’
tasks. Multi-class uses algorithms like decisions tree, sup-
port vector machine, naïve bayes, random forest, and gra-
dient boosting to classify tasks involving more than two la-
bels. Multi-label classifies tasks that have two or more class
labels, where one or more class labels may be predicted for
each example, unlike the multi-class where a single class label
is predicted for each example. The class labels with unequally
distributed tasks are classified using the Imbalanced classifi-
cation model [3]. The distributions can vary from slightly
imbalanced to severely imbalanced. It constitutes a signifi-
cant challenge in predictive modelling as algorithms used for
imbalanced classification are based on assumptions [4]. Class
labels are often string values, e.g., “spam”, “not spam”, which
aremapped to numeric values in the process of label encoding
[3]. Deep Learning (DL) is a class of the ML algorithm that
uses higher level features such as neural networks derived
from a model of the human brain which allows a computer
system to read, build, and learn complex hierarchical repre-
sentation [5]. It involves the transformation of the input data
into amore compounded output data. Genetic predisposition
is a major factor in the development of cardiovascular dis-
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Table 1. Description of various functions of components of artificial intelligence.
TYPE OF AI DESCRIPTION

SUPERVISED Usage of a previously labelled database to predict outcomes of future events.

UNSUPERVISED Identification of previously un-categorised database to predict peculiar relation between the dataset.

RE-ENFORCEMENT Interaction of a machine with its environment using sensors, camera and GPS. It is typically used for robotic interventions.

ARTIFICIAL NEURAL Computing system that analyses and processes information in a similar way compared to the human brain [7].

CONVOLUTIONAL NEURAL Performs analyses of visual images [8].

RECURRENT NEURAL Functions by developing connections between nodes from a directed graph along a dynamic temporal sequence [9].

Abbreviations: GPS, global positioning system.

eases such as atherosclerosis and advanced techniques such
as the use of DL networks can be used to predict advanced
coronary artery calcium through a large-scale genome-wide
association study [6]. DL can be further sub-divided into Ar-
tificial Neural Network, Convolutional Neural Network, and
Recurrent Deep Learning, as shown in Fig. 1. Table 1 [7–9]
illustrates the description of the functions of various compo-
nents of artificial intelligence.

Fig. 1. Classification of Learning and Deep Learning. The con-
cept of learning can be sub-divided into supervised, unsupervised, and re-
enforcement. Deep learning comprises complex features including artificial,
convolutional, and recurrent neural networks.

The evolution in cardiovascular diseases requires ad-
vancements in the treatment and diagnostic techniques, thus
AI is now being rapidly incorporated in the field of cardiovas-
cularmedicine. AI has the potential to revolutionize themed-
ical diagnosis, treatment, risk prediction, clinical care, and
drug discovery through the interpretation of vast databases
more efficiently as compared to the human brain [10, 11].
The use of DL-based diagnosticmodalities such as cardiac an-
giography, echocardiography, and electrocardiogram (ECG)
in the field of cardiovascular medicine has played a pivotal
role in revolutionizing the diagnosis of cardiovascular dis-
orders such as heart failure, myocardial infarction, arrhyth-
mia, and valvular heart disease. Paroxysmal Supraventricu-
lar Tachycardia (PSVT) is a sporadic, sudden, and recurrent
cardiovascular disorder that can worsen the quality of life of
the patients. Although treatable; the condition is difficult to

diagnose due to its instantaneous episodes occurring during
normal sinus rhythm. However, the use of DML-based ECG
has made the early diagnosis of PSVT possible. The use of di-
agnostic modalities and other AI-based tools such as medical
resonance imaging (MRI), intravascular ultrasound, optical
coherence tomography (OCT), and single photon emission
computed tomography (SPECT) allows clinicians to make a
detailed and faultless diagnosis of potentially fatal cardiovas-
cular diseases [12]. Furthermore, the use ofML-based AI has
proven to predict 5-year survival rate in patients with cardio-
vascular diseases, more accurately (80%) as compared to the
clinicians (60%) [13].

Heart failure is a major cardiovascular disorder with the
mortality following hospitalization being 10.4% at 30 days,
22% at 1 year, and 42.3% at 5 years, despite marked improve-
ment in medical and device therapy [14]. The multifacto-
rial pathophysiology of HF that includes structural and func-
tional abnormalitiesmakes the diagnosis and treatment of HF
more difficult. The advent of AI in the field of cardiovascular
medicine through diagnostic modalities such as ECG, Echo,
angiography, and the use of modern techniques like robotic
percutaneous coronary intervention in its management has
markedly reduced the mortality of patients with HF. It is un-
likely that AI will replace physicians, however, AI can act as
an essential tool that can help physicians improve their clini-
cal judgment, and provide a precise diagnosis of diseases like
HF. In this study, we aim to discuss the role of AI in the de-
tection and diagnosis of HF.We have also discussed the limi-
tations in the incorporation of AI in cardiovascular medicine,
and how it can be further developed.

2. Methods
An extensive literature review was conducted using

PubMed/MEDLINE and Cochrane databases from their in-
ception until June 2021 for this review. The following
search stringwas employed: (“artificial intelligence” OR “Ma-
chine Learning” OR “Deep Learning”) AND (“heart failure”).
Google Scholar was also searched to identify grey literature.
No time or language restrictions were set. All articles re-
trieved from the initial search were transferred to Endnote
Reference Library (VersionX9; ClarivateAnalytics, Philadel-
phia, Pennsylvania) where duplicates were identified and re-
moved. Initially, the search included 26,246 articles, 19,582
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duplicates identified between Cochrane and PubMed were
removed. A total of 6664 titles and abstracts were scanned,
of which 254 studies were found relevant. Further 82 exclu-
sions were made as the full text was not available for these
studies. Another fourteen studies were excluded as they were
not available in English. A total of 158 full texts was then re-
trieved, and further 30 exclusions were made as these studies
were beyond the scope of this review. The exclusions were
made based on studies not being relevant to the utilization of
artificial intelligence in diagnosis, classification, prevention,
and management of heart failure. Finally, 128 full-text arti-
cles were included in this review.

2.1 The role of AI in the diagnosis of heart failure
According to the European society of cardiology (ESC),

nearly 26million people have been diagnosedwithHFworld-
wide [14–16]. Furthermore, 3%–5% of hospital admissions
have been attributed to HF incidents. Hence, early detection
of the disease is of vital importance in shaping the medical
and surgical interventions to reduce the high rates of mor-
tality and morbidity. AI has been reported to correct any
existing medication errors, and hence can be effectively uti-
lized as an ‘assisting resource’ on which clinicians can rely,
and use in daily clinical practice [17]. Furthermore, AI and
human predictive skills have been compared in previous lit-
erature. American Heart Association (AHA) and American
College of Cardiology (ACC) provide guidelines on primary
prevention of cardiovascular disease using risk factors such as
nutrition, obesity, physical factors, diabetes, and lipid profile.
In a new study, ACC/AHA guidelines were compared with
four machine-learning algorithms: random forest, logistic
regression, gradient boosting, and neural networks. The
results not only indicated NN to predict 7.6% more events
than ACC/AHA criteria but also took into account twenty-
twomore data points including ethnicity, kidney disease, and
arthritis which are not part of AHA/ACC guidelines thus
demonstrating AI to be of great value in predicting risks [18].
Another study applied NN for the diagnosis of HF on 40 indi-
viduals with the dataset comprising age, gender, blood pres-
sure, and smoking history to determine predictors for HF.
The model proved to be highly accurate with 85% of the re-
sults correctly predicted [19]. The first-line investigation
performed in suspected heart problems is usually ECG, af-
ter which the diagnosis gets narrowed down, and if HF is
suspected, the physicians investigate for cardiac biomarkers
such as natriuretic peptides. However, natriuretic peptides
are not very specific markers for HF. Instead, they are sub-
jective to factors such as obesity, age, kidney disease amongst
others [15, 20, 21]. Heart failurewith preserved ejection frac-
tion (HFpEF) is a rapidly emerging global health issuewith its
prevalence increasing at a rate of 1% per year relative to heart
failure with reduced ejection fraction (HFrEF) owing to risk
factors including age, gender, weight, and hypertension.

HFpEF is a complex syndrome resulting from structural
and functional cardiac disorders rather than one disease en-
tity hence making it difficult to diagnose by clinicians treat-

ing HF patients. Kwon et al. [21] established an adequate tool
to screen it reliably and economically. The study developed
and validated a DL model (DLM) based on an ensemble NN
using 12-, 6-, and single-lead ECG that demonstrated reason-
able performance. The DLMwas further visualized to deter-
mine the characteristics and regions of ECG that were used
for HFpEF prediction and confirmed the important variable
for the decision in other MLmodels based on logistic regres-
sion (LR), random forest (RF), and convolutional neural net-
work (CNN). A sensitivity map was used to identify where
DLM focused on primarily, and it was found to have focused
on the R wave in the QRS complex as well as the T wave
[21]. The study further showed that in the subgroup of 1412
patients without HFpEF at initial echocardiography, 246 pa-
tients developed HFpEF within 24 months. Patients whose
DLM was defined as having a higher risk had a significantly
higher chance of developing HFpEF than those in the low-
risk group (33.6% vs. 8.4%, p< 0.001). Hence, the application
of DLM to echocardiographic and ECG finding for screen-
ing HFpEF proved valuable [21]. AI coupled with ECG find-
ings can also be used to highlight patients with HFrEF. A ran-
domized control trial demonstrated AI to diagnose EF<50%
in greater number of patients (2.1%) compared to usual care
(1.6%) [22].

HeartModel is another modern invention that makes use
of echocardiography in allowing consultants to determine
disease status and treatment options. It is a software pack-
age that provides an automated analysis of echocardiographic
findings in terms of echocardiographic parameters such as
chamber volumes and ejection fractions [23]. A study con-
ducted on the Chinese population compared the results of
automated vs. manual echocardiography. It was found that
atrial and ventricular volumeswere a bit overestimated by the
automated echocardiography device in comparison to man-
ual echocardiography, while left ventricular ejection frac-
tion (LVEF) was the same for both employed methods [23].
Statistical results favored the incorporation of automated
echocardiography devices in place of manual echocardiogra-
phy to assess chamber volumes and ejection fraction to diag-
nose HF [23].

2.2 Application of logistic regression (LR), random forest (RF),
and support vector machines (SVM)

The LR model of AI has been applied in the diagnosis of
congestive heart failure (CHF). Son et al. [24] included CHF
patients presenting with complaints of dyspnea. LR- based
decision-makingmodel was used to generate certain decision
rules based on predictors of CHF. A decision-relative reduct
was selected to generate decision rules using the Rough Set
(RS) based decision model. The RS-based model performed
much better in the prediction of CHF patients than the LR-
based model, with an accuracy of 97.5% and 88.7%, respec-
tively. It was supported by the AUC for the two decision-
based models, 97.5 ± 1.1% and 88.8 ± 3.1%, respectively
[24]. RF model also provides 100% classification accuracy
in detecting CHF. A study conducted by Masetic et al. [25]
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made use of long-term ECG findings extracted using the au-
toregressive Burg method. Various classifiers were tested in-
cluding SVM, artificial neural network (ANN), and k-nearest
neighbors (k-NN) amongst which RF algorithm was selected
due to a higher level of accuracy, and specificity for the di-
agnosis of HF [25]. Detection of HF six months before the
actual clinical diagnosis was achieved by Wu et al. 2010
[26]. The Geisinger Clinic’s electronic health records were
obtained to be used in the model; 179 independent variables
were expressed. The authors used SVM, boosting, and LR
methods for HF identification. The study demonstrated that
HF was detected more than six months before the actual date
of clinical diagnosis using the LR model and boosting. SVM
demonstrated the poorest performance, possibly owing to
imbalanced data [26].

2.3 Risk level assessment using decision tree classifiers

Decision-making models involving decision trees have
been utilized for the diagnosis of CHF in patients presenting
to the emergency department. Rough sets (RS) and LRmeth-
ods have been used to construct a decision-making model
with the RS-based model proved to be more accurate than
the LR model [24]. Aljaaf et al. 2015 [15] put forward a
5-risk level assessment (1 = no risk and 5 = extremely high
risk) for HF prediction by making use of the C4.5 decision
tree classifier [15]. The dataset used for the project was fur-
ther improved by considering lifestyle factors such as obesity,
physical activity, and smoking. The cumulative accuracy for
the 5 risk levels was observed to be 86.3% [15].

2.4 Least-squares support-vector machines (LS-SVM) application
with ML

The heart responds to stimuli from inside and outside
the body, which eventually leads to heart rate variability
(HRV). The usage of ECG in HRV has limitations because
HRV analysis in identifying cardiac problems is usually in-
complete. By using linear and nonlinear HRV findings, the
accuracy of results can be improved [27]. Linear Autore-
gressive (AR) makes use of the frequency and time domain.
The time-domain makes use of R-R interval, while the fre-
quency domain uses the oscillation analysis of 5-minute ECG
recordings or the Holter ECG, which monitors heart rhythm
throughout the day [28]. Nonlinear AR takes the humoral,
electrophysiological, and hemodynamic variables, etc. into
consideration. Support vector machines (SVM) can also be
utilized for the detection of CHF as a study demonstrated it
to be amongst the top three classification methods with an
accuracy rate of nearly 98%. This study analyzed ECGs for
normal rhythm, SV arrhythmia, and CHF amongst hundred
patients. Vectors were employed for this purpose compris-
ing SVM, artificial neural network (ANN), C4.5 decision tree,
and RF which then underwent clustering and classification.
Another study was conducted to explore the nonlinear AR
in further detail, where the analysis of the spectrum was in-
stead using ML models such as SVM, decision trees, k-NN,
and ensemble classifiers. SVM was used with its kernel, en-

abling it to take data as input and transform it into the re-
quired form, i.e., linear, Gaussian, linear base function, and
polynomial. This study also reported SVM to demonstrate
the highest performance amongst the different methods em-
ployed [29]. Finally, Zheng et al. 2015 [30] introduced a
computer-assisted system and made use of the least-squares
SVM (LS-SVM), which utilized heart sounds and cardiac re-
verse features. The results showed ANN andHiddenMarkov
Models to be dominant over the LS-SVMmodel.

2.5 Expert driven knowledge, ML and DLM

The role of AI in assisting HF specialists in diagno-
sis can be made easy by potential assistance from Artificial
Intelligence-Clinical Decision Support System (AI-CDSS)
[31]. It is a hybrid system that contains both expert-driven
andML-driven knowledge to grow the knowledge base with
HF [31]. Retrospective cohorts and prospective pilot stud-
ies with HF and non-HF patients were carried out to observe
the accuracy of AI-CDSS, which was converted into mind
maps and then to a decision tree to be assessed by physicians
[31]. Machine-derived learning involved the usage of 5 al-
gorithms that selected LVEF left atrial volume index (LAVI)
and left ventricular mass index (LVMI) as contributing fac-
tors [31]. All algorithms were ranked for accuracy, the num-
ber of rules extracted, and the number of attributes involved
[31]. The classification and regression tree (CART) algo-
rithm was selected owing to its highest accuracy. Combin-
ing the two methods (ED and ML), lead to hybrid knowl-
edge, the clinical knowledge model (CKM), which focused
on the physical findings in patients, while a prediction model
from ML looked for LVEF. The overall diagnostic accuracy
was found to be 90% (expert-driven), 88.5% (ML-driven) and
98.3% (hybrid CDSS) [31]. Direct learning can assess compli-
cated patterns in dataset more than NN, which is why DL is
being incorporated more often in the field of medicine [20].
These models have also been studied for diagnosis of HF us-
ing chest X-rays. Matsumoto et al. [32] used 952 chest x rays
and established a DL model with an accuracy of 82% for HF
detection.

2.6 Modern-day use of sensors in measuring patient vitals and
implementation of IoT

Modern and compact implanted sensors are highly ef-
ficient in measuring vitals that are highly specific to HF’s
course and prognosis. These sensors arewireless and battery-
less. Raised Left Atrial Pressure (LAP) is the earliest and
most specific sign of HF before any symptoms appear. Im-
plantable sensors can now easily record LAP and print a
waveform. V-LAP is amongst the first battery-less cardiac
monitoring devices which track LAP and provides remote
HF care in such patients [33]. With the help of V-LAP,
physicians can now continuouslymonitor a patient’s LAP and
identify HF even before the onset of HF symptoms [33]. In
recent years, pulmonary artery pressure (PAP)measurements
at home have been possible through the implantation of pres-
sure sensors in the pulmonary artery. CardioMEMS system is
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amonitoring devicemost commonly utilized tomeasure PAP
[33]. It was used in the CHAMPION trial and a 33% decline
in cardiac hospitalizations was noted over 18 months [34].
Apart frommeasuring PAP, devices such as defibrillators and
pacemakers have shown inefficacy in preventing hospitaliza-
tion/rehospitalization in contrast to the CardioMEMS [35].
The level of physical activity determines the course of HF to
a great extent. Informative accelerometers are non-invasive
devices that can be used to track the physical activity of HF
patients which has been found to predict the risk of hospital-
ization [33]. Remote Dialectic Sensing (ReDS) uses electro-
magnetic waves to detect the extent of pulmonary congestion
which infers lung field concentration, helping in the interpre-
tation of CT scans of lung field concentration [33].

Various objects around us have been incorporated with
an electronic software broadly termed the internet of things
(IoT). It consists of 3 layers, a sensing layer that is present
in the particular sensor used by the patient, a transport layer
which is composed of connectors transporting data from sen-
sor to remote device, and an application layer which is the
server [36]. Physicians with the help of IoT can now moni-
tor various vitals in their patients and forecast medical emer-
gencies. This way, patients can now have medical care avail-
able at their doorstep, reducing the frequency of hospital-
izations. When combined with specific algorithms, IoT can
also warn us of heart attacks beforehand [36]. Cardiac resyn-
chronization therapy (CRT) devices can additionally detect
intrathoracic impedance, which further helps in predicting
hospitalization in HF patients [37]. The MultiSENSE study
presented an algorithm based on data from CRT defibrilla-
tors which showed 70% sensitivity in hospitalization predic-
tion [38]. To avoid false-positive predictions in HF, the re-
search highlighted this issue and provided that a telephone
triage questionnaire can easily eliminate false-positive results
[39]. MultisensorNon-invasive RemoteMonitoring for Pre-
diction of Heart Failure Exacerbation (LINK-HF) studymade
use of a non-invasive sensor placed on the patient’s chest us-
ing adhesive tape. The sensor could record ECG, 3-axis ac-
celerometry, skin impedance, body temperature, and posture
[40]. The Bluetooth-enabled connection between the sensor
and cellular phone allowed for data transfer. Data-enabled
cell phone syncs the transferred data to an encrypted cloud
for viewing and storage. Cloud-based data gets converted
to similarity-based modeling (SBM), and a baseline model is
constructed within 72 hours of hospital discharge. Following
this, the sensor on the patient’s chest switches to the scrutiny
phase and monitors the vitals [40]. Variations in vitals due
to normal activities are noted to remove false alarms. This is
done by creating a multivariate change index range, from –1
to 1. The change in the patient’s physiology would indicate a
greater index change, while no change in physiology would
be closer to 0. The change in index range (–1 to 1) allows for
continuous monitoring of patient’s vitals and provides indi-
cations for rehospitalizations [40].

2.7 Derivation of DEWS using TTS and RRS
To manage and prevent in-hospital cardiac arrest, a track

and trigger system (TTS) and rapid response system (RRS)
were introduced to identify cardiac arrest. Although TTS
proved to be of great help, it was associated with high false
alarms and low sensitivity. Single parameter TTS is defined
as when anyone’s vital sign concerning the heart, i.e., blood
pressure, heart rate, respiratory rate, body temperature, and
mental status is found to be abnormal [41]. To avoid a high
rate of false alarms, a deep learning-based early warning sys-
tem (DEWS) was introduced. This system has better sensi-
tivity and a low rate of false alarms. The DEWS make use
of ML by identifying trends in the dataset, including specific
vitals, as mentioned above [42]. The model was used in two
hospitals, a cardiovascular teaching hospital, and a commu-
nity general hospital. Patients who had cardiac arrest had ex-
perienced deathwithin 30minutes of admission, orwhowere
outside the study period were excluded. DEWS is a 3 layered
neural network system which makes use of the time series
data [42] by going over records to conclude a patient’s cur-
rent state. DEWS was compared with modified early warn-
ing score (MEWS) at 3 sensitivities and SPTTS at 1 sen-
sitivity. It was also compared with logistic regression and
random forest at 75% sensitivity [43]. The area under the
receiver operating characteristic curve (AUROC), the area
under the precision-recall curve (AUPRC), and confidence
intervals (CIs) were greater for DEWS compared to other
models [42]. The specificity, positive and negative predic-
tive value, F measure, MACHP, and net reclassification value
were assessed using 75% sensitivity. DEWS was found to be
the most accurate amongst all systems, hence DEWs can be
used in the RRS to identify cardiac arrest [42, 43].

2.8 Classification of HF
Algorithms can be used to classify HF into many types

in the same way they have been used to diagnose patients
with HF, well beforehand, and prevent hospitalization. Un-
supervised ML performs grouping, i.e., observes similari-
ties in the total dataset and compiles similar data in one
place whereas supervised ML identifies trends and predic-
tions [5, 44]. A study used model-based clustering (MBC)
to classify HF in different phenotypes. HFpEF patients were
taken in the study along with their variables such as echocar-
diography and laboratory results [45]. MBCmade use of R in
the mclust package. After the application of MBC, classifiers
were made to assign patients in their respective groups using
Elastic Net, Neural Networks, and Naive Bayes. Resampling
was done using cross a validation procedure in which four-
fifth of the sample was used in the optimization of the model
parameters, while the remaining of the sample was used in
the prediction performance assessment, i.e., the ability of
the ML model to put samples in the correct phenogroups
[45]. Six phenogroups were identified viaMBC; phenogroup
1 consisted of young patients with cardiovascular risk fac-
tors, including left-sided heart changes along with patients
that progressed to chronic kidney disease. Phenogroup 2 pa-
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tients included severe HF with the highest degree of dias-
tolic dysfunction, and deteriorating right ventricular func-
tion. Phenogroup 3 included young patients with milder
HF variants. Phenogroup 4 included male patients with hy-
pertension and enlarged left atrium contributing to the risk
of atrial fibrillation. Phenogroup 5 and 6 included females
with hypertension, atrial fibrillation, and low body mass in-
dex (BMI) [45]. After establishing the protocol, a test runwas
carried out by clustering patients and using Elastic Net to put
them into phenogroups accordingly [45].

In another study, unsupervised clustering was used with
the addition of CRT devices. The variables including
echocardiography values were recorded, and the ML algo-
rithm was used, after which the samples were clustered us-
ing the K-algorithm to identify 4 phenogroups undergoing
CRT [44]. Phenogroups 1 and 3 involved females with car-
diomyopathy and left bundle branch block (LBBB), while
phenogroup 1 was found to have prolonged QRS interval in
comparison. Phenogroups 2 and 4 involved males with HF,
predominantly caused by ischemia but had a lesser percentage
of patients with LBBB [44]. Cluster analyses on patients with
HFpEF using exercise tolerance have also been performed in
published literature. A study included HFpEF patients who
underwent echocardiography during rest and following exer-
cise to monitor heart function at both states. Clustering was
done of noted variables which lead to the separation of the to-
tal dataset into two distinct phenogroups based on data sim-
ilarities and differences. The first phenotype had a decreased
chronotropic/diastolic reserve, ventricular arterial coupling
(indicating global heart efficiency), and abnormal longitudi-
nal deformity, while the other phenotype showed a preserved
heart rate reserve combined with low left ventricular systolic
reserve [46]. Few studies have classified HF using conven-
tional tress and ML classifiers. Classification trees divide the
total dataset into many subsets but are found to have ques-
tionable accuracy, while ML uses an aggregate of classifica-
tion trees [24]. Classification trees are simple to use and can
utilize binary methods to dividing the dataset into two sub-
sets. The classification of HF has been performed in two parts
in a study with all classification techniques used in a man-
ner to keep two classifications as their result, i.e., HFpEF and
HFrEF.

The bootstrap technique, also known as bagging is a mod-
ern technique that has been previously implemented in liter-
ature. Multiple bootstraps were applied to the sample size,
and a classification/regression treewas utilized for each boot-
strap. The bootstrap samples were compiled with help of
majority votes in each sample, and the classification was ob-
tained [24]. Boosting classification technique makes use of
multiple weak classifiers and “boosts” their result. A weak
classifier has a margin of error slightly better than of guess-
ing [24]. When a classifier puts a subject in the wrong class,
the class gets weighted heavier hence at the end when it’s all
summed up, the samples get correctly classified and placed
in subsets [24]. SVM makes use of the hyperplane concept,

where the dimensional space gets divided into two distinct
planes. Hence two distinct subgroups are made in a single
sample. The sample on one side of the hyperplane and the
one on the other side are considered as two classifications in
a sample [47].

2.9 Role of mobile health and internet of things in the early
detection and management of heart failure

AI can be of advantage in identifying potential cardiac
events faster than a clinician could, using predictive analyt-
ics. As described above, ML; the most common application
of AI, can recognize patterns in data to improve cardiovas-
cular diagnosis and detection [11]. Mobile health and the
internet of things have allowed patients to keep a track of
their health parameters, which have been particularly useful
for home-based long-term monitoring, detection, and sub-
sequent alertness for abnormal cardiovascular findings, and
timely contact with doctors when necessary.

2.10 MOBILE HEALTH (mHealth)

According to the World Health Organization (WHO)’s
Global Observatory for eHealth, Mobile Health (mHealth)
is defined as “medical and public health practice supported
by mobile devices, such as [cell] phones, patient monitoring
devices, personal digital assistants (PDAs), and other wire-
less devices” [48]. mHealth enables patients to track their
health, e.g., in the form of keeping a check on their heart rate,
blood glucose levels, medication dosages, and sleep cycles. It
also allows for remote consultations and maintaining elec-
tronic health records [49]. It has also been used in managing
chronic diseases such as diabetes, hypertension, and chronic
obstructive pulmonary disease [50]. The mHealth-based in-
terventions have several factors, potentially making them ef-
fective for cardiovascular disease; according to Dicianno et al.
[51], these factors include: (i) ‘interactivity that allows the
bidirectional communication and the care delivery, as a form
of a personal coach’, (ii) ‘personalization’ that allows for the
mHealth interventions to be customized according to the in-
dividual’s needs, (iii) ‘timeliness’ which allows for delivery of
information within the right time frame, (iv) ‘context sensi-
tivity’: the ability of interventions to be adapted andmodified
according to the circumstances and/or the individual’s needs,
and (v) ‘ubiquity and accessibility of the technology to all seg-
ments of population’ [51]. The advantages of mHealth in the
management of HF has been demonstrated in Fig. 2. In addi-
tion, wearables (e.g., smartwatches, wristbands, patches and
sensors) are being used to measure and record a range of pa-
rameters, such as heart rate, blood pressure and temperature,
and to track diseases such as HF and diabetes [52]. Wearables
not only track and transfer biometric data into a shareable and
comprehensible user interface but also allow for the contin-
uous monitoring of more than one dozen biometric parame-
ters as reported by several developers of wrist-worn sensors
[53].

A study conducted in 2019, under the collaboration of
StanfordUniversity andApple, assessed the ability of a smart-
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Fig. 2. The advantages of mHealth in themanagement of HF.mHealth
based interventions has been effective in managing cardiovascular diseases
owning to the various benefits including interactivity, personalization, con-
text sensitivity, timeliness, ubiquity, and accessibility, adapted from [51].

watch to detect atrial fibrillation or atrial flutter using algo-
rithms that use pulse wave data detection of these episodes
[48]. According to this study, only 0.52% (2161) of the total
participants received an irregular pulse notification. Among
those who received an initial notification and returned an
ECGpatch, it was reported that 84% of their subsequent noti-
ficationswere confirmed as atrial fibrillation. Moreover, 76%
of the participantswho received notificationwere reported to
have contacted either a telemedicine provider or a non-study
healthcare provider.

According to a meta-analysis conducted in 2020 among
HF patients (n = 1683), mobile phone-based interventions
were associated with a significantly lower rate of all-cause
hospital admissions at six months (31% vs. 36%, OR 0.77,
95% CI 0.62–0.97, p = 0.03, I2= 0). A significant difference
was also demonstrated for HF admissions (14.0% vs. 18.5%,
OR 0.69, 95% CI 0.48 to 0.98, p = 0.04, I2 = 26%) [54]. How-
ever, another meta-analysis found mobile monitoring inter-
ventions, mostly consisting of a mobile communication de-

vice, a blood pressuremeasuring device, aweighing scale, and
an ECG recorder, to be inconclusive for monitoring HF out-
comes. It is also difficult to achieve a 100 percent adherence
to mHeath based interventions, as seen in many study groups
reported by this meta-analysis, with only one study reporting
100% adherence [50]. However, the popularity of mhealth
and its potential utilization cannot be undermined since, in
the US alone, 91% of adults have been reported to own some
kind of cellphone, with 56% reported to be smartphone users
[48]. Moreover, a study conducted in 2017 also stated that
older individuals had a positive outlook towards the benefits
of mHealth and were eager to utilize mhealth interventions,
despite facing usability issues with mHealth such as in navi-
gation and visualization, etc. [55].

2.11 Internet of Things (IoT)

The Internet of Things or IoT is simply a network of dif-
ferent devices in various physical objects or locations, that al-
lows for the exchange and storage of data, using network con-
nectivity [56]. A study conducted in 2017 proposed the struc-
ture of an IoT-based system comprising of 3 different lay-
ers: the sensing layer, the transport layer, and the application
layer, and 4 different modes that could be utilized for heart-
disease monitoring. This system could allow for more cost-
effective and efficient transmission of data, enabling com-
munication with healthcare practitioners in real-time, in a
more structured and systematic way [36]. For cardiovascular
management, IoT enables healthcare practitioners to mon-
itor their patients remotely and in real-time, and to collect
data, such as blood pressure, pulse rate, oxygen saturation,
and ECG simultaneously. This could drastically change the
way patients receive medical assistance, making it easier for
them to get healthcare at their homes in a timelier fashion, re-
ducing hospital visits concurrently. If IoT is utilized in cohe-
sion with certain real-time algorithms, this could be helpful
to alert about potential attacks beforehand [5].

IoT is particularly useful in the detection and diagnosis of
certain conditions that may require monitoring throughout
the day. To make an accurate diagnosis for arrhythmias, for
example, the patient’s ECG needs to be monitored for an en-
tire day, at minimum. Hence, making them especially chal-
lenging to detect. Moreover, they can be intermittent, so
detection and diagnosis can be markedly enhanced by long-
term continuous monitoring, using IoT techniques. Accord-
ing to an article published in 2019, mobile cardiac teleme-
try (MCT) devices that providing real-time monitoring of a
patient’s heart rhythm over a longer period are essential for
AFib detection. MCT devices are the only heart monitoring
devices that provide complete arrhythmia detection, with the
highest diagnostic yield at 61%, compared to Event monitors
at 23% andHolter monitors at 24% [57]. In a study conducted
by J. Stehlik et al. [58], it was suggested that non-invasive de-
vices such as wearables may bemore useful and cost-effective
in predicting and recognizing the risk of rehospitalizations
for heart failure.
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Table 2. Utilization of AI using images obtained from echocardiography.
# Study Description Merit

1 Oritz et al. [65] Neural networks imputed with electrocardiographic data were used to predict
one-year prognosis in HF patients.

Prediction 

2 Sengupta et al. [66] Utilization of (STE) data for prediction of constrictive pericarditis and restrictive
cardiomyopathy.

Differentiation and prediction of CVDs

3 Moradi et al. [67] To closely relate electronic medical records with electrocardiographic images.  Identification

4 Narula et al. [68] Incorporated a similar STE data in a supervised learning algorithm to differentiate
athlete heart and HOCM

Differentiation and prediction of CVDs

5 Medvedofsky et al. [69] 3D echocardiography for measurement of left ventricular EDV, ESV, EF, and
LAV at end-ventricular systole using an automated adaptive analytics algorithm.

Accurate measurements 

6 Khamis et al. [70] Use of ML in the automatic apical view classification of echocardiogram. Automaticity 

7 Przewlocka-Kosmala et al. [46] Use of ML to study the relationship between exercise intolerance, and left ven-
tricular systolic function in patients with HFpEF.

Differentiation and prediction of CVDs

8 Ouyang et al. [71] Video-basedDL algorithm that used videos and images from anECG to accurately
conclude left ventricle segmentation and ejection fraction.

Segmentation of cardiac structures 

2.12 Imaging techniques utilized with AI

ML techniques including supervised and unsupervised
networks aswell asDLhas been incorporated in different car-
diac imaging procedures for accurate quantitative and quali-
tative evaluation of cardiac diseases, particularly, HF.

2.13 Echocardiography

MLmodels have been trained to recognize specific images
of a wide variety of cardiac diseases [59]. This helps in the
interpretation of unused data in three-dimensional imaging,
thus leading to faster analysis and better outcomes. Further-
more, DL has been mostly utilized in imaging for segmenta-
tion of the ventricles. Chen et al. [60] demonstrated the use
of convolutional neural networks (CNN) to segment the ven-
tricle into 5 different 2D views. ANN model was previously
used for segmentation which was further extended in stud-
ies by Carneiro and Nascimento [61]. Dong et al. [62] and
Ghesu et al. [63] also combined DL with traditional meth-
ods to segment the left ventricle and the aortic valve. Dezaki
et al. [64] utilized electrocardiograms in combination with
RNN and CNN to predict end-systolic and diastolic volume.
Table 2, Ref. [46, 65–71] identifies some models for pre-
diction, differentiation of cardiovascular diseases, accurate
measurement using echocardiography features providing in-
creasing automaticity, and the ability for segmentation of car-
diac structures.

2.14 Cardiac MRI

AI and ML algorithms have proved to be of crucial im-
portance in other imaging techniques like Cardiac MRI par-
ticularly for ventricular segmentation. Machine learning
(ML) can segment the heart chambers from Cardiac MRIs
and these segmentations yield imaging biomarkers to predict
CHF. Laser et al. [72] used knowledge-based reconstruction
of the right ventricular volumes using images from echocar-
diography and cardiacMRI and compared themwith the gold
standard direct cardiacMRI and found that knowledge-based

reconstruction has excellent accuracy for right ventricular 3D
volumetry. Right ventricle has a complex shape which many
times could not be visualized with 2D imaging echocardio-
graphy techniques. 3D visualization and cardiac image re-
construction with the help of AI can help in the diagno-
sis of a variety of similar diseases. Similarly, calculation of
left ventricular mass, papillary muscle identification, com-
mon carotid artery, and descending aortameasurements with
fully automated AI programs have produced far more accu-
rate results. Another study extracted CMRIs from 350 sub-
jects and used CNNs to segment the heart in short and long
axis Cardiac MRI. He concluded that cardiac MRI provides a
reliable method of extracting indicators for cardiac measure-
ments and function [73, 74]. Table 3, Ref. [13, 72, 75–81]
summarizes the findings of studies that utilized DL and SVM
models using images obtained from Cardiac MRI.

2.15 Cardiac computed tomography (Cardiac CT)

ML based image analysis has been increasingly used for
cardiac CT specially for evaluation of coronary artery dis-
ease and atherosclerosis. ML models were used for coronary
artery calcification scoring and risk stratification. Comman-
deur et al. [82] used 2 CNNs to segment epicardial and tho-
racic adipose tissue using cardiac CT images. They evaluated
their method in a large cohort of 1638 patients. Multi scale
patch-basedCNNwas also used byZerik et al. [83] to segment
the left ventricle myocardium. Wu et al. [84] used short term
memory RNN to label segments of coronary artery tree. Itu et
al. [85] and Coenen et al. [86] also usedMLmodels for quan-
titative analysis of fractional flow reserve in coronary artery
disease. The implication of ML models using datasets from
Cardiac CT has played a major role in diagnosis of coronary
artery stenosis, and risk stratification of future events.

2.16 Electrocardiogram

ECG is the most widely used diagnostic modality for de-
tection of heart diseases. The application of ML models par-
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Table 3. Utilization of DL and SVMmodels using images obtained from Cardiac MRI.
# Author Findings

1 Avendi et al. [75] Cardiac MRI datasets can be used to develop DL algorithm for right ventricular segmentation.

2 Dawes et al. [13] Supervised learning of 3D patterns of systolic cardiac motion can be used to predict death and adverse outcomes in
patients with pulmonary diseases.

3 Puyol-Antón et al. [76] MRI and echo dataset used in combination for diagnosis of dilated cardiomyopathy with an accuracy of 0.94.

4 Bernard et al. [77] Used CNNs for automatic segmentation of left ventricle.

5 Luo et al. [78] Used Multiview CNNs for prediction of left ventricular ejection fraction using images obtained from cardiac MRI.

6 Bratt et al. [79] Proved that CNN based segmentation was superior to conventional methods.

7 Kong et al. [80] Used cardiac MRI to detect ES time point.

8 Schlemper et al. [81] Showed that series of CNNs are superior to undersampled dynamic cardiac MRI.

9 Laser et al. [72] Observed that knowledge-based reconstruction has excellent accuracy for right ventricular 3D volumetry.

ticularly DL has helped reduce the time taken in diagnosis,
and speed up urgent care. Supervised learning models have
been used to classify heart rhythm. Algorithms involving
unsupervised learning analysis have also been used. In this
method, unlabeled data has been grouped according to its
ECG phenotype. This was demonstrated by Lyon et al. [87]
who classified ECGs with arrhythmia risk factors in patients
of cardiomyopathy. Hannum et al. [88] used a 34-layer deep
NN to classify 12 different types of arrhythmias. Attia et al.
[89] used a 6-layer deep NN to diagnose left ventricular sys-
tolic dysfunction. In this study, investigators attempted to
diagnose asymptomatic left ventricular dysfunction by EKG
alone using an AI-based CNN deep learning method. This
model proved to be superior to the conventional method of
using BNP levels for estimation.

2.17 Prediction of adverse outcomes

Early detection of future mortality and episodes of desta-
bilization can help provide quality care earlier in the man-
agement of the patient and also allow doctors to make cru-
cial clinical decisions when needed. Using statistical analysis,
multiple risk calculation scoring systems have been formed
for estimation of mortality.

2.18 Decompensation

Candelieri et al. 2008 [90] used knowledge discovery
(KD) models to predict if a patient with HF in a stable phase
would decompensate or not. A group of 49 CHF patients
was used for the evaluation of the KD approaches. Decision
trees, Decision Lists, SVM and Radial Basis Function Net-
works were used, and the leave-patient-out approach was
followed to evaluate the performance. Of the models, deci-
sion trees proved to be superior to other models and pro-
vided an accuracy of 92.03%, sensitivity 63.64%, and False
Positive Rate 6.90%. In 2009 Candelieri et al. [90] used deci-
sion trees and SVM on an independent testing. Their results
showed that SVM ismore reliable in predicting decompensa-
tion events with an accuracy of 97.37%, 100.00% sensitivity.
This was further extended through the “SVM hypersolution
framework” which proved to be more accurate on minority
class than Tabu search. Guiti et al. [91] also predicted the

frequency of HF decompensation during the year after the
first visit using five machine learning techniques (NN, SVM,
Fuzzy -Genetic Expert System, Random Forests and CART).
CART algorithm proved to be the superior one with 87.6%
accuracy.
2.19 Re-hospitalizations and mortality

Re-hospitalizations add to the burden on the healthcare
system and lead to poor quality of life for the patient. Predic-
tive models have been developed to predict the risk of future
hospitalization so that adequatemonitoring andmanagement
can be done to prevent such adverse outcomes. At the same
time, mortality can be improved using risk predictionmodels
and discrimination of patients as demonstrated in the studies
shown Table 4, Ref. [92–104]. Table 5, Ref. [5, 13, 24, 25,
30, 31, 34, 37, 40, 42, 44–47, 51, 66, 69, 71, 75, 88, 105–128]
provides the summarized evaluation of the advantages and
limitations of some of AI models and devices for HF.

3. Conclusions
HF is associated with poor patient’s outcomes, high re-

currence rate, mortality rate, and cost burden. There has
been a major development in the field of cardiovascular
medicine with the incorporation of AI in diagnostic modali-
ties, outcome-predictions, and management of HF. Incorpo-
ration of AI Deep Learning components particularly ANN
and CNN for diagnosis of HF coupled with remote moni-
toring of at-risk patients via IoT and mHealth can drastically
reduce mortality associated with all structural heart diseases,
particularly HF. Though AI has the potential to revolution-
izemedical diagnosis, treatment, risk prediction, clinical care,
and drug discovery through interpretation of vast database
more efficiently as compared to the human brain, it has its
limitations due to the absence of a healthcare system that sup-
ports it, as well as a shortage of trained clinicians who can
utilize AI models in their clinical decisions, and monitoring
of patients. Therefore, it is essential to establish a connection
between AI models and clinical practitioners through hybrid
expert, and ML-driven systems such as the AI-CDSS to pro-
vide more accurate outcomes. AI systems can certainly not
replace the expertise of a human brain but it has the potential
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Table 4. Utilization of AI to predict re-hospitalizations andmortality.
# Study Prediction Time period Classification/Model used

Re-hospitalization

1 Zolfaghar et al. [92] Prediction of the risk of readmission for CHF 30 days Random Forest

2 Vedomske et al. [93] Prediction of unplanned readmission for CHF 30 days Random Forest

3 Shah et al. [94] Prediction of HF hospitalization in HFpEF phenotype groups - Support Vector Machine

4 Roy et al. [95] Identification of CHF patients who are likely to be readmitted after discharge 30 days Dynamic Hierarchical Classification

5 Koulaouzidis et al. [96] Prediction of heart failure admission based on TM data like weight and diastolic BP Highest predictive performance at 8 days Naïve Bayes 

6 Kang et al. [97] Examination of risk factors for readmission of HF patients 60 days Decision tree

7 Tugerman et al. [98] Prediction of hospital readmissions of CHF patients 30 days C5.0 and Support Vector Machine

8 Kawai et al. [99] 786 machine learning tools were used to predict HF readmissions 30, 90, and 12 months Generalized linear model (GLM), boosted GLM, Bayesian GLM,
Adaboost.M1 with bagging algorithm (Adabag), Naïve Bayes
classifier, random forest and support vector machines

Mortality

1 Austin et al. [100] Predict mortality of patients admitted for either AMI or CHF 30 days Ensemble classifiers

2 Subramanian et al. [101] Predicting HF mortality using data with circulating levels of TNF and IL-6, and their
receptors sampled at baseline, and at 8, 16, and 24 weeks from Vesnarinone Evaluation
of Survival Trial

30 days and 1 year Ensemble classifiers

3 Panahiazar et al. [102] Heart failure risk prediction  1, 2, and 5 years Decision Tree, Random Forest, AdaBoost, Support Vector Ma-
chine, and Logistic Regression

4 Taslimitehrani et al. [103] EHR-driven HF risk prediction 1, 2, and 5 years CPXR (Log) Classification Algorithm

5 Ramirez et al. [104] Classification of CHF patients to discriminate between sudden cardiac death and pump
failure death using ECG-derived risk markers

- Support Vector Machine

Abbreviations: CHF, congestive heart failure; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; TM, telemonitoring; BP, blood pressure; AMI, acute myocardial infarction; TNF, tumor necrosis factor;
IL-6, interleukin-6; EHR, electronic health record; ECG, electrocardiogram.
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Table 5. A summarized evaluation of the advantages and limitations of some of AI models and devices for heart failure.
DIAGNOSIS OF HEART FAILURE CardioMEMSTM:

ADVANTAGES LIMITATIONS

Most efficient system till date [105] Mandatory compliance for pressure management

Reduced hospital admissions [106] Invasive Implant

Reduced charges per hospitalization Expensive

Increases patient engagement, which improves the patients’ adherence [107] and satisfaction [108] Needs a new proper system of telehealth to support it

Less direct patient and indirect patient cost [109, 110]

Intelligent Heart Disease Prediction System Using Data Mining Techniques:

Reduce patient care cost [110] Requires structured data while most of the data which is available, is in unstructured form [111]

Can help train medical staff and medical students about diagnoses of heart-failure [112] Needs more attributes than currently employed for making a comprehensive diagnosis [110]

Helps doctors make decisions Needs continuous form of data in some cases, and not categorical form [19]

Prevents early readmissions

Delivers quantitative results

Avoids time- dependent performance

Helps to upgrade knowledge for making a diagnosis, and establishing multivariant relations which might
be otherwise challenging for physicians

AI in ECG and Echocardiography [88, 113, 114]:

Interpretation of the ECG is not limited by the interpreter’s finite knowledge Training of clinicians is required for its proper use

Can help detect ECG signatures and patterns that are not recognized by human eye AI–enhanced ECG findings as electronic health records tomake them accessible at the point of clinical care is not yet available

Can serve as tool for phenotyping person’s cardiovascular health Can be less accurate than an expert reader in classifying the rhythm of heart even with low-quality tracings [115]

Can guide diagnostic testing

Can detect arrhythmias with a single lead

AI’s integration in echocardiography can help improve its accuracy

It can help in recognizing number of disease patterns

Can help reduce analysis time and increases reproducibility

Application of Logistic Regression, Random Forest and Support Vector Machines:

Can help differentiate dyspnea from heart-failure Loss of information and real value attributes were discretized and variations as number of patients with CHF and Non-CD
was relatively small [24]

Can reduce workload from doctors and expenses May not performwell withmore challenging interactions, and over- fitting can potentially lead to the instability of thismodel
[116]

Random Forest algorithm by use of autoregressive Burg [25]:

Can detect different classes of ECG signals

Overall performance of Random Forest was better than other existing systems
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Table 5. Continued.
DIAGNOSIS OF HEART FAILURE CardioMEMSTM:

Prediction Model Using electronic health record data (SVP) [117]:

The search for linear classification decision boundary might not be minor in the lower dimensional input space, but was
easier in the higher dimensional feature space

Not able to deal with irrelevant features [117, 118]

It can reduce the cost of computation as only features that are stored are lower dimensional features It is influenced relatively more by classification imbalance in data than other systems [26]

Boosting:

Boosting can help decrease training errors [26]

Overall better performance than SVP

Risk level assessment using C4.5 Decision Tree Classifier [119]:

This predictive model performs better than many other existing models with 86.5% sensitivity, 95.5% specificity, and
86.53% accuracy

Other factors can be used and help make better prediction; better feature selection method can be used as well.

LS-SVM application with mL [30]:

Diagnostic characteristics can evaluate and report physiological, pathological content and also the signals differences’
morphology, domain of time-frequency and energy

The study did not include training for heart murmurs

Better suited than existing ones like BP-ANN and HMM

Shorter training time for optimum structure

Can estimate global solution

Can avoid local minimal mistakes

Artificial Intelligence-Clinical Decision Support System (AI-CDSS) [31]:

More accurate in OPD settings making it important for diagnosis of HF in absence of HF specialists Attributes used for PM can differ from variables recommended in available guidelines

Ensures transparency regarding features which leads to decision making by use of white box  More studies are required to further validation of the system in different populations

A Deep Learning Model (DLM) on the basis of NN [120]:

This can help in monitoring of HF outside the hospital and use HRV signals Unpredictable decision making 

It can also help identify HFpEF More data is required to better train the system

This model can be applied to smart watch or mobile phones’ application which can make it portable and more accessible

Accelerometer [121]:

Can describe the frequency, intensity and duration of physical activity A number of brands do not measure comparably over same protocol

It fails to assess the movement associated with activity which is not ambulatory, like cycling

Intrathoracic Impedance [37]:

More adequate in comparison to daily weight monitoring in patients with chronic systolic heart failure Individual variability in the optimal threshold for the impedance‐based fluid index

Higher sensitivity Individual variability in appropriate follow up window

Less frequent false alarms for worsening heart failure which requires hospitalization False alarms

Identification of Novel Pheno-groups in HFpEF [45]:

Feasible Depends on signs and symptoms, and more well-defined criteria is required for HFpEF phenotype

Good reproducibility

Can classify patients with HFpEF into distinct sub-groups

Can help in research intervention for HFpEF
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Table 5. Continued.
DIAGNOSIS OF HEART FAILURE CardioMEMSTM:

Continuous wearable monitoring analytics to predict HF hospitalization/the LINK-HF multicenter study [40]:

Early diagnosis of imminent HF rehospitalization with accuracy which is comparable to implantable devices  The clinical efficacy and its implication on broader levels needs to be further tested and ensured

It is economically feasible

It is non-invasive

Derivation of DEWS using TTS and RRS [42]:

Better sensitivity than TTS and RRS Alarm sound does not specify the underlying problem

Relatively lower rate for false alarms It is not interpretable

The imbalance data is adjusted enough to give better sensitivity Only considers first cardiac arrest

Majority of predictions were made 24 hrs. before the event of cardiac arrest giving specialists enough time to
intervene

It uses less variables and can be applied to different hospital set ups

Model-based Clustering [44]:

It can help in giving an interpretable and clinically insightful classification of a heterogeneous cohort for patients of
HF

Have not been tested on larger populations with severe HF

It can also help in making foundation of a platform based on data that can potentially help in identifying subgroups
of patients who will be responsive to particular therapies

Human intervention was required for specification of the most meaningful clustering configuration

Due to the overlap between phenogroups, it loses its ability in zones near the outskirts between groups (’ill-defined
situation’)

Cluster analysis on HFpEF patients using exercise intolerance [46]:

Can be helpful as a component of diagnostic protocol in patients suspected with HFpEF Lack of diversity in populations

Lack of evaluation of peripheral mechanisms, concomitant effects of drugs not being excluded

Not applicable for atrial fibrillation and CAD patients 

Classification of HF using conventional trees and ml classifiers [47]:

It can help improve prediction and classification of HF patients according to subtype of disease like HFpEF orHFrEF
compared to conventional regression and classification trees

Conventional logistic regression was relatively more accurate to predict the probability of the presence of HFpEF
in HF patients than the methods used in the data mining and machine learning literature

The Internet of Things (IOT):

Promising results in elderly, and patients with chronic diseases Vulnerable to security risks. There is a need to verify privacy policies of each object while transmitting data [122]

Easy monitoring of patients by physicians, reducing frequency of hospital visits and hospitalization Interoperability issues
Reduces high costs associated with hospitalizations Scalability and availability issues associated with supporting a large number of devices, each having different mem-

ory, processing, storage power and bandwidth

It can help forecast HF exacerbation more accurately than invasive devices (LINK-HF)

ReDSTM [5]:

Helps in early detection of systemic fluid overload, and also detects pulmonary congestion [34] Tested on a small number of patients [123]

It is more suitable than CT for the management of recurrent events of HF in recently discharged patients

Associated with a reduced number of HF readmission rates
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Table 5. Continued.
DIAGNOSIS OF HEART FAILURE CardioMEMSTM:

V-LAPTM [124]:

It can help physicians in either detecting exacerbation of heart failure before the onset of symptoms, change thera-
pies, or alter drug doses in order to reduce adverse consequences

It is invasive

Can help reduce hospitalizations accurately

Mobile Health [51]:

It can help patients achieve an optimum weight, improve workout and exercise, quit unhealthy behaviors, control
blood glucose, and manage blood pressure and lipids

Well-defined universal functional parameters for different applications are required

It can also help detect irregular heart rhythms through the use of digital watch. It can help doctors in decision-
making

Heart failure management includes better interactivity

It involves customized interventions to meet each individual’s demands

Accessible and highly context sensitive

HeartModel [69]

Automated analysis of 3D echocardiography is possible Applicable on good quality images

Reduces the time taken for analysis, and minimal training is required Limited the generalizability results which includes user input

Can assess LV and LAV function simultaneously Low frame rates, especially for single beat acquisition, so not applicable for patients with atrial fibrillation and/or
ectopic rhythm

Can acquire exact and reproducible automated estimations of LVEDV, LVESV, and LVEF with clinically non-
critical contrasts

Not applicable for patients with atrial fibrillation and/or ectopic rhythm

More accurate than previous versions with lesser biases

Can perform corrections rapidly

Better reproducibility than conventional manual measurements in terms of both inter- and intra-observer variabil-
ity

Cognitive machine-learning algorithm for cardiac imaging [66]:

Can differentiate constrictive pericarditis from restrictive cardiomyopathy Limitations include the fact that selection and ranking of variables and selection are dependent on data and algorithm

Better feasibility and effectiveness of automated interpretations of STE data Marginal diagnostic gain

Can handle large volumes of data, and integrate it with clinical echo variables Lacks generalizability

Neural network approach based on echocardiographic data [65]:

More accurately predict prognosis in HF patients than linear discriminant analysis Uses black box which compromises transparency and requires computer setup

EchoNet-Dynamic:

Can assess cardiac function from echocardiogram videos, this assessment has been reported to be as accurate as
human interpreter or even better than it [71]

Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach [75]:

Can be adequately utilized for automatic segmentation of the RV
Poor performance in patients with irregular RV shape,

such as congenital heart defects

Performs better than techniques employed in MICCAI 2012 challenge, saves time, and is more accurate Lack of adequate amount of data for training and validation
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Table 5. Continued.
DIAGNOSIS OF HEART FAILURE CardioMEMSTM:

Automated segmentation of the left ventricle in cine cardiac MRI using neural network regression [125]:

Performance indicates strong potential for utility in clinical practice Model relies on assumptions which can fail to give accurate results, there was no reference data for few aspects of
evaluation

Comparatively better results and accuracy than semi-automated approach

The algorithm as a whole is insensitive to interslice changes because of patient movement between slice acquisitions

Machine learning of three-dimensional right ventricular motion [13]:

It can predict outcome in Pulmonary hypertensive patients Not applicable in all groups

It is feasible, accurate, and reproducible Uncertainty in displacement estimation due to uncertainty in end-diastolic and end-systolic segmentation

It is better in evaluating prognosis when compared with conventional parameters

It can assess RV systolic function. It can help clinicians in determining physiology that underlie RV failure

Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional NN [126]:

It reduces false positive and interobserver variability

It can identify and quantify coronary artery calcification

Automated Agatston score computation in non-ECG gated CT scans using deep learning [127]:

It has good patient stratification

It doesn’t require a data set of explained calcifications, yet require just the CT scan input and the calculated Agatston
score

It is simpler than state-of-the-art detection networks

SMARTool [128]:

Can comprehensively assess risk profile for CAD and DSS

It can estimate smartFFR index and site prediction for plaque growth

Abbreviations: ECG, electrocardiogram; AI, artificial intelligence; CHF, congestive heart failure; CD, cardiac disease; BP ANN, back propagation-artificial neural network; HMM, hidden markov model; AL-CDSS, Artificial
Intelligence-Clinical Decision Support System, PM, prediction model; DLM, deep learning model; HFpEF, heart failure with preserved ejection fraction; RRS, rapid response system; CRT, cardiac resynchronization therapy;
DEWS, deep learning based early warning system; CAD, coronary artery disease; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; IoT, internet of things; CT, computerized tomography; LV, left ventricle;
LAV, Left atrial volume; LVEDV, left ventricular end diastolic volume; LVESV, left ventricular end systolic volume; LVEF, left ventricular ejection fraction; STE, speckled tracking electrocardiographic; RV, right ventricle;
MRI, magnetic resonance imaging.
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of revolutionizing accurate diagnosis and prediction of de-
compensation andmortality of HF patients by acting as a tool
of assistance. In the post COVID-19 pandemic era where
healthcare systemswill be overburdenedwithHF related hos-
pitalizations, the specialists treating HF patients should make
efforts to train themselves in incorporating AI so practice of
an AI-dependent medicine can be made more efficient and
provide accurate diagnosis in a short span of time.
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