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Abstract

Cardiac telerchabilitation is a method that uses digital technologies to deliver cardiac rehabilitation from a distance. It has been shown to
have benefits to improve patients’ disease outcomes and quality of life, and further reduce readmission and adverse cardiac events. The
outbreak of the coronavirus pandemic has brought considerable new challenges to cardiac rehabilitation, which foster cardiac telercha-
bilitation to be broadly applied. This transformation is associated with some difficulties that urgently need some innovations to search
for the right path. Artificial intelligence, which has a high level of data mining and interpretation, may provide a potential solution. This
review evaluates the current application and limitations of artificial intelligence in cardiac telerehabilitation and offers prospects.
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1. Introduction

As the leading cause of worldwide deaths, cardiovas-
cular diseases caused an estimated 18.6 million deaths in
2019 [1]. According to the World Health Organization
(WHO), cardiovascular diseases represent 38% of prema-
ture deaths (age <70 years) due to noncommunicable dis-
eases [2]. At present, the number of patients living with
cardiovascular diseases is still considerable. In data up to
2017, an estimated 108.7 million people were living with
cardiovascular diseases in the 54 member countries of the
European Society of Cardiology [3]. The condition is quite
worse. Based on the 2018 data from the Medical Expendi-
ture Panel Survey (MEPS), the annual total expenditures of
heart diseases in the United States, including direct and in-
direct costs, is an estimated $108.56 billion [4]. Treatment
costs and productivity loss because of premature deaths
have brought a heavy economic burden to the global health
care system [1]. One essential method to ensure favorable
clinical outcomes and increase the quality of life in patients
with cardiovascular diseases, thereby releasing the burden
of disease treatment, is implementing cardiac rehabilitation
(CR) [5].

Back in 1995, CR was defined as “the provision of
comprehensive long-term services involving medical eval-
uation, prescriptive exercise, cardiac risk factor modifica-
tion, education, counseling, and behavioral interventions”
[6]. This definition was then updated to one with wider con-
notations, containing specific core components to optimize
cardiovascular risk reduction, foster healthy behaviors and
compliance to these behaviors, reduce disability, and pro-
mote an active lifestyle for patients with cardiovascular dis-
eases [7].

The safety and efficacy of CR have been well explored
by previous studies. CR has been found effective in improv-
ing cardiac functions, reducing diseases recurrence, hospi-
tal readmission, and mortality in patients with cardiovascu-
lar diseases, and is cost-effective [8—13]. CR has been rec-
ognized as a class 1A recommendation for secondary pre-
vention of cardiovascular diseases by the European Soci-
ety of Cardiology, the American Heart Association, and the
American College of Cardiology Foundation [14,15].

Unfortunately, there are still some problems in the de-
livery of CR. The problem of low participation and com-
pletion among eligible patients remains largely tricky. Be-
tween 2007 and 2011, participation in CR was lower than
20% in both Medicare sampling and the Veterans Affairs
(VA) healthcare system in the United States [16]. Although
with the improvement of public awareness about health,
this situation has improved, it is still suboptimal. The Na-
tional Audit of Cardiac Rehabilitation (NACR) reported
that only 50% of eligible patients on average were accepting
CR across England, Northern Ireland, and Wales in 2018
[17]. Moreover, the imbalanced distribution of healthcare
resources also needs to be considered; this imbalance is
likely to lead to the unavailability of CR for patients in some
low- and middle-income countries. According to research
in 2019, CR is available in only 54.7% of countries globally,
and this rate is low to 17.0% in Africa [18]. The ongoing
pandemic caused by COVID-19, a novel coronavirus called
coronavirus disease-2019, has brought new challenges to
CR programs [19]. The lockdowns of cities or countries,
maintaining social distance, and quarantine at home have
all further hampered patients’ adherence to CR programs.
Moreover, many CR centers were closed to prevent cross-
infection among outpatients.
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Cardiac telerehabilitation may be a feasible solution
[20]. Using innovative information and communication
technologies to deliver CR from a distance is called telere-
habilitation or home-based CR, which was previously used
as a partial alternative to center-based CR [21]. Noninfe-
riority or superiority of cardiac telerehabilitation has been
shown compared to center-based CR. Specifically, cardiac
telerehabilitation could successfully improve patient acti-
vation and health literacy, further improving adherence and
completion of rehabilitation [22,23]. Moreover, cardiac
telerehabilitation has been shown to be more helpful than
center-based CR for patients to build a healthy lifestyle,
such as weight reduction and smoking cessation [23,24].
Some studies have concluded that cardiac telerehabilitation
could enhance cardiorespiratory fitness and quality of life
[23,25,26], and lower the rate of readmission or major ad-
verse cardiac events [24,27]. In addition, cardiac telercha-
bilitation provides flexibility to patients in terms of arrang-
ing rehabilitation time and location, which may satisfy their
preference for rehabilitation settings and improve their will-
ingness to participate in CR [28,29]. Although there is still
no strong evidence to prove that telerchabilitation benefits
participants [30], it is worth promoting, because it means
a lot to face the coronavirus challenge and to ease the un-
fair distribution of CR resources. After the outbreak of the
pandemic, the European Association of Preventive Cardiol-
ogy (EAPC) published a structured call-for-action that sug-
gested maintaining continuity in the delivery of CR through
comprehensive telerchabilitation [30]. Furthermore, with
the growing use of cardiac telerehabilitation, difficulties
during implementation have arisen. The general digital
technologies used in telerehabilitation, including smart sup-
port systems and wearable monitoring devices, ensure con-
venient remote monitoring and data collection, while also
bringing considerations for clinicians about how to analyze
and manage these “big data” effectively. Some innovations
need to be implemented to respond to previous and emerg-
ing problems.

Mobilizing artificial intelligence (Al) into cardiac tel-
erehabilitation may provide a potential path to improve up-
take and delivery. The number of studies investigating car-
diac telerehabilitation has gradually grown since the pan-
demic. Most studies combine Al algorithms with digital
health devices during the implementation of cardiac telere-
habilitation, but few reviews have summarized the func-
tions of Al algorithms in these combinations which are nec-
essary to help the public to understand these technologies.
Among the existing reviews, the short-term effects of Al
in cardiac telerehabilitation have gained attention. How-
ever, few have touched on the potential application of Al in
long-term cardiac telerehabilitation, which we have tried to
address in this review. Hence, this review is based on two
commonly used digital devices, wearable monitoring and
support systems, to evaluate the application of Al in cardiac
telerehabilitation. The review highlights the four primary

functions of combining Al algorithms in cardiac telereha-
bilitation to reach a better interpretation of these novel tech-
nologies, providing references for future delivery of cardiac
telerehabilitation during the pandemic, as well as pointing
out some potential ethical and legal problems that need to
be addressed in attended by future research.

2. Artificial intelligence in cardiology

Al is a field of computer science that aims to mimic
human thought processes, learning capacity, and knowl-
edge storage [31]. There are two main subfields of Al: var-
ious types of machine learning (ML) and cognitive com-
puting [31]. Fig. 1 shows the composition of Al. Nowa-
days, Al has been broadly studied in fields such as engineer-
ing [32,33], medicine [34,35], psychology [36], and eco-
nomics [37]. Furthermore, Al-based technologies are inte-
grated into our daily life, for example in the forms of object
and speech recognition [38—40] and product recommenda-
tion [41]. During the COVID-19 pandemic, the possibil-
ity of Al to be an effective tool for healthcare systems has
also been explored by several research studies and showed
that AT has improved diagnosis and treatment, contact trac-
ing, drug/vaccine development [42—46]. Similarly, it is not
novel to mobilize Al algorithms in cardiology. Al is help-
ful for clinicians to exploit big data and implement preci-
sion cardiovascular medicine. The benefits of applying dif-
ferent Al algorithms in cardiology have been confirmed in
previous research. Using a deep neural network to accu-
rately classify arrhythmias from electrocardiogram (ECG)
data could reduce misdiagnosis resulting from computer-
ized ECG interpretations [47]. An artificial neural nets
(ANN) model could achieve higher accuracy in the early
prediction of non-ST-elevation myocardial infarction pa-
tients with chest pain, providing valuable insight in clinical
diagnosis [48]. A supervised machine learning model could
be used for survival prediction, which would help to de-
termine the mechanisms of right ventricular failure in pul-
monary hypertension [49]. These Al algorithms or models
conform to the needs of highly efficient and personalized,
widely accessible cardiac telerehabilitation.

3. Wearable monitoring with artificial
intelligence

Wearable monitoring is based on wearable sensors that
are usually worn as a wristband or embedded in a smart-
watch or mobile phone [50]. These technologies release
cardiac telerehabilitation from the constraints of time and
location-limits, collecting more comprehensive and objec-
tive data in free-living conditions which may provide some
new insights for researchers [51]. However, the challenges
are how to assess and properly interpret cardiac telerehabil-
itation progression based on the massive amounts of data
collected [52]. Furthermore, the quality and relevance of
the data gathered is a matter, because the data collected
by wearable sensors might include distracting and unusable
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Fig. 1. Common Al algorithms. Machine learning is a subdiscipline of AI, which has become the chief Al tool. Al uses the concept of

learning and can be divided into supervised learning, unsupervised learning, reinforcement learning, and deep learning.

data [53]. Limited battery capacity might be one of the rea-
sons for the suboptimal data [54,55]. Also, the comfort in
attaching and wearing the wearables has been evaluated by
patients as an essential factor in their acceptance of wear-
ables [56]. Any discomfort due to wearable devices might
aggravate the premature termination of exercises, thus low-
ering data completeness. Although the difficulties caused
by low-quality data are mainly associated with the limita-
tions of wearable devices, an efficient and effective data-
handling method could be helpful for solving this prob-
lem. Accurately identifying and correctly interpreting the
data and uncovering potential patterns in the dataset with
Al would support cardiac telerehabilitation in meeting the
challenges posed [57].

3.1 Fitness detection and recognition

Wearables enable continuous ambulatory fitness mon-
itoring of patients [58]. Identifying various activities of
the human body in real time needs an efficient and well-
working model which may involve the application of some
Al algorithms. Previous studies have shown the feasibil-
ity of using machine learning to design and train an ac-
curate classifier for data feature selection, which enables
wearables to capture and recognize various kinds of human
activities during cardiac telerehabilitation [59,60]. Fig. 2
shows the main steps of the ML classification algorithm.
The reliability of the support vector machine (SVM) classi-
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fier, one kind of ML classifier, was tested according to the
process of Leave-one-subject-out cross validation, resulting
in an accuracy rate of 95.4% in classification [59]. In this
study, individual features of patients ranked in the top ten
were selected to train the SVM model [59]. Features selec-
tion is the most crucial aspect of building a highly accurate
classifier. One research used a method of classifier verifi-
cation called 12-fold cross validation in the process of ML
model and achieved an accuracy of 97% in the classifica-
tion of physical activity [60]. The most error was generated
from upstairs/downstairs being classified as walking, which
indicates Al models are limited in identifying actions in the
same genre [60]. Another research study used a different
kind of Al model, the convolutional neural network (CNN)
model, and showed higher accuracy in exercise recognition,
compared to the traditional approach (supervised ML) [61].
In exercise recognition, the SVM model was found to be
the best performing supervised ML model with an overall
accuracy measure of 96.07%, while the deep CNN model
achieved a higher one of 96.89% [61]. This research used
wearable sensors to collect signals of twelve limb move-
ments in rehabilitation and form datasets to train, test, and
validate models [61]. Training models to recognize basic
limb movements could be the potential solution for Al mod-
els to distinguish similar body actions in cardiac telereha-
bilitation. In addition, different kinds of AI models may
perform at different levels. Comparisons among algorithms
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Fig. 2. Main steps of ML classification algorithm. The ML classification algorithm consists of the following steps: transforming col-

lected signals to form a dataset, extracting features from data, feature selection/feature reduction, classification by algorithms, validating

results.
Table 1. AI model development for fitness detection and recognition.
Algorithm  Model function Description
) o ) ) Features: top ten features in time-domain and frequency domain [59].
SVM Physical activity classification. ] ] )
Feature selection method: Relief-F algorithms [59].
. . . . Features: seven features were selected finally: co-relation X and Y axis, co-
CSVM Physical activity classification. . . o . .
relation Y and Z axis, minimum value along X axis, kurtosis of data around X
axis, skewness around X axis, standard deviation X axis, the sum of aggregate
acceleration Ai (if Ai <25th percentile) [60].
Feature selection method: 12-fold cross validation. Combining feature selection
with model validation. Whether the feature was selected or not was decided by
the accuracy of the retrained model after removing the feature [60].
CNN Fitness recognition. Using data collected by 3D accelerometers and 3D gyroscopes to build the LME

exercise datasets (INSIGHT-LME dataset) include training sets, validation sets,

and test sets, to develop models [61].

Abbreviations: SVM, support vector machine; CNN, convolutional neural network.

and methods of feature selection are important to find the
optimal Al model of cardiac telerchabilitation, which is a
long tedious process and needed further research. Table 1
(Ref. [59-61]) lists the different features chosen to train
models and the feature selection method used in these stud-
ies. Extending beyond fitness detection and recognition, an
Al server was used to identify and manage abnormal vital
signs when patients were doing physical activities of CR at
home [62]. These design approaches implement a clear and
correct interpretation of data about physical activities and
allow clinicians to assess patients’ performance in physical
activities, offering objective evidence for updating cardiac
telerchabilitation exercise plans.

3.2 Tracking and interpreting cardiac functional capacity

Further, Al has been used with wearables to assess
and track the prognosis of cardiac telerehabilitation. Wear-
ables with an accelerometer and electrocardiogram could
obtain heart rate parameters as well as estimate patients’
effort during walking, which could function as the input

data for machine learning algorithms to predict the 6-minute
walk test distance [52]. Compared to the actual 6-minute
walk test distance, the Al prediction model in the refer-
enced study made an overestimation of 42.8 m (4 36.8
m) [52], which is below 50 m and could be considered as
non-significant difference according to the clinical thresh-
old for detecting changes in disease state [63]. A previous
study showed a mean difference of 2 m (£ 7.84 m) be-
tween the predicted and actual 6-minute walk distance in
patients with cardiopulmonary conditions [64]. This model
showed a better function in prediction accuracy. Hence,
the algorithm-based prediction model of functional capac-
ity in cardiac telerehabilitation might need advanced ad-
justments to improve its accuracy and reliability. How-
ever, these studies nevertheless show the possibility of ob-
jectively tracking and interpreting cardiac functional capac-
ity during cardiac telerehabilitation by combining Al with
wearable monitoring, which might enlighten further stud-
ies. It should be mentioned that because of the significant
variability of physiological signals, the wearables collected,
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and the complicated subgroup component of cardiovascular
diseases, it might be very hard to be model based on limited
datasets [65]. In future studies, more related physiological
features such as respiration or SpO, could be added to re-
fine the models [52]. In addition, evaluating whether such
models have the same efficiency in a subgroup population
of cardiovascular diseases should be investigated [52].

Increased public attention should be devoted to iden-
tifying an effective method to follow-up patients’ condition
with cardiac telerehabilitation during the COVID-19 pan-
demic. The benefits of CR in long-term clinical outcomes
have been proven and are well known [66]. Some stud-
ies have explored the long-term effects of cardiac telereha-
bilitation and concluded satisfactory results in some health
outcomes such as cardiorespiratory fitness [67] and physi-
cal activities [68,69]. However, studies are still lacking and
more data are needed to determine the long-term benefits
of cardiac telerehabilitation [70]. Except for cardiac func-
tional capacity, other long-term effects such as patients’ ex-
ercise adherence in cardiac telerehabilitation should also be
paid attention to. Recent research has shown that there is
no significant difference in exercise training intensity be-
tween patients who participated in cardiac telerchabilitation
versus standard CR [71]. However, some existing research
studies have concluded that the low usage rates of wear-
able devices in the long-term follow-up of telerehabilitation
could reflect a low adherence to using wearables [55,72].
To address the inconsistent views about the patients’ exer-
cise adherence in cardiac telerehabilitation, further research
is necessary. Therefore, more comprehensive tracking and
interpreting are necessary for long-term follow-up of car-
diac telerehabilitation [73]. As the special period with the
coronavirus disease will probably continue for a long pe-
riod [74], it is increasingly important to explore Al more in
the longitudinal follow-up of cardiac telerchabilitation.

4. Support systems with artificial intelligence

During cardiac telerehabilitation, communication be-
tween patients and healthcare workers is conducted re-
motely by using the telephone, internet, and video confer-
encing [21]. In early telerehabilitation, consultations and
education were predominantly delivered by phone call [ 75—
77], which limited the rehabilitation services to be provided.
Technological innovation has brought rapid growth in the
use of the internet and mobile phones, particularly smart-
phones [78]. This revolution in information communica-
tion has enabled more diverse delivery methods of telere-
habilitation [24]. For instance, automated text messages
have been used to provide suggestions, motivational re-
minders for lifestyle modification, and adherence improve-
ment [79,80]. Based on the internet, secure websites have
been utilized for cardiac telerchabilitation. Scheduled ses-
sions for education or one-to-one consulting with rehabili-
tation specialists could be achieved in web-based interven-
tions, and patients could communicate with professionals
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by e-mail if they have any questions outside sessions [81].
Other chatting methods such as a form similar to e-mail but
within a website [82] could also ensure timely communi-
cation between patients and rehabilitation teams. With the
development of mobile health and remote monitoring tech-
nology, smart systems for disease management have been
generally used. A comprehensive support system of cardiac
telerehabilitation allows the generation and saving of medi-
cal records which enable clinicians to objectively supervise
and follow up the changes in patients’ situations dynami-
cally [83]. Online platforms connect patients and clinicians
over a long distance, enabling patient consultations and
health education, and prescription adjustment [23]. While
comprehensive cardiac telerehabilitation sometimes needs
to measure several indicators, it takes time for clinicians to
learn about such amounts of information and devise patient-
specific programs, resulting in a mistimed response to pa-
tients. Al may be a promising solution to address this diffi-
culty.

4.1 Triage for preliminary intervention

Support systems could comprehensively monitor key
measurements of CR [84,85]. Al algorithms provide an ef-
ficient method to assess and manage these measurements in
real time. A HEARTEN Knowledge Management System
(KMS) was designed to support heart failure patients, which
uses machine learning for feature selection and classifica-
tion of data, allowing automated stratification of rehabilita-
tion risk, disease severity, and patients’ adherence [86]. In
this situation, the combination of Al algorithm could pro-
vide rating results about the observed indicators. Data were
received from hospital records, biosensors, and sensors in
this study, including 11 categories [86]. The Random For-
est algorithm was employed for classification and the 10-
fold stratified cross validation approach was used for eval-
uations of results [86]. 95% accuracy has been achieved
by the diseases’ severity module, 85% accuracy for medi-
cation adherence, and 78% accuracy for the overall adher-
ence risk module [86]. Accordingly, timely preliminary in-
terventions, such as professional suggestions or education
knowledge to different health grades, could be provided by
support systems. Similarly, in the text-based cardiovascu-
lar rehabilitation program, Al was used to review and triage
text messages into two groups, depending on whether it
was a complex situation requiring further review from a
staff member or was simple enough to be solved by sugges-
tions [87]. A low false-negative rate indicates few messages
which need a response would be missed so that the research
aimed to develop the model with the lowest false-negative
rate [87]. Evaluating by a binary classification evaluator,
the ensemble model (with all tested machine-learning mod-
els combined) achieved the lowest false negatives of 1.43%
and 16.2% false positives, which means that health profes-
sionals would have to review about 36.9% (20.7% true pos-
itives plus 16.2% false positives) of all the incoming text
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messages [87]. Although the false-negative rate was very
low, the accuracy was moderate because the false positives
still need to be lowered. Al model development informa-
tion for automated stratification is described in Table 2 (Ref.
[86,87]). Moreover, an Al-driven healthcare system was
envisioned by researchers in optimal perspective, in which
Al algorithms could automatically offer decision support
on medication and physical activity prescription in most in-
stances [88]. This envisioning provides a direction for fu-
ture design.

Consequently, it could be said that Al helps to improve
the feasibility of cardiac telerehabilitation systems, reduc-
ing the time cost and workload of healthcare staff. Feed-
back on the rehabilitation problems of patients with more
targeted recommendations could also be provided within a
shorter period. As shown in Table 2, support systems of car-
diac telerehabilitation can manage amounts of data which
allows more features to be selected to train and test Al mod-
els. However, the triage bias caused by Al models is a po-
tential ethical issue that should be considered. Future work
is required to validate the Al models in larger datasets if re-
search results are going to be generalized to other subgroup
populations [86,87]. Because the amount of available liter-
ature is limited, the effectiveness and safety of preliminary
interventions by support systems with Al still need more
applications to be certified.

4.2 Identifying predictors for tailored cardiac
rehabilitation

Al has been used for a more accurate prediction of
CR prognosis, owing to the strong data-mining function it
has for deriving relationships and statistical inference from
datasets [89,90]. Furthermore, important predictors for the
participation and completion of CR using Al models have
also been discovered by researchers [91]. This could pro-
mote the personalization of CR programs, which is neces-
sary to promote wider utilization [92]. Although the present
studies in this field did not combine the output AI model
with support systems of cardiac telerehabilitation, it still
could provide some meaningful perspectives for the devel-
opment of tailored cardiac telerehabilitation programs. For
that, further feasibility studies are necessary to ascertain the
possibility of identifying predictors by applying Al models
in cardiac telerehabilitation support systems.

5. Current limitations of implementation
5.1 The possibility of greater inequalities

Cardiac telerehabilitation would be able to provide
more opportunities for eligible people who cannot reach
the CR services in their local area. The utilization of Al
can help telerehabilitation technology become more effi-
cient and feasible. However, to broadly implement new
technology in some fields, some economic and social gaps
may need to be addressed. What cannot be ignored is that
the digital health devices and Al algorithms carry the addi-

tional challenge of digital literacy, which indicates the abil-
ity to appraise and apply information or knowledge gained
from electronic sources [93]. Engaging innovative tech-
nologies like Al might lead to health services being un-
available for those patients with limited digital literacy. The
greatest challenge would be how to maximize the benefits
of Al to provide efficient and tailored telerehabilitation ser-
vices, while avoiding worsening wealth and health inequal-
ities and increasing unemployment [94]. Whether the com-
bination of Al with cardiac telerehabilitation is more com-
plex to implement among people in low-income countries,
enabling them to acquire medical resources, still needs to
be further researched.

5.2 Ethical issues of artificial intelligence

The use of Al in healthcare is always debatable,
mainly with respect to data privacy and security, trans-
parency and fairness of algorithmically automated deci-
sions, algorithmic accountability, and liability [95]. Na-
tional and international organizations and private enter-
prises have responded to the concerns by publishing guide-
lines or principles, which demonstrate the need for ethical
Al [96].

5.2.1 Data protection and data privacy

The application of Al needs an amount of data for
building up and training models, which may include per-
sonal information or clinical data of patients [97]. How to
protect the security of patients’ data urgently needs to be
considered carefully to maintain the human rights of pri-
vacy. Data provenance and permission for use are particu-
larly important. Adopting measures to prevent the unethi-
cal use of patients’ data is necessary, such as ensuring the
rights of patients to be informed, have access, and be al-
lowed rectification [98]. The General Data Protection Reg-
ulation (GDPR) endorsed by the European Union aims to
regulate and standardize personal data use, strengthening
and unifying the data protection for all individuals within
the European Union [99]. Specific informed consent re-
quirements for using and granting data, and several rights
that must be respected in data processing, were set up in
this law [99]. Many published guidelines have discussed
data protection and data privacy; however, further specifi-
cation is essential because of the complexity and diversity
of the datasets, including knowledge and cultural pluralism
around the world [96]. Data protection guidelines or laws
might need to be adjusted to fit the local situation in differ-
ent countries or states, and data used in different conditions
should be bound by different legal protections [100].

5.2.2 Transparency and fairness

Transparency and fairness of algorithms are the most
prevalent issues mentioned. The highly automatic decision-
making ability enables Al to make decisions without human
intervention [95]. Indeed, this function brings more effi-
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Table 2. AI model development for automated stratification.

Algorithm Model function

Description

Rating disease severity:
Random forest

18 features [86]:
Medical condition: Diabetes mellitus, Orthopnea, Depression.

Drug prescriptions: Insulin medication.

NYHA II vs. NYHA III vs. NYHA IV. Biological data: Calcium, White Blood Cells, Cardiac troponin

I, Iron binding capacity, Thyroxine (Free T4), HDL-C, NT-
proBNP.

Sensor data: Mean Rest Breath, STDDEV rest pressure bpm
(standard deviation of heartbeats per minute in rest position),
NN/RR (the fraction of total RR intervals that are classified as
normal-to-normal (NN) intervals and included in the calculation
of HRYV statistics), BMI.

Biosensor data: Cortisol, TNF-«, Acetone.

Rating overall adherence risk:
Random forest . .
Low vs. Medium vs. High.

7 features [86]:

Medical condition: Oncological disease, Prior Heart Failure
hospitalization (not within 6 months), Edemas Peripheral ede-
mas.

Biological data: Micro-albumin in Urine Dutch, Partial pressure
of carbonic.

Medication adherence patient (output of medication risk estima-

tion module).

Rating medication adherence:
Random forest ) .
Low vs. Medium vs. High.

8 features [86]:

Medical condition: NYHA class.

Sensor data: STDDEV OVERALL HR (standard deviation of
the overall heart rate), STDDEV OVERALL RR (standard de-
viation of the overall RR intervals), rMSSD (Square root of the
mean of the squares of differences between adjacent NN inter-
vals).

Biosensor data: Cortisol, TNF-«, Acetone.

The output of Medication adherence risk model.

Ensemble model
(Combining Naive Bayes,
OneVsRest, Random Forest
Gradient Boosted Trees,

Staff review required or not:

binary response of yes/no.

Multilayer Perceptron)

Method [87]:

Extracting text messages into datasets.

Randomly allocated into training sets and test sets.
Training the model with data.

Testing the model.

Comparing and revising model.

Abbreviations: NHYA, New York Heart Association; HDL, high-density lipoprotein; NT-proBNP, N-terminal pro-B-type natriuretic

peptide hormone; TNF, tumor necrosis factor.

cient data management but also makes algorithms harder to
explain. However, unmatured Al models might obtain re-
sults that reflect pre-existing bias in the real world if mod-
els were trained by unrepresentative or inadequate datasets
[100,101]. This kind of algorithm bias could entrench or ex-
acerbate health disparities [102]. Despite the notion of bias
being very complex, and biases commonly existing in the
human world, it is possible and ethically necessary to design
Al systems to help offset human biases to try to lead to out-
comes closer to fairness [103]. For now, to achieve greater
transparency, it is suggested to improve the interpretability
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and auditability of AI [104]. Nonetheless, a contradiction
could likely be involved between open-access data and al-
gorithms and patients’ privacy, which still needs future con-
sideration. Recently, an article commented that bias in Al
models is not a feature of data that could be simply elimi-
nated but needs a fundamental realignment of the culture of
software development to address, which should acknowl-
edge that developers have necessary responsibilities for pa-
tient health and welfare [101].
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5 Cardiac Telerehabilitation (CTR)
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Fig. 3. Application of Al in Cardiac telerehabilitation. Wearable monitoring and support systems are two commonly used digital health

devices. By combining them, Al can figure out abnormal signs and timely feedback with suggestions, also enabling health workers to

track cardiac telerehabilitation progress and present tailored intervention. Although with such benefits, some limitations of Al-based

cardiac telerchabilitation are still necessary to be considered.

5.2.3 Responsibility and accountability

Accountability is needed in Al algorithms to clarify
who should be liable for decisions made with algorithmic
support [105]. The accountability component involves mul-
tiple professionals, which is considered the most challeng-
ing part of implementation [102]. While responsible Al has
garnered widespread attention, whether we should consider
Al algorithms as a subject of responsibility or whether we
should consider humans as the only actors who are ulti-
mately responsible for algorithm-based decisions remains
debatable [96]. Statements about the specific actors ac-
countable for AI’s decisions are also diverse [96]. In fact,
the responsibility may be difficult to determine. Without
transparency, it is hard to enforce accountability [95]. As
discussed above, it is still difficult to achieve transparency.
Moreover, it is still unclear whether algorithm-based mis-
takes are related to the quality of data input [95].

In conclusion, the ethical issues of Al remain sticky
when handled and should be focused upon to be attentive
to them and further reviewed to improve the regulatory sys-
tem.

5.3 Trustworthiness and willingness to use aspects

Not all clinicians and patients are interested in adapt-
ing to new technologies. Some clinicians do not trust Al
due to the difficulties associated with understanding how it
works, which may affect their willingness to use Al-based
products [106]. This situation seems more serious in pa-
tients. Previous research shows that only 20% of patients
think there are more advantages than disadvantages in the
application of Al, and 35% of participants would refuse
to implement their disease-related intervention through Al
[107]. Patients worry about losing connection with clini-
cians and are also concerned about the misuse of Al that
can cause additional damage to their health, which may
be caused by inadequate follow-up and insufficient educa-
tion [108]. Achieving public trust is necessary to operate
Al-based cardiac telerehabilitation [109]. Some opinions
warn that people should be cautious about overtrusting al-
gorithms [110], and one of the most critical things to do
now is to boost the construction of trustworthy AI models
with the cooperation of related organizations or enterprises
[111]. To mobilize Al to cardiac telerchabilitation, it seems
clear that we still have a lot to do.
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6. Conclusions

Tailored and ambulatory cardiac telerehabilitation can
be achieved by applying Al into wearable monitoring and
support systems. With Al algorithms or models, wearables
could accurately detect and identify the physical activities
of human beings during cardiac telerehabilitation to assess
the cardiac function capacity of patients, which makes it
possible for the longitudinal follow-up of cardiac telercha-
bilitation. Al combined with cardiac telerchabilitation sup-
port systems could analyze observed indicators in real time
and then triage the results, which enables systems to pro-
vide timely feedback and more targeted recommendations
to different grades as preliminary interventions. Moreover,
based on the results, systems could automatically refer pa-
tients with poor results or complex situations to staff for
further reviews.

Fig. 3 has concluded the application of Al in cardiac
telerchabilitation. Al could improve the efficacy and ef-
fectiveness of cardiac telerehabilitation, helping to make it
comprehensive and close to optimal. For now, further ev-
idence is needed to assess the feasibility and safety of the
implementation of cardiac telerehabilitation with Al in the
clinic. Furthermore, the potential ethical and legal issues
of applying Al should be sufficiently acknowledged by re-
searchers. Further cooperation of multiple disciplines could
be fostered to consider solutions to the current limitations.
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