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Abstract

Chronic kidney disease (CKD) shows a high prevalence and is characterized by progressive and irreversible loss of renal function. It
is also associated with a high risk of cardiovascular disease. The CKD population often suffers from atrial fibrillation (AF), which is

associated with cardiovascular and all-cause mortality. There is a pernicious bidirectional relationship between CKD and AF: renal

dysfunction can help promote AF initiation and maintenance, while unmanageable AF often accelerates kidney function deterioration.

Therefore, it is necessary to determine the interactive mechanisms between CKD and AF for optimal management of patients. However,

due to renal function impairment and changes in the pharmacokinetics of anticoagulants, it is still elusive to formulate a normative

therapeutic schedule for the AF population concomitant with CKD especially those with end-stage kidney failure. This review describes

the possible molecular mechanisms linking CKD to AF and existing therapeutic options.
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1. Introduction

The prevalence of chronic kidney disease (CKD) and
atrial fibrillation (AF) is rising annually. CKD is an insid-
ious disease defined by a progressive drop in kidney func-
tion with or without renal structural changes and is a vital
contributor to cardiovascular disease. Data from the health
system shows that CKD affects 10% population worldwide
(Fig. 1), and its global prevalence has augmented 29.3%
since 1990 [1].

The most common cardiac dysrhythmia, AF, causes
many adverse cardiovascular outcomes. Stroke, chronic
heart failure, myocardial infarction, systemic embolic
events, dementia, and venous thromboembolism are com-
mon complications of atrial fibrillation, and its prevalence
ranges from 2% to 4% in adults [2]. Moreover, AF was
associated with an increased risk of adverse cardiovascular
events and cardiovascular mortality [3,4].

CKD and AF often share multiple common risk fac-
tors, such as age, male sex, cardiovascular disease, hyper-
tension, diabetes, heart failure, and obesity (Fig. 2) [5—
7]. A prospective cohort study including 235,818 general
subjects indicated that estimated glomerular filtration rate
(eGFR) decline increased the risk of AF, meanwhile, the
occurrence of AF promoted the deterioration of renal func-
tion [8]. In CKD patients, 15-20% were estimated to suffer
from AF, and 7.0% of the dialysis population had AF [9—
11]. Conversely, CKD acts as an independent risk factor of
AF. Urine albumin-to-creatinine ratio (UACR) represents a
common kidney function indicator. A recent study focus-
ing on the incidence of AF in CKD patients showed that the

risk of AF increased approximately twice in UACR >300
mg/g compared with UACR <30 mg/g [Hazard Ratio (HR)
2.69; p < 0.0001][12]. On the other hand, AF might play a
significant role in CKD progression. In the Chronic Renal
Insufficiency Cohort Study (CRIC) which included 3,091
participants, patients complicated with AF were at a con-
siderably higher probability of progression to end-stage re-
nal disease (ESRD) (HR 3.2; p < 0.0001) [13]. Similarly, a
systematic review of 25 literature showed that the presence
of AF among the dialysis population was associated with a
higher risk of stroke (5.2 vs. 1.9 per 100 person-years) and
mortality (26.9 vs. 13.4 per 100 person-years) [14]. Thus,
management of AF in CKD patients is extremely impera-
tive for physicians. This review aimed to elaborate our ar-
gument on the knowledge about patients with AF and CKD.

2. Clinical Outcomes of AF in CKD Patients

Ineffective and disordered atrial contraction and dias-
tole lead to an impaired or loss of atrial contribution to ven-
tricular filling. Thus, patients with AF may have symptoms
like palpitation, breathlessness, fatigue, and dizziness due
to irregular and inappropriately rapid ventricular rhythm
and loss of ““atrial kick”, while some are asymptomatic. On
the other hand, sympathetic nervous system hyperactivity
in CKD patients promotes conduction of atrial impulses to
the ventricles with rapid ventricular rate then influence car-
diac output [15]. In addition to hemodynamic disturbance
resulting from AF, AF is also associated with poor clinical
consequence such as stroke and death in dialysis patients
[16—18]. Moreover, a cohort study named CRIC indicated
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Fig. 1. The prevalence of AF in CKD (a) and non-CKD (b) population. AF, atrial fibrillation; CKD, chronic kidney disease.

Fig. 2. Mutual influence between AF and CKD, sharing a se-
ries of common risk factors. AF, atrial fibrillation; CKD, chronic

kidney disease; CVD, cardiovascular disease; HF, heart failure.

that incident AF was linked independently with an elevated
incidence of heart failure, stroke, and death [19]. In another
study on stages 3—4 CKD population, incident AF elevated
the risk of renal function deterioration [20]. Except for the
poor prognosis of AF in the CKD population, changes in

the CKD coagulation systems lead to an increased risk of
thrombosis and bleeding. CKD’s bleeding tendency is in-
fluenced by many aspects relevant to the secondary platelet
function disorder and the heparin application in dialysis
[21,22]. In conclusion, the pro-hemorrhagic state poses a
challenge for the management of thromboembolism events
prophylaxis in CKD patients.

3. AF in CKD

Generally, the AF pathophysiology includes three es-
sential parts (Fig. 3): AF initiation, maintenance and pro-
gression to persistent state [23]. Atrial risk factors cause
atrium changes like fibrosis, inflammation, cellular and
molecular dysfunction, subsequently electrophysiological
and structural remodeling raised by persistent AF leads to
its perpetuation [3].

Pulmonary vein sleeves (PVs) play a major role in
introducing AF [24]; its unique location, tissue construc-
tion, and ion channels conduce to ectopic electrical activ-
ity and re-entry [25]. The PV sleeves lack adjacent tissue
and continuous fibers, leading to spontaneous activity and
AF onset. The early afterdepolarizations (EADs) and de-
layed afterdepolarizations (DADs) generation underlies ec-
topic activity. In the setting of prolonged action potential
duration (APD), usually caused by reducing K™ currents
or enhanced depolarizing currents (including Na™ and L-
type Ca?* currents), L-type Ca?T channels recover from
inactivation and facilitate the occurrence of inward current
[26]. Compared with EADs, DADs have a more active role
in triggering ectopic activity. Ca®*-handling abnormali-
ties resulting from cardiac ryanodine receptor channel type2
(RyR2) dysfunction, and spontaneous sarcoplasmic reticu-
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Fig. 3. The parts of the AF pathophysiology stage. AF, atrial
fibrillation; RAAS, renin-angiotensin-aldosterone system; ROS,

reactive oxygen species.

lum (SR) Ca?™ release events (SCaEs) promote DAD both
in animal models and patients with AF [27-29]. However,
as the original link of DAD, Ca%*/calmodulin-dependent
kinase IT (CaMK II) hyperphosphorylation is a crucial target
in arrhythmia initiation and perpetuation. The autonomic
system provides a substrate for AF development, and trig-
gers the AF-pathophysiology by promoting Ca?*-handling
abnormalities. Sympathetic activation leads to CaMK II
phosphorylation through $-adrenoceptor and cyclic adeno-
sine monophosphate (cAMP) production [30]. In addi-
tion, sympathetic stimulation results in increased SR Ca?*
load, with concurrent positive inotropic action of cardiomy-
ocytes.

Ca?* overload plays a vital role in the persistence of
CaMK II phosphorylation [30]. Oxidative stress is a fea-
ture of many diseases and is involved in Ca?*-handling
abnormalities. A study comparing patients with AF and
sinus rhythm concluded that oxidative stress promotes
AF through oxidating CaMK II. However, in CKD pa-
tients, overactive inflammatory response and the renin-
angiotensin-aldosterone system (RAAS) promote reactive
oxygen species (ROS) accumulation and atrial fibrosis;
thus, contributing to AF progression [31,32].

Fibroblast growth factor-23 (FGF-23) is a hormone in-
volved in the regulation of calcium-phosphorus metabolism
balance and bone mineralization [33]. Elevated level of
FGF-23 is associated with a higher risk of heart fail-
ure, all-cause mortality, cardiovascular mortality, and left-
ventricular hypertrophy [34-36]. Both myocyte culture and

animal experiments confirmed that FGF-23 can induce hy-
pertrophic growth of cardiac cells [37,38]. Furthermore,
in the Multi-Ethnic Study of Atherosclerosis (MESA) and
the Cardiovascular Health Study (CHS), increased FGF-
23 concentration was associated with an increased risk of
AF [39]. In addition, FGF-23 binds to the FGF-receptor
4 (FGFR4) in cardiac myocytes in the defect of klotho,
and induces hypertrophy through activating phospholipase
C (PLC) ~/calcineurin/Nuclear factor of activated T-cells
(NFAT) pathway [37,40]. FGF-23 also stimulated PLC
v/calcineurin/NFAT cascade in hepatic cells during klotho
deficiency, causing elevated inflammatory cytokine secre-
tion (tumor necrosis factor-a (TNF-«), interleukin-2 (IL-
2), and IL-6) [41]. FGF-23 and FGFR 4 expression in-
creased in the atrial tissues of AF patients compared with
the sinus rhythm population, consistent with the expression
of a-smooth muscle actin («-SMA) and collagen-1. Dong
and his colleagues illuminated that FGF-23/FGFR4 accen-
tuated atrial fibrosis by inducing ROS accumulation and
then regulating signal transducer and activator of transcrip-
tion 3 (STAT3) and small mother against decapentaplegic 3
(SMAD3) pathways [42]. Therefore, FGF-23/FGFR4 pro-
vides a vulnerable substrate for AF (Fig. 4). In patients with
uremic syndrome, indoxyl sulfate (IS) and p-cresyl sulfate
(pCS) are classic toxins with high protein affinity and car-
diotoxicity. It has been shown that IS promotes AF by
producing atrium fibrosis and inflammatory response, and
treatment with uremic toxin absorbent AST-120 alleviated
these undesirable effects and then attenuated AF [43,44].
Lekawanvijit et al. [45] also demonstrated that IS might
play a role in pro-fibrotic and pro-inflammation via the P38
mitogen-activated protein kinase (MAPK), P22/44 MAPK,
nuclear factor kappa-B (NF-xB) signaling pathway in vitro.
In 5/6 nephrectomy rat models by Aoki et al. [43], oxida-
tive stress is increased in the left atrium. In another animal
experiment on rabbits, IS induced more DAD, burst firing
events, and larger Ca®* leakage in pulmonary vein cells,
which trigger AF occurrence [44]. Furthermore, IS played
a part in impairing the Mas receptor’s ability to counter
the pernicious effect of angiotensin II (Ang II) via the or-
ganic anion transporter 3 (OAT3)/aryl hydrocarbon receptor
(AHR)/STAT3 pathway, which reduced the number of Mas
receptor [46]. Thus, we conclude that IS plays a vital role in
AF via the effects of inflammation, fibrosis, and oxidative
stress on atrial remodeling (Fig. 4). Uremic toxin pCS may
have effects similar to IS.

4. Management of AF in Patients with CKD
4.1 Rate and Rhythm Control

When the adverse effects of AF appear due to rapid
ventricular rate or loss of available atrial contraction, medi-
cation strategy, including rate and rhythm control should be
considered. /3-blockers and non-dihydropyridines calcium
channel blockers are recommended as first-line pharmaceu-
tical strategies to realize rate control, and selective 57 re-
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Fig. 4. The role of FGF-23 and uremic toxins in AF initiation and progression in patients with CKD. Here, we summarize the

relevant molecular pathways and their effects. AF, atrial fibrillation, CKD, chronic kidney disease; FGF-23, fibroblast growth factor-

23; 1S, indoxyl sulfate; pCS, p-cresyl sulfate; RAAS, renin-angiotensin-aldosterone system; ROS, reactive oxygen species; TNF, tumor

necrosis factor.

ceptors blocking agents are more desirable [47]. Metopro-
lol and carvedilol are usually prescribed by physicians to
ESRD patients, metoprolol is selective 31 receptor block-
ers, while carvedilol is nonselective and it has greater o
antagonism [48,49]. In a large retrospective cohort study,
subgroup analysis of dialysis patients with AF showed that
carvedilol was associated with higher all-cause and cardio-
vascular mortality. Besides, carvedilol caused more hy-
potension during dialysis sessions [50]. Beta-blockers are
also effective in the primary prevention of atrial fibrillation
in ESRD patients [S1]. Nevertheless, several large-scale
randomized clinical trials (RCTs) are required to provide
scientific and solid evidence to explicit beta-blockers ad-
ministration in patients with concomitant AF and ESRD.
When rate control treatment is ineffective or has serious
side effects, it is time to consider initiating rhythm control,
especially in those requiring dialysis [52]. A commonly
administrated rhythm control drug is amiodarone, there is
no need to adjust the prescription dose even in the dialysis
population [52]. Of specific interest, a novel rate control
agent ivabradine is not recommended in patients with CKD
at present. A meta-analysis showed an elevated risk of AF
with ivabradine treatment [53]. However, another meta-
analysis found that ivabradine can reduce the ventricular
rate in patients with AF [54]. An uncompleted RCT Ivabra-
dine Block of Funny Current for Heart Control in Perma-
nent Atrial Fibrillation (BRAKE-AF, NCT03718273) is go-
ing to demonstrate ivabradine’s inferiority in heart rate con-
trol (Table 1) [55]. We still need to keep an eye on ivabra-
dine treatment to control heart rate in persistent AF patients.

Apart from medical treatment, catheter ablation (CA) is
now a safer and effective option for patients with symp-
tomatic and refractory AF. An observational study showed
that CA improves the eGFR of CKD patients with AF [56].
However, the presence of CKD increased the recurrence of
AF after CA, and we should perform an assessment of the
risks and benefits before atrial fibrillation ablation.

4.2 Stroke Prevention in AF and CKD Patients

One of the irreversible outcomes caused by AF is
thromboembolism, which usually results from a detach-
ment of thrombus in the atrium cordis. For long-term man-
agement of the risk between thromboembolism and bleed-
ing, the widely recognized CHA;DS5-VASc (congestive
heart failure, hypertension, age, diabetes, stroke, vascu-
lar disease, and sex) guideline system identifies the pop-
ulation warranted prophylactic anticoagulation in patients
with paroxysmal, persistent, or permanent atrial fibrillation.
Oral anticoagulants are recommended strongly for AF pa-
tients with CHA5DS5-VASc score of 2 or greater in males
or 3 or greater in females [57]. Anticoagulant options in-
clude the traditional drug warfarin and non-vitamin K oral
anticoagulants (NOACs) (dabigatran, rivaroxaban, apixa-
ban, and edoxaban). Compared with NOACs, warfarin ad-
ministration has high-quality scientific evidence in clinical
practice. However, in RCTs, the NOACs are not inferior to
warfarin in preventing stroke and superior to warfarin in de-
creasing hemorrhage [58—61]. A meta-analysis of random-
ized trials and observational studies in the Asian population
published in 2019 indicated that NOACs improved thera-
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Table 1. On-going RCTs in patients with AF and ESRD and an unaccomplished trial on ivabradine in patients with persistent

AF.
. . . Study design ) )
Registration of the trial Estimated date of completing
Drug Primary outcome
NCT03987711 Warfarin vs. apixaban vs. Treatment effect and safety 2021.12
no antithrombotic therapy
NCT02933697 Low-dose apixaban vs. Treatment safety 2022.07
warfarin
NCT02886962 Warfarin vs. nonuse Adverse effect 2023.01
NCT03862359 Warfarin Treatment effect and safety 2024.09
NCT03718273 Ivabradine vs. digoxin Treatment effect and 2021.08

serious adverse outcome

peutic effect and safety [62]. Nevertheless, ESRD patients
were excluded from the study, which poses a handicap in
the use of NOACs.

4.2.1 Warfarin

Warfarin is a commonly used anticoagulant that
mainly inhibit the vitamin K reductase and vitamin K recir-
culation. After being completely absorbed, warfarin takes
nearly a week to reach a steady-state and is eliminated to-
tally by metabolism [63]. Although its renal excretion is
negligible, a lower dose is needed in patients with stages 4—
5 CKD to achieve the correct international normalized ratio
(INR).

In ESRD patients complicated with AF, high-level
RCTs to provide the most striking evidence for decision-
making are lacking. Previous observational real-world
studies on warfarin prescription in ESRD patients do not
provide consistent idea (Fig. 5) [64]. Some cohort studies
showed the benefits of warfarin in stroke prevention and
survival (Fig. 5a,c) [65,66], while others showed no bene-
ficial effects but greater harm (Fig. 5b) [67,68]. The Amer-
ican Heart Association (AHA)/American College of Cardi-
ology (ACC)/Heart Rhythm Society (HRS) 2019 Guideline
for AF management ranked warfarin prescription as II b in-
dication, but in patients with ESRD and AF, less than 50%
receive oral anticoagulant, and only about 34% of people
receive warfarin in the dialysis population [69]. In end-
stage CKD patients treated with warfarin, there were no
survival benefits and decreased rate of stroke, but an ele-
vated risk of hemorrhage events (Fig. 5) [67,70,71]. War-
farin therapy has one obvious drawback compared with di-
rect oral anticoagulants (DOACs). The warfarin therapeu-
tic range is critically questionable to overcome, especially
for patients with poor treatment compliance. According to
the AHA/ACC/HRS 2019 Guideline, patients should take
coagulation function examination to determine the INR at
least once a week at the initiation of warfarin treatment, and
at least once a month until its efficacy is stable [57].

Moreover, warfarin may have side effects other than
bleeding due to its pharmacological mechanism to in-

hibit vitamin K-dependent gamma-glutamyl carboxylase
enzyme. Decreased vitamin K-dependent gamma-glutamyl
carboxylase enzyme activation impairs matrix Gla protein
(MPG). However, MPG is demonstrated to attenuate vas-
cular calcification significantly [72]. Vascular calcification
is prevalent in CKD patients, and is associated with an in-
creased risk of cardiovascular, cerebrovascular, peripheral
vascular disease [73,74]. Despite the untoward effects limit
warfarin application, it is still a deemed medicine for anti-
coagulation when the INR is stable and the risk of bleeding
is lower than stroke.

4.2.2 Non-Vitamin K Oral Anticoagulant

NOAC:s, also known as DOACs, and currently dabi-
gatran, rivaroxaban, apixaban, and edoxaban are commonly
used for anticoagulation. Dabigatran is a thrombin inhibitor
unlike other three coagulation factor Xa inhibitors. NOACs
are preferable to warfarin in NOACs-eligible AF patients
[57]. However, top-level evidence for NOACs prescrip-
tion is scarce in AF patients with severe renal dysfunc-
tion. Food and Drug Administration (FDA) approved only
apixaban for anticoagulation in patients with ESRD, and
the AHA/ACC/HRS 2019 Guideline for AF management is
consistent with FDA [57]. On the contrary, the 2018 Euro-
pean practical guideline refused apixaban therapy in ESRD
patients [75].

4.2.2.1 Apixaban. In studies comparing the efficacy and
safety of apixaban with warfarin, apixaban showed its ad-
vantage in stroke and embolism prevention or less major
bleeding events with fewer mortality [59,76,77]. Although
warfarin was associated with a lower risk of stroke and
systematic embolism in the subgroup analysis of severe or
moderate renal impairment, it was statistically insignificant
[59]. In a matched-cohort study, apixaban had a lower
major bleeding occurrence; however, there was no signifi-
cant difference [77]. In another retrospective cohort study,
there were significant differences in both overall and major
hemorrhagic events between apixaban and warfarin groups
(18.9% vs. 42.0%; p = 0.01 and 5.4% vs. 22.0%; p =
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Fig. 5. Efficiency and safety of warfarin in patients with AF and ESRD. (a) Hazard ratio (HR) for stroke treated with warfarin. (b)
Hazard ratio (HR) for bleeding treated with warfarin. (c) Hazard ratio (HR) for mortality treated with warfarin. AF, atrial fibrillation;

ESRD, end-stage renal disease.

0.01 respectively) (Fig. 6, Ref. [78]) [76]. A meta-analysis
of observational studies in dialysis population showed that
apixaban was significantly associated with lower risk of
bleeding than warfarin and other DOACs (Fig. 6b) [78].
Thus, apixaban may be effectively and safely used in ESRD
patients (Fig. 6a,c). We have to be aware that the therapeu-
tic dosage of apixaban needs to be prudently adjusted ac-
cording to the stroke and bleeding risks. In a small-scale
study including seven dialysis patients, 5 mg twice daily
was beyond a reasonable therapeutic level [79]. On the con-
trary, routine 5 mg twice daily was significantly associated
with reduced risks of stroke and mortality (HR 0.61, 95%
CI 0.37-0.98, p = 0.04) [80]. Thus, ESRD is not a con-
traindication to apixaban, but a standard dose of 5 mg twice
daily is not recommended for all patients.

4.2.2.2 Dabigatran. Dabigatran is not approved in patients
with eGFR <15 mL/min/1.73 m2. As the only thrombin
inhibitor, dabigatran is distinguished from other NOACs
because more than half of it can be eliminated by dialy-
sis [22]. In an analysis comparing two fixed-doses (110
mg twice daily and 150 mg twice daily) of dabigatran with
warfarin, higher doses gave a better response to stroke pre-
vention but did not reduce major bleeding risks [1.11% vs.
1.69%; Risk Ratio (RR) 0.66; p < 0. 01 and 3.36% vs.
3.1%; p = 0.31]. Conversely, the 110 mg twice daily strat-
egy was independently associated with the decreased major
bleeding rate (3.36% vs. 2.71%; p = 0.003) [58]. In an-

other study on dialysis patients, dabigatran was at greater
risk of not only lethal hemorrhage (RR 1.48; 95% CI 1.21-
1.81, p = 0.0001) but also minor bleeding (RR 1.17; 95%
CI 1.00-1.38, p = 0.05) after adjusting covariates (Fig. 6b)
[81]. However, it did not show a trend to lower stroke due to
the relatively short follow-up time. In severe renal impaired
patients, dabigatran exposure was approximately a 6-fold
increase compared with general subjects, and its elimina-
tion time was prolonged [82]. A treatment simulation sug-
gested once-daily over twice-daily dosing in patients un-
dergoing hemodialysis [83]. However, further studies are
needed to support the use of dabigatran therapy in patients
with severe kidney dysfunction.

4.2.2.3 Rivaroxaban and Edoxaban. Rivaroxaban therapy
did not show significantly reduced rates of stroke and sys-
tematic embolism (RR 1.8; 95% CI 0.89-3.64) [81], and
was associated with adverse effects of both severe (RR
1.38; 95% CI 1.03-1.83, p = 0.04) and slight (RR 1.35;
95% CI 1.11-1.65, p =0.001) bleeding events. In a double-
blinded trial, the rivaroxaban (20 mg) group did reduce
stroke and systemic embolism compared with the warfarin
group (RR 0.88; 95% CI10.74-1.03, p < 0. 001 for inferior-
ity) [58]. Edoxaban did not show a favorable trend in stroke
and thromboembolic events prevention compared with war-
farin. Thus, rivaroxaban and edoxaban may not have their
place as anticoagulation options for ESRD patients.


https://www.imrpress.com

Fig. 6. Efficiency and safety of NOACs in patients with AF and ESRD. (a) Hazard ratio (HR) for stroke treated with NOACs. (b)
Hazard ratio (HR) for bleeding treated with NOACs. (c) Hazard ratio (HR) for mortality treated with NOACs. Kuno et al. [78] is
a systematic review that compared high and low-dose apixaban with no anticoagulants. AF, atrial fibrillation; ESRD, end-stage renal

disease; NOACs, the non-Vitamin K oral anticoagulant.

Although we can get instructive information from ob-
servational studies with large subjects, the surrounding ev-
idence from RCTs is limited. Several ongoing RCTs on an-
ticoagulation drugs may provide a direction for improving
embolism prophylaxis (Table 1).

5. Our New Idea on AF Management in CKD

5.1 SGLT-2 Inhibitor: Will It be a Good Choice for
Patients with Mild-Moderate Renal Insufficiency to
Prevent AF?

Sodium glucose cotransporter-2 (SGLT-2) is a cotrans-
porter of Na™-glucose located in the apical membrane of re-
nal proximal convoluted tubule that plays a role in glucose
reabsorption [84]. The latest hypoglycemic drug, SGLT-
2 inhibitor acts on this transporter to decrease blood glu-
cose. However, animal experiments indicated that SGLT-
2 is widely involved in inflammation [85], tissue fibrosis
and cell signaling pathways regulation [86]. More atten-
tion was given to its protective effect on the cardiovascular
system than to its hypoglycemic effects. Several reviews
have evidence for SGLT2i cardioprotective effects [87,88].
A meta-analysis of 22 RCTs revealed that SGLT2i was as-
sociated with decreased risk of AF (RR 0.82, 95% CI10.70—
0.96) and embolic stroke (RR 0.32, 95% CI1 0.12—-0.85) [89],
consistent with a Chinese cohort study demonstrating that
SGLT2i decreased the risk of new-onset arrhythmia [90].
Nevertheless, a previous systematic review with fewer par-

ticipants took an opposite view that SGLT2i was not asso-
ciated with a reduced risk of AF independently (OR 0.61,
95% CI 0.31-1.19) [91]. In patients with diabetes mellitus
(DM), the application of SGLT2i ameliorated the AF occur-
rence events, regardless of whether the AF is absent or not
previously [92]. SGLT2i can cause significant reduction
in weight and blood pressure [93], which further reduces
the risk of AF. Thus, it is suggested that that SGLT2i can
decrease the chance of AF in patients with mild-moderate
kidney failure. SGLT2i exerted the anti-inflammatory ef-
fects in rats with colitis by reducing the overexpression of
proinflammatory cytokines IL-13 and TNF-«, and mak-
ing the anti-inflammatory cytokine IL-10 work properly
[85]. Following SGLT2 inhibition, AMP-activated protein
kinase (AMPK) signal activation suppresses the nucleotide-
binding domain and leucine-rich repeat-containing (NLR)
family pyrin domain containing 3 (NLRP3) to mitigate in-
flammation [94]. It has also been proven that SGLT2i
observably suppressed inflammation response in immune
cells [95]. Indeed, one hallmark feature in CKD is chronic
exposure to a low-grade inflammatory state. However, in-
flammation is a fundamental part of AF initiation and main-
tenance. Consequently, it is reasonable to suggest that
SGLT?2i can be prescribed for mild-moderate kidney dys-
function patients to prevent AF and other adverse cardio-
vascular events.
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There are multiple possible molecular signaling path-
ways through which SGLT2i reduce the underlying risk of
AF (Fig. 7). Sesterins are cytoplastic stress proteins that
prevent atria from oxidative damage and structural remod-
eling by alleviating ROS accumulation and fibrosis in car-
diac fibroblasts [96]. SGLT2i upregulated Sesterin2 and
then activated downstream AMPK/mammalian target of ra-
pamycin complex 1 (mTORCI) signaling pathway, thus
accounting for SGLT2i’s role in abating inflammation re-
sponse, oxidative stress, and atrial fibrosis [97]. Normal
physiological activities and energy metabolism of cells or
organs depend on effective and functional mitochondrial
respiration. Sesterin2/AMPK pathway activation enhances
peroxisome proliferator-activated receptor-gamma coacti-
vator la (PGC-1a) expression, restraining ROS’s exces-
sive production through more dynamic mitochondrial func-
tion [98,99]. Shao et al. [99] disclosed the PGC-1a nu-
clear respiratory factor-1 (NRF-1)/mitochondrial transcrip-
tion factor A (TFAM) as the relevant molecular pathway
in rat models. Another key downstream molecule of Ses-
terin2 is liver kinase B1 (LKB1), a crucial protein kinase for
normal atrial development and electrophysiological activi-
ties. Ion channel and connexin dysfunction in LKB1 knock-
down mice resulted in electrophysiological abnormalities
and fibrosis of the atrium, which predispose to the AF oc-
currence [100]. Animal studies also revealed that SGLT2i
could ameliorate electrical remodeling of the atrium [99].
These intricate and diverse molecular signaling pathways
illustrated that SGLT?2 inhibitions has a positive impact on
the prevention of cardiovascular disease and arrhythmia.
Hence, extending the SGLT2i application to treat cardio-
vascular events is of great significance. Thus, we sug-
gest SGLT2i’s application to mild-moderate kidney failure
population, especially with comorbid DM, HF, or multiple
metabolic disorders.

5.2 LCZ696 (Sacubitril/Valsartan): Will It be Available for
AF and Stroke Prevention in the CKD Population?

Sacubitril/Valsartan (SAC/VAL) is an inhibitor of Ang
II and neprilysin receptor that blocks Ang II binding to an-
giotensin receptor 1 (AT-R1) and amplifies the effects of
natriuretic peptides by decreasing their degradation [101].
It has been a first-class medicine for chronic heart failure,
and trials by Prospective Comparison of ARNI with ACEI
to Determine Impact on Global Mortality and Morbidity in
Heart Failure (PARADIGM-HF) investigators showed that
sacubitril/valsartan significantly reduced the risk of cardio-
vascular mortality and admission in patients with reduced
ejection fraction heart failure [102]. In severe renal in-
sufficiency patients, the risk of death from cardiovascu-
lar disease reduced 28% in the sacubitril/valsartan group
compared with conventional management [103]. Treatment
with sacubitril/valsartan improved systolic cardiac func-
tion after myocardial infarction (MI), and decreased the ar-
rhythmias tendency by decreasing CaMK II phosphoryla-

tion in rodent chronic MI and HF model [104]. Martens
et al. [105] used a retrospective study including 151 eligi-
ble patients with heart failure with reduced ejection fraction
(HFrEF) to demonstrate the benefit of sacubitril/valsartan
therapy for ventricular arrhythmia and reversal of left ven-
tricular structural remodeling. Data from pre-clinical tri-
als suggested that sacubitril/valsartan ameliorates cardiac
fibroblast transition by accommodating protein kinase G
(PKG) signaling [106]. Li et al. [107] also found NF-
xB/NLRP3 signaling pathway involved in positive effects
of LCZ696 to prevent cardiac fibrosis in mice. Except
for averting ventricular reconstruction, atrial electrophys-
iological dysfunction and structural remodeling in rabbits
afflicted with AF were converted significantly by sacubi-
tril/valsartan through the calcineurin/NFAT pathway [108],
which further hindered initiation and progression of AF.

Li et al. [109] demonstrated that SAC/VAL altered
atrial fibrillation propensity by suppressing Ang II-induced
AF in rat models. Interestingly, they also noticed p-
Smad 2/3, phosphorylation of c-jun-NH2-terminal kinase
(p-JINK) and p-p38MAPK downregulated expression, indi-
cating that it might be a potential therapeutic target path-
way. Sacubitril/valsartan could strongly improve left atrial
(LA) and left atrial appendage (LAA) function even in AF
patients [110]. Fully effective LA and LAA function are
essential for escaping from blood stagnation and thrombo-
genesis and reducing cardioembolic stroke risk [111]. A
meta-analysis of SAC/VAL in renal failure and AF patients
showed that it reserved kidney function without adverse
drug reaction [112]. In a mouse model of CKD, LCZ696
attenuated oxidative stress, fibrosis and inflammation in the
kidney as well as the cardiovascular system [113,114]. The
above evidence (Fig. 8) adds to our understanding of sacu-
bitril/valsartan therapy’s role in preventing AF occurrence
and stroke in patients with AF and CKD. Atrial disease is an
important part in the development and progression of HF,
meanwhile, patients with HF prone to AF [115], which sug-
gests that it is necessary to treat HF in patients with CKD.

6. LAAO in Patients with AF and CKD

The left atrial appendage (LAA) is the main throm-
bogenesis region in AF for its poor function, and if that
the thrombus falls off, a systematic embolic outcome fol-
lows. The left atrial appendage occlusion (LAAO) is an op-
timal mechanical strategy for preventing AF-related stroke
[116]. In real-world clinical practice, patients who received
LAAO therapy had a lower risk of stroke and hemorrhage
[117]. Considering the uncertainty in the pros and cons
of anticoagulants use in patients with advanced renal fail-
ure, LAAO may be a suitable stroke prevention strategy
[118]. Kefer et al. [119] highlighted that LAAO greatly
reduced the risk of stroke, transient ischemic attacks (TTA),
and bleeding events. In a meta-analysis comparing the ben-
efits and adverse outcomes between LAAO and anticoag-
ulants, it has been indicated that LAAO acquired more ef-
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Fig. 7. SGLT2i exerts an influence on protecting the cardiovascular system. SGLT2i, sodium-glucose cotransporter inhibitor; Glu,

glucose.

Fig. 8. Sacubitril/valsartan was demonstrated to be a beneficial option for AF patients. AF, atrial fibrillation; CKD, chronic kidney

disease; LA, left atrium; LAA, left atrial appendage.

fective embolism prevention with a lower risk of bleeding
than oral anticoagulants [120]. Therefore, LAAO can be
proposed for CKD patients with absolute contraindication
to oral anticoagulants.

7. Early Identification of AF is Required in
Patients with CKD

Early identification of AF is beneficial for patients
with renal insufficiency, and early diagnosis of asymp-

tomatic AF helps prevent stroke effectively. However,
screening for AF is not routinely performed in patients
with CKD. LA imaging technology, such as 2-dimensional
echocardiogram, 3-dimensioanl echocardiogram, cardiac
magnetic resonance, and cardiac computed tomography,
have been used to accurately assess LA size and function
[121]. Besides, cardiac troponin and natriuretic peptide are
serological markers suggestive of cardiovascular dysfunc-
tion. Molecular imaging may also enable accurate and early
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detection of AF [122]. Patients with CKD are at high risk
for AF, therefore, we need a comprehensive strategy, which
includes risk factor assessment, sensitive serum biomark-
ers, precise imaging, and promising molecular imaging for
better management.

8. Summary

AF and CKD usually coexist and share several com-
mon traditional risk factors. CKD patients possess underly-
ing pathophysiological mechanisms in the initiation and de-
velopment of AF, and making treatment decisions for stroke
prevention in this population remains a challenge. In this re-
view, a series of innovative measures for AF management
in CKD patients were brought forward, but these strategies
were just hypotheses with sound reasoning. Thus, individ-
ualized prevention and therapy strategies for AF are still
required in patients with CKD.
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