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Abstract

Coronary artery spasm (CAS) is a transient reversible subtotal or complete occlusion induced by coronary hypercontraction and the
critical cause of myocardial ischaemia with non-obstructive coronary arteries. During the past decades, our knowledge of the risk factors
and pathophysiological mechanisms of CAS have been increasingly progressed, and various diagnostic approaches, including imaging
technologies and novel biomarkers, have been proposed to serve well to diagnose CAS clinically. This review aims to summarize these
research progresses on the risk factors of CAS and introduce current knowledge about the mechanisms accounting for CAS, including
endothelial dysfunction, vascular smooth muscle cell hyperreactivity, and adventitial and perivascular adipose tissue inflammation. We
also gathered the recently evolved diagnostic approaches and analyzed their advantages/disadvantages, in purpose of enhancing the
diagnostic yield on the basis of ensuring accuracy.
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1. Introduction
In 1959, Prinzmetal et al. [1] first proposed the term

“variant angina” which is later evolved and re-named as
coronary artery spasm (CAS). CAS is generally consid-
ered as abnormal contraction of epicardial coronary arter-
ies causing myocardial ischemia and includes microvas-
cular CAS in a broad sense. Clinically, CAS is defined
as a transient reversible subtotal or complete occlusion of
coronary arteries with>90% vasoconstriction on angiogra-
phy using spasm provocation test (SPT) known as the gold
standard approach, accompanied by angina pectoris and is-
chaemic electrocardiogram (ECG) changes [2]. CAS could
also appear in common ischemic heart disease, including
stable angina, unstable angina, and acute myocardial infarc-
tion (AMI), coupled with a variety of pathophysiological al-
terations, such as coronary atherosclerosis and thrombosis.
The current European Society of Cardiology (ESC) guide-
line further emphasizes the concept that vasospastic angina
(VSA) and microvascular angina are also components of
chronic coronary syndrome (CCS) [3]. Moreover, coronary
angiography (CAG) revealed that the degree of stenosis due
to mere atheromatosis was less than 50% in a large angina
patient cohort [4], suggesting the additional involvement of
CAS in coronary stenosis and the importance of assessing
CAS in patients with CCS.

CAS is not a benign disease. Approximately 1–14%
of AMIs are considered to occur in CAS patients, which

could further lead to fatal arrhythmia, and even sudden car-
diac death [5]. Thrombosis secondary to CAS may be an-
other important cause of myocardial infarction [6]. Despite
the area of CAS-induced myocardial infarction is small in
general, spontaneous reperfusion after CAS subsiding also
increases the risk of fatal arrhythmia [7]. VSA is the ma-
jor clinical manifestation of CAS-induced myocardial is-
chemia. It is usually independent of effort occurring at rest
with obvious circadian rhythm, namely more occurrences
in the period from midnight to dawn [2]. ST-segment el-
evation or depression on ECG is one of the clinical fea-
tures [2]. Compared with coronary atherosclerotic diseases
(CAD), CAS is more prevalent in women, younger people
and Asian populations, such as Japanese and South Kore-
ans. With the utilization of invasive SPT, it is also not un-
common for VSA in some Western countries such as Ger-
many and Australia [8,9]. However, true prevalence needs
further investigation due to the rare utilization of SPT in
most countries, such as China, where SPT is cautiously per-
formed only for clinical diagnosis in specialized medical
centers.

Recent years have witnessed increasing advances to-
wards our understanding of CAS. This review aims to in-
troduce the recent knowledge on the risk factor, pathophys-
iological mechanisms of CAS and also highlights the lat-
est advancements in clinical diagnosis of CAS, aiming at
providing effective alternatives for invasive methods, es-
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Fig. 1. Precipitating factors (grey ellipses) and clinical risk factors (white ellipses) of CAS. CAS, coronary artery spasm; hs-CRP,
high-sensitivity C-reactive protein.

pecially for the countries where SPT is not performed rou-
tinely in the clinic.

2. Precipitating Factors and Clinical Risk
Factors

There are a vast number of precipitating factors for
CAS (Fig. 1), which can be divided as physiological and
pharmacological categories. The former includes emo-
tional stress, cold stimulation, hyperventilation, valsalva
maneuver, and exercise etc., while the latter contains psy-
choactive drugs (such as cocaine, marijuana, and am-
phetamine), sympathomimetic agents (such as epinephrine,
norepinephrine), parasympathomimetic agents (such as
acetylcholine (Ach), pilocarpine), vasoconstrictors (such
as thromboxane, ergonovine), alcohol consumption, and
magnesium deficiency etc. [10,11]. In addition, there
have been reports about CAS induced by traditional Chi-
nese medicine, including Di-Long (dried earthworm), Ma-
Huang (plant of ephedra), and cucumis polypeptide (the
combined extracts from deer horn and sweet melon seeds)
[12].

Unlike CAD, CAS patients seem to be more common
among young people and women [7,13]. However, male
patients still account for the majority of CAS patients, and
high prevalence is in the age range of 40–70 years [4]. As
mentioned above, CAS is a highly prevalent disease in East
Asia with ethnic and genetic diversity. It is worth noting

that East Asian patients tend to present diffuse and multi-
vascular CAS, while Caucasians tend to present focal CAS
[14]. Smoking is an unequivocal risk factor for CAS and
about 75% of CAS patients are smokers [15]. It was also
reported that the proportion of smokers in CAS patients was
42.6%, but it still surpassed that in CAD patients [16]. The
substances in cigarettes, such as carbonmonoxide and nico-
tine, are able to damage blood vessels by increasing inflam-
mation and oxidative stress, which explains why smoking
is a high risk factor for CAS [17]. Although hyperlipi-
demia, hyperglycemia, and hypertension in CAS patients
are less common than those in CAD patients [16], these
metabolic disorders also contribute to the development of
CAS. Serum high-sensitivity C-reactive protein (hs-CRP) is
higher in CAS patients than that among healthy individuals,
implicating the potential of hs-CRP to be a predictor of CAS
[18]. Moreover, alcohol consumption [19] and chemothera-
peutics [20] that destruct blood vessels through independent
mechanisms have also been found to relate to CAS.

3. Pathophysiological Mechanisms of CAS

The pathogenesis of CAS is complicated and could
be categorized as endothelial dysfunction (ED) in the in-
tima, vascular smooth muscle cell (VSMC) hyperreactivity
in the media, and adventitial and perivascular adipose tissue
(PVAT) inflammation (Fig. 2).
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Fig. 2. A schematic illustration of CAS pathogenesis including endothelial dysfunction, VSMC hyperreactivity, and adventi-
tial/perivascular adipose tissue inflammation. CaM, calmodulin; EC, endothelial cell; ERS, endoplasmic reticulum stress; ET-1,
endothelin-1; MLC, myosin light chain; MLCK, MLC kinase; NO, nitric oxide; ox-LDL, oxidized low-density lipoprotein; PKC, protein
kinase C; PLC, phospholipase C; RhoA, Ras homolog gene member A; RhoGEF, Rho guanine nucleotide exchange factors; RhoK, Rho
kinase; ROS, reactive oxygen species; VSMC, vascular smooth muscle cell.

3.1 Endothelial Dysfunction in the Intima

ED is defined as a series of phenotypes related
to pathophysiological heterogeneous changes in vascular
tone, permeability, inflammation, and de-differentiation by
the ESC [21]. Clinical observations have shown that ED is
associated with the pathogenesis of CAS. Nitroglycerin and
isosorbide dinitrate, two endothelial-independent vasodila-
tors, are highly efficient to relieve vasospasm angina dur-
ing CAS [22,23]. Nitrates are even prescribed as vasodila-
tor agents after SPT [24]. In clinical angiography, it has
been found that most of the spastic sites were in parallel
to atherosclerotic plaque [25], and the coronary intima of
CAS patients was remarkably thickened [26]. Immunohis-
tological analysis of endomyocardial biopsy samples fur-
ther showed that most CAS patients had endothelial cells
(ECs) activation [27]. After removal of the endothelium,
porcine coronary arteries successfully developed CAS with
high cholesterol feeding [28].

At the molecular level, ED refers to disruption of
homeostasis for endothelial regulation of vascular tension,
and defines the abnormal function of synthesis and re-
lease of vasoactive substances such as nitric oxide (NO)
and endothelin-1 (ET-1). Endothelial NO synthase (eNOS)
dimer is the pivotal molecule for ECs to physiologically
produce NO. When high-risk factors are present, reactive
oxygen species (ROS) is increased in ECs due to stimula-

tion by reduced nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase [21,29]. The increased ROS
then clears NO in ECs and converts it into peroxynitrite
(ONOO−) with strong oxidizing property. Increased ROS
also oxidizes tetrahydrobiopterin (BH4), an important co-
factor of eNOS that maintains its dimerization, to be dihy-
drobiopterin (BH2), leading to eNOS uncoupling and at-
tenuation of NO synthesis. Furthermore, production of the
eNOSmonomer can in turn prevent O2 from converting into
superoxide anion (O2−), which further augments ROS and
exacerbates the failure of eNOS dimerization. In addition,
increased ROS alsomediates the development of inflamma-
tion and ECs damage, which ultimately leads to ED. ET-1
is a powerful vasoconstrictor, and the increase of its syn-
thesis and release is also one of the components of ED.
Toyo-oka et al. [30] presented that plasma ET-1 level of
CAS patients was significantly higher than that of non-CAS
patients. Increased ET-1 then activated protein kinase C
(PKC) and thereby enhancing coronary contraction induced
by prostaglandin F2α (PGF2α) and 5-hydroxytryptamine
(5-HT; also named as serotonin) [31,32]. High levels of
ET-1 also repressed the NO synthesis in a PKC-dependent
manner [33]. Studies have shown that cigarette smoking in-
creased the vascular ET-1 receptors by activating mitogen-
activated protein kinase (MAPK) [34]. In addition, cocaine
may promote the release of ET-1 to elicit CAS [35], and a
few hours after drinking, CAS was observed to be caused
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by an obvious elevation of ET-1 level [36]. These studies
might explain the association between common risk factors
and the development of ED-related CAS.

The ED in association with CAS is further supported
by genetic evidence. The polymorphisms ofNOS gene [37],
aldehyde dehydrogenase 2 (ALDH2) gene [38], paraox-
onase I gene [39], p22 phox gene in male [40], manganese
superoxide dismutase (MnSOD) gene [41], and inflamma-
tory factor interleukin-6 (IL-6) gene [40] all influence the
NO synthesis, oxidative stress and inflammation. The poly-
morphisms of ET-1 gene are also related to CAS. Lee et al.
[42] showed that CAS is related to the + 138delA, G8002A
and Lys198Asn polymorphisms of the ET-1 gene. Ford et
al. [43] observed that patients with coronary microvascu-
lar dysfunction have a higher frequency of the rs9349379-G
allele and are associated with higher serum ET-1 levels.

Of note, Shimokawa [44] and Lanza et al. [45] pre-
sented evidence such as successful establishment of CAS
animal models with normal endothelial function to show
that ED might not be the key mechanism of CAS pathogen-
esis. Moreover, some CAS patients were resistant to nitrate
treatment, which means supplementing NO cannot always
mitigate CAS [46]. In addition, not all CAS patients have
ED, and ED or inhibition of NO synthesis alone may be
insufficient to cause CAS [45,47], implicating that ED is
an important yet unnecessary pathophysiological change of
CAS.

3.2 VSMC Hyperreactivity in the Media
While VSMC hyperreactivity is dependent on the cy-

toplasm Ca2+ sensitivity or the [Ca2+]i quantity, mul-
tiple pathways such as RhoGEF/RhoA/RhoK pathway,
PLC/PKC pathway, Ca2+-CaM/MLCK/MLC pathway,
and endoplasmic reticulum stress have been suggested to
regulate the VSMC hyperreactivity and induce CAS.

3.2.1 RhoGEF/RhoA/RhoK Pathway
The Ras homolog family (Rho) pathway activity has

been observed to have circadian rhythm, showing higher
activity particularly at midnight and early morning [48,49],
a time window that conforms to the circadian rhythm of
CAS. Also in CAS patients, intervention by Rho kinase
(RhoK) inhibitors remarkably reduced Ach-induced coro-
nary contraction [50,51], as well as the degree of my-
ocardial ischemia [52,53], and further improve coronary
artery relaxation combined with nitroglycerin [54]. These
data suggested that the Rho pathway plays a pivotal role
in the pathogenesis of CAS in human. Indeed, Rho gua-
nine nucleotide exchange factors (RhoGEFs) are a class
of molecules with abundant subtypes, which can activate
Rho protein by converting GDP into GTP [55]. In VSMCs,
RhoGEFs are mainly regulated by G protein-coupled recep-
tors (GPCRs) and the activated RhoGEFs then transduce
signals to the downstream Rho family member A (RhoA),
thereby modulating the Ca2+ sensitivity [55–57].

Many etiologies can induce VSMC hyperreactivity by
activating the RhoA/RhoK pathway, such as oxidized low-
density lipoprotein (oxLDL) [58,59], chronic hypoxia and
ROS [60–62], inflammation [63,64], hemorrhagic shock
[65], and chronic stress [66]. Galle et al. [58] observed
that oxLDL augmented the activity of RhoA in rabbit aorta,
and thereby potentiating the contractile responsiveness of
aorta to Angiotensin (Ang) II. Bolz et al. [59] proved that
oxLDL increased the [Ca2+]i and RhoK-mediated Ca2+
sensitization in isolated small resistance arteries, which re-
duced the response to vasodilators and provoked vascu-
lar hyperreactivity to norepinephrine and Ach. Maruko et
al. [60] showed that chronic hypoxia attenuated [Ca2+]i in
coronary artery of fetal sheep, but enhanced Ca2+ sensitiv-
ity, and thromboxane A2 (TXA2) receptor-mediated con-
traction could be inhibited by Rho inhibitors rather than
PKC inhibitors. Gao et al. [61] further showed that hy-
poxic stimulus increased the levels of intracellular inosine
5’-triphosphate (ITP) and inosine 3’,5’-cyclic monophos-
phate (cIMP), which promoted the elevation of RhoK ac-
tivity. Knock et al. [62] showed that ROS mediated Ca2+
sensitization through the RhoK pathway in VSMCs. In-
flammatory factors could also enhance the expression and
activation of RhoK as well as its downstream molecules in
human coronary VSMCs [64]. Corticosteroids play signif-
icant roles in the treatment of refractory CAS patients, and
researchers believed that it might be attributed to the inhibi-
tion of inflammation and alleviation of the coronary VSMC
hyperreactivity [67,68]. In COVID-19 patients with cy-
tokine storms, several cases of severe CAS have also been
reported [69,70], but it is unknown whether these patients
suffered from CAS before infection of SARS-CoV-2. It
should be noted that chronic inflammation and oxidative
stress are extremely common in cardiovascular diseases, es-
pecially CAD, but not all patients will develop CAS. We
believe that these factors are in association with but rather
independent causes of VSMC hyperreactivity.

Polymorphisms of RhoK gene also link with CAS.
Kamiunten et al. [71] found that the missense mutation
G930T resulted in the enhancement of RhoK activity in
CAS patients and Yoo et al. [72] found that the GTCTG
haplotype in 5 interesting single nucleotide polymorphisms
(SNPs) might play a protective role in non-CAS patients.

Myosin light chain (MLC) phosphatase (MLCP) is
one of the most important downstream molecules of RhoK
and its inactivation by RhoK enhances the phosphoryla-
tion of MLC. Phosphorylated MLC (pMLC) was found at
the spastic sites and positively correlated with the degree
of contraction in interleukin 1β (IL-1β)-induced porcine
CASmodel [73], further supporting the involvement of Rho
pathway in the development of CAS.

3.2.2 PLC/PKC Pathway

Okumura et al. [74] cultivated the skin fibroblasts
from CAS patients and found that the phospholipase C

4

https://www.imrpress.com


(PLC) activity was enhanced and positively correlated with
the contractile hyperresponsiveness of coronary arteries,
proposing that the increased PLC activity may be involved
in the pathogenesis of CAS. The p122 protein, an agonist
of PLC, was up-regulated in skin fibroblasts of CAS pa-
tients [75]. Increased p122 protein promoted the basal and
peak [Ca2+]i to Ach in human coronaryVSMCs [75]. Also,
in p122 transgenic mice, ergonovine could successfully in-
duce the occurrence of CAS [76]. Nakano et al. [77] fur-
ther found that the R257Hmutation in the PLC-δ1 gene was
higher in CAS patients, though the incidence was overall
less than 10%. In the R257H homozygous knock-in mice,
3 in 5 (60%) developed CAS using the microvascular filling
technology [78].

In addition, downstream PKC is also critically in-
volved in the development of CAS [79,80]. Giardina et al.
[81] proved that oxLDL enhanced the Ca2+ sensitivity of
VSMCs by activating PKC-α and PKC-ϵ. Allahdadi et al.
[82] treated rats with eucapnic intermittent hypoxia, lead-
ing to contractile hyperresponsiveness to ET-1 via PKCδ in
the small mesenteric arteries. In support of this, the down-
stream signals of PKC such as C-kinase potentiated pro-
tein phosphatase-1 inhibitor of 17 kDa (CPI-17), calponin
(CaP), MAPKs were also revealed to regulate VSMC hy-
perreactivity. CPI-17, upon phosphorylation by PKC, in-
hibits the activity of the catalytic subunit PP1cδ of MLCP,
leading to inactivation of MLCP. In CPI-17 knockout mice,
the systolic blood pressure and average blood pressure de-
creased apparently, and vascular contraction induced by
various agonists was significantly weakened [83,84]. These
results indicate that CPI-17 might be one of the most im-
portant downstream factors boosting vasoconstriction. A
study also showed that inhibition of CaP binding to actin
would augment Ca2+ sensitivity of vascular smooth muscle
in isolated mesenteric artery [85]. However, this was chal-
lenged by follow-up studies that showed knockout of CaP
gene did not affect the Ca2+ sensitivity in mice [86]. p38
MAPK might also be involved in PKC-regulated contrac-
tile responsiveness since adenosine increased pMLC level
through the p38 MAPK/MK2 pathway, leading to enhance-
ment of VSMC responsiveness to AngII [87].

Interestingly, in the porcine CAS model induced by
IL-1β, RhoK inhibitor was capable of repressing the effect
of PKC agonist, but the effect of RhoK could not be blocked
by PKC inhibitors [88], implying that the RhoKmay also be
downstream of PKC signaling in the development of CAS.

3.2.3 Calcium and Ca2+-CaM/MLCK/MLC Pathway

Calcium channel blockers (CCBs) have been well es-
tablished as therapeutic agents for CAS in clinic, suggest-
ing that Ca2+ is the core element of CAS. Indeed, the
up-regulation of voltage-dependent Ca2+ channels and en-
hanced Ca2+ influx are major features of hypertension [89].
Smith et al. [90] observed that the V734I mutation of
ABCC9 gene (encoding Sur2 subunit of the KATP channel)

was associated with CAS. When Sur2 subunit of the KATP
channel was knocked out, the function of Ca2+ channels
was perturbed, leading to spontaneous CAS episodes [91].

Calcium functions via binding with Calmodulin
(CaM). The Ca2+-CaM complex then directly activates the
MLC kinase (MLCK). Decreased MLCK activity atten-
uated Ca2+ sensitivity and contractile responsiveness in
carotid arteries [92]. Kim [93] observed that CPI-17 and
MLCK were up-regulated in obese Sprague-Dawley rats
fed with high-fat, which collectively mediated the vascu-
lar hyperreactivity. Ca2+/CaM-dependent protein kinase II
(CaMKII) activated by Ca2+-CaM also promotes the acti-
vation of MLCK through the extracellular signal-regulated
kinase 1 and 2 (ERK1/2) at a slow rate, but it phospho-
rylates a specific serine residue in the CaM-binding do-
main ofMLCK,which reduces the Ca2+ sensitivity ofMLC
phosphorylation [94]. Moreover, autophosphorylation on
CaMKII Thr286 greatly enhances its affinity with CaM,
which is involved in maintaining vasoconstriction [95]. It
is suggested that the abnormal activity of CaMKII may also
be involved in the VSMC hyperreactivity. Furthermore,
we also performed immunohistochemistry analysis of death
cases from CAS and confirmed that pMLC2 might serve as
a tissue marker of antemortem CAS [96].

3.2.4 Endoplasmic Reticulum Stress

Endoplasmic reticulum stress (ERS) is defined as the
accumulation of unfolded and/or misfolded proteins in the
endoplasmic reticulum (ER) that breaks the ER homeosta-
sis, and thereby activating the unfolded protein response
(UPR) to restore and maintain the ER homeostasis [97].
The causes of ERS encompass various physiological or
pathological stimuli such as hypoxia, starvation, oxidative
stress, imbalance of Ca2+ homeostasis, etc. [97]. The UPR
proceeds through three signaling pathways to resist the cel-
lular stress, including transcription factor 6 (ATF6) path-
way, inositol-requiring enzyme 1 (IRE1) pathway, and pro-
tein kinase R-like ER kinase (PERK) pathway [97].

Choi et al. [98] found that hyperglycemia led to en-
hanced coronary myogenic response and ED via trigger-
ing ERS in mice. Liang et al. [99] showed that ERS
inducers, such as tunicamycin (Tm), increased the phos-
phorylation of MLC in VSMCs and enhanced the contrac-
tile responsiveness to phenylephrine in aorta independent
of endothelium. Zhang et al. [100] observed that ce-
ramide resulted in the VSMC hyperreactivity to phenyle-
phrine through ERS/COX-2/PGE2 pathway. We observed
that an ERS inhibitor significantly prevented VSMC con-
traction, whereas Tm aggravated the CAS-induced myocar-
dial ischemia in mice, and ERS regulated CAS possibly
through the MLCK/MLC pathway [101]. Ziomek et al.
[102] also pointed out that Tm did not activate Ca2+ chan-
nels, but altered the Ca2+ permeability of plasma mem-
brane and ER, leading to an increase in [Ca2+]i and initiat-
ing the VSMC contraction. Meanwhile, Tm also caused a
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decrease of Ca2+ concentration in ER [99,102]. The above
studies have shed novel insights into the pathogenesis of
CAS. However, the detailed mechanisms of how ERS reg-
ulated CAS remain largely unknown andmerit future inves-
tigation.

3.3 Adventitial and PVAT Inflammation

Shimokawa and colleagues utilized IL-1β and other
inflammatory factors to mediate coronary adventitial in-
flammation and established a porcine CAS model [63,103],
indicating that adventitial inflammation is able to induce
CAS. Coronary adventitial infiltration of mast cells and/or
eosinophils in some CAS autopsy reports also suggested the
influence of adventitial inflammation on the pathogenesis
of CAS [104,105], but mast cells are likely to provoke CAS
by releasing histamine and other vasoconstrictors [106]. In
recent years, PVAT inflammation in the pathogenesis of
CAS has been brought to the forefront of research interest.
Ohyama et al. [107] observed an increased coronary PVAT
volume of CAS patients using CTA technique, which was in
general consistent with Ito et al. [108]. The increased PVAT
inflammation was further evidenced by remarkable 18F-
fluorodeoxyglucose (FDG) uptake via positron emission
tomography/computed tomography (PET/CT) scanning in
CAS patients [109]. Nishimiya et al. [110] also noticed an
enhanced formation of adventitial vasa vasorum in CAS pa-
tients using optical frequency domain imaging, and the ex-
tent of adventitial vasa vasorum positively correlated with
RhoK activity of circulatory leukocytes. Moreover, drug-
eluting stent-induced CAS was also observed at the pres-
ence of PVAT inflammation in a porcine model [111].

Of note, the vasoconstriction effect of PVAT inflam-
mation seems to be VSMCs-dependent [112]. For instance,
Lynch et al. [113] revealed that PVAT activated the BKCa

channels on VSMCs by releasing adiponectin, thereby re-
sisting vasoconstriction. Saxton et al. [114] found that
sympathetic excitation triggered the release of adiponectin
from PVAT via β3-adrenergic receptors, and PVAT took
up norepinephrine, which prevented its interaction with
VSMCs. Aalbaek et al. [115] proved that PVAT inhibited
the Ca2+ sensitivity mediated by the RhoK pathway in the
coronary artery of rats, further validating that PVAT is capa-
ble of regulating the Ca2+ sensitivity of coronary VSMCs.

4. Novel Diagnostic Approaches
In the clinic, CAS may present in a variety of ways

and is often asymptomatic, which causes CAS remaining
a quite underdiagnosed and underreported disease with an
average estimated delay of 3 months from presentation to
diagnosis [7]. Currently, it is an urgency to develop ac-
cessible and practical diagnosis approaches for the disease.
This section will introduce state-of-the-art diagnostic ap-
proaches (Tables 1,2) that might aid in clinical diagnosis of
CAS.

4.1 Imaging Approaches (Table 1, Ref. [2,109,116–133])
4.1.1 Spasm Provocation Test (SPT)

Since the spontaneous coronary vasospasm at the time
of angiography is only occasionally observed [134], the cur-
rent gold-standard diagnosis of CAS is documentation by
angiography with pharmacological provocative testing via
high-dose intracoronary administration of Ach, ergonovine,
or methylergonovine [2]. The typical positive response
should include a transient>90% vasoconstriction (Fig. 3A,
Ref. [109,128,131,135]) with reproduction of the usual
chest pain and ischemic ECG changes at the meantime [2].
Abnormalities of ventricular wall motion on echocardio-
gram is considered to be equivocal for CAS as well [119].
To distinguish from obstructive arthrosclerosis and other
underlying acute coronary syndrome [136], standard 12-
lead ECG during an attack, ambulatory cardiac monitoring,
or exercise stress testing should be initially performed in
a standard cardiac workup [11]. Although coronary artery
SPT has been clinically practiced for 40 years [2], com-
plications by invasive operations like arrhythmias (6.8%)
[137], hypertension, hypotension, and nausea [138] should
also be noteworthy. Therefore, the procedure is suggested
to be performed in a specialized center after careful evalu-
ation of the risks and benefits [2], which limits the accessi-
bility and restricts progress of CAS for decades.

4.1.2 Coronary Angiography (CAG)
CAG remains the gold standard for CAD [117]. How-

ever, except from the occasional attacks, the coronary artery
shows normal appearance on resting CAG [116]. There-
fore, if a patient is suspected with CAS, the angiography
always accompanies with provocation testing to document
the coronary spasm [134]. However, it is challenging to
evaluate the interplay of the functional aspects and struc-
tural ones in patients with coronary artery atherosclerosis
and the provocation testing is usually not performed in the
presence of a significant epicardial stenosis. But studies
approve that spontaneous attacks of coronary spasm can be
superimposed on a relevant stenosis, illustrating the miss-
ing part in present clinical practice [118].

4.1.3 Electrocardiogram (ECG)
An ECG of CAS diversifies from completely normal

to ST deviation, T, U, R wave abnormality and arrythmia,
depending on the severity, duration of episodes and distri-
bution of the spasm artery [119,120]. Mild seizures could
appear just normal in ECG, while total or subtotal spasm
of a major coronary artery tend to cause a ST-segment el-
evation in the leads [120]. However, ST-segment depres-
sion also occurs when a less severe, subendocardial my-
ocardial ischemia occurs, when a major artery receiving
collaterals or a small artery is completely occluded [122].
These situations include most part of unstable angina/non–
ST-elevation myocardial infarction (NSTEMI) cases, thus
making ST-segment depression more frequent in CAS [14].
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Table 1. A summary of the imaging approaches for diagnosis of CAS.
Imaging approaches Advantages Disadvantages References

Coronary angiography
(CAG)

Gold standard when performed
under provocation testing

Confusion between CAD and CAS
[2,116–118]

Omission in conditions of severe stenosis

Electrocardiogram (ECG)
Convenience, safety,
availability, acceptability

Low specificity
[119–123]

Omission in resting intervals

Intracoronary imaging
approaches

Exhibition of morphological and functional
changes despite complex conditions

In theoretical stage
[117,119,124–128]

High requirements for equipment and operators

OCT
Better image quality and resolution
to estimate intima

Interruption of the blood flow
[126,128]Tissue penetration: 2 mm

Safety worries

IVUS
Deeper penetration (4–8 mm) for accessing
perivascular injury without interrupting
the blood flow

Less resolution [126,129]

Positron emission
tomography (PET)

Revelation of coronary vasomotor
function and tissue image

Expensive
[109,130]

High requirements for equipment

18F -PET
Evaluation of inflammation of coronary
perivascular adipose tissue

Expensive
[109]

High requirements for equipment

Myocardial contrast
echocardiography (MCE)

Microvascular evaluation
Indirect functional information

[131–133]Ignorance of minor systolic wall move
Low resolution

OCT, optical coherence tomography; IVUS, intravascular ultrasound.

A previous study has shown that 45% of patients with
angina at rest and ST-segment depression alone had CAS
[123].

In addition to ST-segment changes, a peaked and sym-
metrical T wave appears in around 50% of cases during
a focal proximal coronary spasm [119]. And other wave
changes can occur including a delay in the peak and an in-
crease in the height and width of R wave, a decrease in
magnitude of S wave and negative U wave may also ap-
pear [22]. Various forms of arrhythmia including ventricu-
lar premature complex, ventricular tachycardia and/or fib-
rillation (mostly in case of anterior ischaemia), atrioventric-
ular block (mostly in case of inferior ischaemia), asystole
and supraventricular tachyarrhythmias may also be present
[121]. In conclusion, ECG takes its advantage in conve-
nience, safety, availability and high-acceptability.

However, even with ambulatory ECG monitoring, the
attack may not appear during the monitoring periods, es-
pecially when the attack is not frequent [139]. Moreover,
ECG does not provide direct or specific evidence of CAS
[22]. Thus ECG monitoring is an auxiliary detection in
clinic.

4.1.4 Intracoronary Imaging
Intracoronary imaging, such as optical coherence

tomography (OCT) and intravascular ultrasound (IVUS)
[117], is capable of addressing not only the morpholog-
ical changes of intima and media during vasospasm, but
also providing information regarding the association of va-
sospasm with underlying atherosclerotic plaque, fibrous

cap disruption, enhanced adventitial vasa vasorum [125,
127,140], increased PVAT volume [109], inflammation,
erosion or thrombus formation [119]. OCT analysis dur-
ing CAS reveals a typical image of intimal bumps deform-
ing the lumen, combining with intimal gathering (Fig. 3B),
without alteration of the intimal area. Medial contraction is
presented by an increment in medial thickness [124]. How-
ever, intracoronary imaging does not wildly spread in clin-
ical practice due to the complex procedure and low speci-
ficity, and each approach has its advantages and disadvan-
tages. OCT has better image quality and resolution, which
enables estimations of intima [125,126]. IVUS has a deeper
penetration (4–8 mm versus 2 mm of OCT), which assists
accessing perivascular injury. In addition, it is safer and
easier to perform IVUS since there is no need to cut off the
blood flow, rather than OCT which still needs an interrup-
tion [126].

4.1.5 Positron Emission Tomography (PET)

PET is a well-validated technique that can not only
help assess coronary vasomotor function by providing non-
invasive, accurate, and reproducible quantification of my-
ocardial blood flow and coronary flow reserve (CFR) in hu-
mans, but also assist in revelation of coronary spasm tissue
image [130]. Intriguingly, inflammatory changes of coro-
nary PVAT assessed by 18F-FDG PET imaging (Fig. 3C)
were more extensive at the spastic segments of CAS pa-
tients as compared to control subjects, which showed sig-
nificantly suppression after CCBs treatment [109]. Hence,
aside from the high price, PET/CTmight be useful to assess
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Fig. 3. Representative images of novel diagnostic approaches for CAS. (A) Coronary angiograms of epicardial and microvascular
CAS after spasm provocation test (SPT) using intracoronary perfusion of Ach. Images from Arrebola-Moreno et al. [131]. (B) Optical
coherence tomography (OCT) image of a spasm lesion after provocation. Medial thickening led to luminal narrowing with intimal
gathering. Image from Tanaka et al. [128]. (C) 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography
(PET/CT) image of a CAS patients. FDG uptake of coronary PVAT was significantly increased. Image from Ohyama et al. [109]. (D)
Myocardial contrast echocardiography (MCE) was carried out with intravenous injection of ergonovine. Apparent regional wall motion
abnormalities (arrows) of the interventricular septum and left ventricular (LV) apex, compared with the resting state (left image). Images
from Om et al. [135].

coronary artery function and the perivascular tissue inflam-
mation surrounding the coronary arteries.

4.1.6 Myocardial Contrast Echocardiography (MCE)

This non-invasive technique is able to provide indi-
rect functional information about micro vessels and thus
assists in diagnosing CAS (Fig. 3D). Ong et al. [132]
documented a transient myocardial ischemia by myocar-
dial contrast echocardiography during Ach-induced CAS.
Similarly, Arrebola-Moreno et al. [131] has shown the
MCE as a systematic evidence for 60% Ach-induced CAS,
consistent with single photon emission computed tomog-
raphy (SPECT) and ECG. However, there are still many
limitations in MCE. Due to the restriction of supine po-
sition that all the transthoracic echocardiographic images
are performed at, it is possible for operators to ignore the
minor systolic wall motion [131]. Furthermore, MCE can
only detect tissue perfusion in the addition of extra contrast
because of the poor back scattering from red blood cells

[130], which impairs specificity of the technique. In fact,
few available studies of MCE are focused on CAS since the
vast majority pay attention to the vasodilatation dysfunction
[133].

4.2 Serum Biomarkers

Recently, non-invasive biochemical markers have
been found to associate with the occurrence of CAS [141],
including inflammatory factors, Lipoprotein a, Cystatin C,
5-HT, and ET-1 etc. (Table 2, Ref. [18,29,30,49,50,66,96,
101,141–173]).

4.2.1 Endothelial Dysfunction Markers

As mentioned above, ED has been demonstrated an
underlying mechanism of CAS [45]. Several potential
biomarkers are under investigation through this pathogen-
esis. It has been proved that cystatin C is a reliable marker
of kidney dysfunction [142], and renal failure could lead to
inactivation of eNOS [145], which is supposed to be a basic
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Table 2. A summary of the novel diagnostic biomarkers in CAS.
Markers Category References

cystatin C Endothelial dysfunction [141–145]
xanthine oxidoreductase (XOR) Endothelial dysfunction [29,146–148]
hs-CRP Inflammation [18,148–150]
sCD40L Inflammation [18]
peripheral monocyte counts Inflammation [151]
Endothelin-1 (ET-1) Vasomotor [30,152]
Serotonin (5-HT) Vasomotor [153,154]
Neuropeptide Y Vasomotor [141,155]
Lipoprotein(a) perivascular adipose tissue metabolism [148,156–159]
RhoK activity in circulating neutrophils RhoK pathway [49,50,66,160–165]
pMLC2 Vascular smooth muscle cell hypersensitivity [96,101]
ox-LDL Oxidative stress [166,167]
MDA-LDL Oxidative stress [166,168,169]
miR-17-5p, miR-92a-3p, miR-126-3 MicroRNAs [170–173]

pathogenesis in CAS. In fact, 2 clinical studies conducted
in Japan and Korea respectively found a promising rela-
tionship between a high level of cystatin C and the preva-
lence of CAS [143,144]. Nevertheless, there are still ques-
tions since renal dysfunction is also related to atherosclero-
sis and CAD [141], thus further investigations are still re-
quired to identify cystatin C as the unique biomarker for
CAS. Additionally, xanthine oxidoreductase (XOR) is a
rate-limiting enzyme of purine metabolism, catalyzing the
oxidation of hypoxanthine to xanthine and of xanthine to
uric acid (UA) [146]. It has been elucidated that increased
serumUAproduces extra ROS [148], resulting in ED [144].
Previous studies also have revealed that XOR-induced ROS
can lead to arterial smooth cell proliferation and migration,
up-regulate the renin-angio-tensin system to cause vasocon-
striction [147]. A recent prediction model including XOR
activity showed significantly improved C index (0.771 ver-
sus 0.685 of baseline model), net reclassification index
(0.612; 95% confidence interval, 0.237–0.986; p = 0.001)
and integrated discrimination index (0.098; 95% confi-
dence interval, 0.040–0.156; p = 0.001), and concluded that
serum XOR level might be an effective biomarker of CAS
[29].

4.2.2 Inflammatory Markers

Within the belief of an association between inflamma-
tion [64], vasomotor dysfunction [45] and CAS, researchers
keep finding evidence to prove inflammation markers as
potential predictors for CAS, such as hs-CRP and solu-
ble CD40 ligand (sCD40L). Hung et al. [149] showed
that serum hs-CRP concentrations were correlated indepen-
dently to CAS in 116 Taiwanese patients with VSA (41%
with focal spasm) versus 66 control patients. Teragawa
et al. [150] reported that increased serum hs-CRP levels
were an independent predictor of coronary microvascular
dysfunction by assessing coronary blood flow responses to
Ach. Masami et al. [148] found hs-CRP were significantly

increased in the VSA group (N = 441) than in the atypical
chest pain group (N = 197). Ong et al. [18] found elevated
hs-CRP and sCD40L concentrations were significantly (p
≤ 0.05) associated in patients with angina pectoris free
from angiographically obstructed coronary arteries. How-
ever, there is no obvious correlation between neopterin and
CAS since it plays a role in the presence and progression
of obstructive CAD [18]. Furthermore, the clinical results
about inflammatory factors remain contradictory as a Ko-
rean study turned out to show that patients with CAS had
no difference in levels of serum CRP as compared to those
without CAS. Meanwhile the level of peripheral monocyte
counts is found as a good potential marker for CAS [151].

4.2.3 Vasoactive Markers

Except from hs-CRP and sCD40L as mentioned
above, more biomarkers are found to be associated with
CAS via inducing vasomotor dysfunction since decades
ago. In 1990s, several laboratory teams viewed succes-
sively that the levels of ET-1 increased in blood during the
episodes of CAS [30]. And bosentan, an antagonist of en-
dothelin receptor, significantly relieved the severity and fre-
quency of chest pain induced by CAS [152]. Until now, the
relationship and pathogenesis of ET-1 in CAS almost dis-
close, but the clinical utility of ET-1 as a biomarker of the
diseases is still on the way. In addition, 5-HT is proved to
play an important role in vasocontraction and vasodilation
[174]. Researchers found a high level of 5-HT in blood of
patient with CAS during episodes as well as nonischemic
intervals [153]. A recent study conducted showed an ele-
vation of 5-HT in CAS patients without obstructed arteries
[154]. Fortunately, no obvious contradictions occur in var-
ious studies so far. But there are still more work needing to
be done about 5-HT before it gets to be applied in clinical
practice because of lack of fresh evidence and clinical util-
ity tests. Moreover, recent clinical studies found endoge-
nous neuropeptide Y, another effective vasoactive factor,
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as a potential pathogenesis of CAS especially microvascu-
lar constrictions, for both patients without coronary stenosis
and patients of ST-elevatedmyocardial infarction [155]. In-
triguingly, as a co-transmitter of norepinephrine, neuropep-
tide Y is the only biomarker conformed to be correlated
to microvascular spasm instead of epicardial ones [141],
which indicates the potential differentiation between spasm
in two sizes of coronary arteries and underlying different
corresponding medication. Obviously, it will take a fur-
ther more time from confirming the significant correlation
between neuropeptide Y and CAS, to identify it as a well-
qualified biomarker for clinical use.

4.2.4 Abnormal Perivascular Adipose Tissue Metabolism

Tsuchida et al. [158] have already reported that higher
lipoprotein(a) level was associated with coronary vasomo-
tion in VSA. Masami et al. [148] verified the relationship
between serum lipoprotein(a) level and VSA again within
441 Japanese patients. Intriguingly, it has been suggested
that the lipoprotein(a) level is related to racial and genetic
backgrounds [159], which suggest it is difficult to control
the lipoprotein(a) level with medications for the manage-
ment of VSA in some way. However, a large-scale clinical
study did not identify obvious relationship between lipopro-
tein(a) and the vasospastic response to the intracoronary
Ach provocation test [157].

4.2.5 RhoK Activity in Circulating Neutrophils

Accumulated evidence proves that enhanced RhoK
activity plays a central role in the coronary VSMC hyper-
sensitivity, which we have demonstrated in CAS patho-
genesis above [50,162]. Further investigations suggest that
RhoK activity in circulating neutrophils maybe a potential
biomarker for coronary spasm both in diagnosis and assess-
ment of disease activity and efficacy of treatment [164].
In fact, a previous study showed an immediate, tempo-
rary increase of RhoK activity in circulating neutrophils in
VSA patients after the Great East Japan Earthquake due to
disaster-related mental stress [160]. And the cross-link be-
tween stress and CAS is indicated by another experimen-
tal study which found excessive sensitivity of VSMC to 5-
HT under exposure to sustained elevation of serum cortisol
level, resulting in coronary vasoconstrictive responses in
pigs in vivo [66]. Moreover, there are some interesting bio-
logical coincidence between RhoK and CAS. For example,
researchers found a circadian variation of RhoK activity in
circulating neutrophils with a peak in the early morning,
which showed strong association with alterations in coro-
nary basal tone and vasomotor reactivity and might explain
the onset preference of CAS [49]. Furthermore, the sup-
pression effect on RhoK by estrogen may partly account
for the higher incidence of vasospastic disorders in post-
menopausal women [161]. Finally, RhoK activity in circu-
lating neutrophils combining with the Japanese Coronary
Spasm Association (JCSA) risk score substantially appears

to be a better prognostic choice in risk stratification of VSA
patient as compared with either alone [165]. Taking these
issues into consideration, it seems that RhoK activity in cir-
culating neutrophils has a strong potential to be developed
into a useful biomarker for CAS with a broad versatility.
Further investigations about mechanism, stability, detec-
tion time window and simplified measurement are required
before it being applied to patients.

4.2.6 Oxidative Stress
Oxidation of low density lipoprotein (LDL) produces

ox-LDL, which has been proven as a well-established
marker of oxidative disorder [141]. Meanwhile, oxidation
of LDL is also a key factor in the process and plays a role
throughout atherosclerosis as well as CAS pathogenesis
[167]. Recently, malondialdehyde-modified low-density
lipoprotein (MDA-LDL) is suggested as another marker of
endothelial damage [168]. Observational studies reported
a strong correlation between serum MDA-LDL levels and
endothelial damage, assessed with flow-mediated dilata-
tion [168]. High MDA-LDL levels harbor a predisposing
atherosclerotic segment for coronary spasm to arise, which
explains the higher chances of ergonovine-induced CAS
[166]. MDA-LDL lowering therapy such as intensive statin
treatment [169] may have the potential to treat CAS.

4.2.7 Circulating MicroRNAs
HumanmicroRNAs (miRs) are small, single-stranded,

endogenous noncoding RNAs that regulate gene expres-
sion at the post-transcriptional level by promoting the mes-
senger RNA (mRNA) degradation or repressing certain
coding mRNA translation [127]. It is recently reported
that the significant higher expression levels of circulating
miR-17-5p, miR-92a-3p, and miR-126-3p show discrim-
inatory power in distinguishing patients with VSA from
other CADs [170]. MiRs above are indicated to inhibit
eNOS expression directly or via KLF2 gene [170,171], re-
sulting in impaired NO production and thus leaving the
coronary arteries in risk of vasoconstriction, platelet ag-
gregation, low-density lipoprotein metabolic abnormalities
and VSMC proliferation disorder [172,173].

5. Conclusions
During the last decades, our knowledge of CAS has

been increasingly progressed due to advances in the re-
search strategy and diagnostic approaches. This review
summarized the clinical risk factors and molecular mech-
anisms of CAS pathogenesis, and introduce state-of-the-
art diagnostic strategies including both clinical imaging ap-
proaches and currently under laboratory-testing biomark-
ers. More mechanistic studies are mandated to further un-
cover the development of CAS. The seemingly promising
biomarkers exist contradictory results, which suggests a
long way off from reaching the clinical practice. More rig-
orous studies are required for further improvement.
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