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Abstract

Contrast-enhanced ultrasound imaging is a radiation-free clinical diagnostic tool that uses biocompatible contrast agents to enhance
ultrasound signal, in order to improve image clarity and diagnostic performance. Ultrasound enhancing agents (UEA), which are usually
gas microbubbles, are administered intravenously either by bolus injection or continuous infusion. UEA increase the accuracy and
reliability of echocardiography, leading to changes in treatment, improving patient outcomes and lowering overall health care costs. In
this review we describe: (1) the current clinical applications of ultrasound enhancing agents in echocardiography, with a brief review
of the evidence underlying each of these applications; (2) emerging diagnostic and therapeutic applications of microbubble enhanced
echocardiography (MEE), which rely either on the specific properties and composition of ultrasound enhancing agents or on the technical
advances of clinical ultrasound systems; and (3) safety of MEE.

Keywords: microbubble enhanced echocardiography; ultrasound enhancing agents; contrast-enhanced ultrasound; contrast echocardio-
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1. Introduction
Echocardiography is the most commonly used imag-

ing modality for assessing cardiac structure and function.
However, an estimated 20% of echocardiographic studies
may be suboptimal [1,2]. Hand-agitated saline resulting in
rapidly dissolving air bubbles have been used for decades
to enhance the ultrasound reflection from the right heart.
The bubbles resulting from agitated solutions are too short-
lived and too large to pass through the pulmonary bed, a
property which has been used for the selective detection of
right-to-left shunting (Fig. 1, Video 1) [3]. Suboptimal de-
lineation of the left heart structures stimulated the devel-
opment of commercial ultrasound enhancing agents (UEA)
[4–6], specifically engineered so that the bubbles would be
small enough (<8 µm) to pass through the capillaries in the
lungs. Microbubble enhanced echocardiography (MEE) is
now a well-established method, with a clinical history of
more than 30 years. The technical details covering contrast
infusion, and the specific transmit-receive and radiofre-
quency processing algorithms specifically designed to de-
tect UEA microbubbles have been described and summa-
rized by numerous other works [7]. In this review we will
focus on the use of stable UEA designed to transit through
the pulmonary circulation in clinical echocardiography. We
will address both current and future promising diagnostic
and therapeutic applications.

2. Methods
This narrative review considered landmark studies in

the field of MEE, which were published between 1984 and
2021. Inclusion criteria were: studies with largely con-
firmed scientific impact, regardless of their size and de-
sign, which: (i) defined key technical and/or clinical as-
pects of the method; (ii) were very informative on spe-
cific clinical and/or technical applications; (iii) had been
previously included in the European Association of Car-
diovascular Imaging (EACVI) and American Society of
Echocardiography (ASE) guidelines or (iv) were defined
as landmark papers in the EACVI Key Reference Li-
brary (Contrast Echocardiography (https://www.escardio.o
rg/), accessed on 15/03/2022). Only studies indexed in the
PubMed database, and published in the English language
were considered.

Ethics Approval and Consent to Participate
All patients included in this review as clinical illustra-

tions gave their informed consent for the anonymous use of
their clinical data and echocardiographic images.

3. Ultrasound Enhancing Agents
The current generation of UEA consist of microbub-

bles of comparable size to red blood cells (less than 8 µm
in diameter), consisting of a gas encapsulated in a shell.
The properties of these bubbles in the ultrasound field, and
hence the image generated, are conditioned by their size,
type of shell and gas. The interactions of the bubbles with
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Fig. 1. Agitated saline injection for the detection of right-to-left shunts. (A,B) Example of intracardiac right-to-left shunting through
a patent Foramen Ovale; transoesophageal echocardiography in mid-oesophageal position at 45°. The right atrium (RA), left atrium (LA)
and interatrial septum at the level of the fossa ovalis are seen (arrow). After the infusion of agitated saline in a peripheral vein, a thick cloud
of bubbles is seen passing through the patent foramen ovale (PFO) (arrow). (C,D) Right-to-left shunting through an intrapulmonary shunt,
detected with transthoracic echocardiography, apical 4-chambers view. All four cavities are visualised. After the infusion of agitated
saline in a peripheral vein, the right cavities are completely opacified. Seven heart cycles after the appearance of contrast in the right
heart, a thick cloud of bubbles is seen in the LA (arrow), coming from the left lower pulmonary vein (LLPV). Source: personal collection.

Video 1. Agitated saline injection for the detection of patent
foramen ovale. (A,B) Transoesophageal echocardiography in
mid-oesophageal position at 45°. The interatrial septum at the
level of the fossa ovalis is seen. After the intravenous infusion
of agitated saline, a thick cloud of bubbles is seen passing through
the PFO. The movie corresponds to Fig. 1. The embedded movie
may also be viewed at https://doi.org/10.31083/j.rcm2306202.

ultrasound are complex. Generally, these bubbles undergo
compression and expansion when exposed to the ultrasound
waves (Video 2). These interactions can be generally di-
vided in stable cavitation (oscillation of the bubbles with-
out destruction) or inertial cavitation (abrupt oscillation dis-
rupting the shell). These oscillations produce scattering
(i.e., linear signal), which is proportional with the bubble
size. However, one of the most important properties of mi-
crobubble oscillation is that they produce non-linear signal
[8], which can be detected by the ultrasound system at har-
monic frequencies.

The microbubbles must be strong enough to resist sig-
nificant destruction with the clinical ultrasound incident
power output. This has been achieved by using lipid or
albumin shells, encapsulating inert high-molecular weight
gas cores [7,9] (Table 1).
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Table 1. Current commercial ultrasound enhancing agents.
Agent Manufacturer Shell Gas Average size (µm)

Optison GE Healthcare Albumin Perfluoropropane 2–4.5
Definity/Lumify Lantheus Medical Imaging Lipid Perfluoropropane 1.1–3.3
Sonovue/Lumason Bracco Diagnostics Amphiphilic phospholipid Sulphur hexafluoride 2–3

Video 2. Ultrasound enhancing agent microbubble oscillation
induced by an ultrasound pulse. Images were obtained with a
Brandaris-128 ultra-fast framing camera at a frame rate of 15.3
Mfps. (movie courtesy of Dr HJ Vos). The embedded movie may
also be viewed at https://doi.org/10.31083/j.rcm2306202.

4. Clinical Applications
4.1 Left Ventricular Opacification (LVO)

The largest body of evidence for MEE concerns the
indication for LVO for enhancing the endocardial borders
[10–15]. This is achieved by using repetitive intravenous
boluses of UEA, and sometimes continuous low-dose in-
fusion. Guidelines indicate the use of LVO to enhance the
endocardial borders in cases when the LV dimensions, func-
tion or regional wall motion cannot be accurately assessed
using non-enhanced ultrasound [7,14]. The general “rule
of thumb” is to use microbubble UEA in cases where two
or more contiguous myocardial segments are not properly
visualized with non-enhanced ultrasound [13]. Of course,
recent years have seen tremendous improvement in image
quality for clinical ultrasound systems. But despite the in-
troduction of harmonic imaging as a standard, some images
remain non-diagnostic (Fig. 2). Moreover, harmonic imag-
ing represented a significant leap in MEE [16,17], leading
to the present-day contrast-specific imaging modalities.

4.1.1 LV Size and Ejection Fraction (EF)

By using UEA, enhanced echocardiographic measure-
ments of LV volumes and ejection fraction are very close
to the reference cardiac magnetic resonance (CMR) values
[11,12], and significantly less variable as compared to unen-
hanced imaging, even if baseline images are of good quality
[18]. This significant difference in quality, information and
accuracy leads to a clinical impact on diagnosis and man-
agement [6,19,20]. Echocardiographic estimates of LV vol-
ume tend to be larger when using LVO, mainly because it
aids the exclusion of trabeculae (Fig. 3), making the mea-

surements closer to their CMR counterparts [13].
3DMEE is not yet a standard. Although onemulticen-

ter study demonstrated that it may improve inter-observer
variability and accuracy [11,12], there are still limitations
because of UEA destruction in the near field generated with
3D echo, which in other studies resulted in increased inter-
observer variability [21].

As such, LV microbubble-enhanced echocardio-
graphic volumes are not presented in the current guidelines
for chamber quantification [22], and they should not be
compared with the non-enhanced values mentioned in these
guidelines. New reference ranges for LV enhanced echocar-
diographic volumes should be established by large studies.

The evidence regarding the use of MEE for linear size
measurements of the LV is less strong. Recent monocentric
studies suggest a benefit of measuring the interventricular
septal size in hypertrophic cardiomyopathy with MEE, and
the results may be closer to the reference CMR and smaller
than non-enhanced values [23,24]. However, precise refer-
ence ranges forMEE LV size and wall thickness in paraster-
nal views are yet lacking, and CMR should be preferred
whenever possible in the workup of HCM patients. Also,
for the posterior wall thickness in the parasternal views
MEEmay surprisingly not be better than non-enhanced im-
ages [24], and this because the significant signal attenua-
tion through interposition of the microbubbles in the right
and left ventricular cavities. This is even more obvious at
higher concentrations of UEA.

4.1.2 Assessment of Regional Wall Motion at Rest
The significant improvement in endocardial delin-

eation demonstrated a similarly significant benefit in the
analysis of regional wall motion abnormalities [25]. When
analyzed by a panel of experts, the accuracy in diagnos-
ing wall motion abnormalities was highest for CMR (84%),
followed by 2D MEE (78%) and 3D contrast (76%) [25].
In addition to this multicenter study, other works demon-
strated the benefit of contrast imaging in the interpretation
of LV wall motion in intensive care patients [26], or post
myocardial infarction [19,27]. The benefit becomes more
obvious when used as point-of-care echocardiography, to
rapidly identify wall motion abnormalities in patients with
suspected coronary artery disease (Video 3).

4.1.3 Assessment of LV Wall Structure
Another application of LVO is morphological diag-

nosis, particularly in disease states which manifest in the
artefact-prone LV apex. Beside possible foreshortening,
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Fig. 2. Left ventricular opacification (LVO) for endocardial border delineation. Example of baseline non-enhanced echocardiogra-
phy images in apical 4-chambers (A) and apical 2-chambers (B) views, where the visualization of the endocardium is suboptimal over
several segments. After intravenous injection of a bolus of UEA, there is full opacification of the LV cavity, with clear delineation of the
endocardium in all segments (C, D). Source: personal collection.

the LV apex is prone to clutter and reverberation arte-
facts, while also having a weaker potential to generate
harmonics because of its position in the near-field in api-
cal views [28]. As such, apical forms of hypertrophic
cardiomyopathy [29,30], eosinophilic cardiomyopathy [31]
and non-compaction cardiomyopathy [32] may escape de-
tection with unenhanced ultrasound.

Numerous case reports and case series document the
use of UEA in these instances [29–33]. Studies have also
been performed demonstrating the added value of contrast-
enhanced ultrasound in hypertrophic cardiomyopathy [34]
(Fig. 4, Video 4).

4.1.4 Left Atrial Appendage Visualization during
Transoesophageal Echocardiography

Transoesophageal echocardiography is an established
method for assessing the left atrial appendage (LAA) for the
presence of thrombi [35,36] or to guide LAA interventions
(Fig. 5, Ref. [36]). In case of LAA stasis, the dense sponta-
neous contrast may mask the presence of a small thrombus.
Several studies demonstrated that the adjunction of UEA
increases the diagnostic yield of the procedure [37,38] and
reduces subsequent strokes [39].

However, contrast-specific transoesophageal applica-

tions are not available on all ultrasound clinical systems,
therefore in such cases non-contrast mode harmonic 2D
imaging may be used, with a mechanical index (MI) under
0.3 (Fig. 6, Video 5).

The significant improvement LVO provides in accu-
racy, reproducibility and confidence in the assessment of
LV size, shape and function encourages the incorporation of
this relatively low-cost method in the standard exploration
of clinical patients. This has been recognized by the cur-
rent guidelines [7,13,22]. It seems reasonable to systemat-
ically use UEA for LVO in patients in whom two or more
segments are not adequately visualized with non-enhanced
ultrasound.

4.2 Stress MEE (LVO)
The addition of UEA during stress echocardiography

protocols is usually achieved through an LVO application
with low-MI harmonic imaging (Fig. 7, Video 6). The re-
sult is an increase in the likelihood of a diagnostic test, a
better visualization of all myocardial segments, study qual-
ity and reader confidence, as compared to invasive or non-
invasive reference [40–43]. The addition of UEA to non-
enhanced studies resulted in a better agreement with coro-
nary angiography, even in patients with intermediate coro-
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Fig. 3. Ejection fraction (EF) estimation. (A,B) Non-enhanced ultrasound images. The endocardium is not clearly visible in several
segments (question marks), making the volumes difficult to assess. (C,D) Contrast-enhanced images. The endocardial border is clearly
defined, allowing for a biplane volume estimation. Moreover, the LV end-diastolic volumes in contrast-enhanced images is notably
larger than the one on the non-enhanced images, probably because of a combination of insufficient image quality on native images, and
exclusion of trabeculae and papillary muscles on contrast images. Source: personal collection.

Video 3. Patients with non-specific thoracic pain and non-
diagnostic electrocardiogram. Non-enhanced images (left) in
the parasternal short axis of the left ventricle at the level of the
papillary muscles lack definition in the interventricular septum,
no clear motion abnormality is seen. With contrast (right) the en-
docardium is clearly seen and hypokinesia is noted in the inter-
ventricular septum. The embedded movie may also be viewed at
https://doi.org/10.31083/j.rcm2306202.

nary lesions [44]. Of course, the use of LVO in stress echo
has the largest impact in patients with suboptimal image
[45]. Nevertheless, contrast-enhanced ultrasound also im-
proves the wall motion score and detection of regional wall
motion abnormalities in patients with adequate image qual-
ity [46]. Contrast-enhanced dobutamine stress echocardio-
graphy provided adequate risk stratification in patients with
increased cardiovascular risk due to obesity or suspected
coronary artery disease [47–49].

In patients with incomplete visualization of at least
2 contiguous segments contrast should be used for stress
echocardiography. In patients with adequate image quality,
contrast could be used to assess the myocardial perfusion,
in addition to wall motion [7,13].

4.3 Myocardial Perfusion Imaging
4.3.1 Detection of Coronary Artery Disease

UEA have an intravascular behavior which mimics
closely that of red blood cells [50], and an in vivo dis-
tribution to the intravascular compartment, making them
ideal for assessing microvascular distribution in the tissue.
The total blood volume in the coronary circulation at rest is
around 12 mL/100 g of myocardial tissue [51] and 90% of
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Fig. 4. Hypertrophic cardiomyopathy patient with very poor image in apical 4-chambers view. (A,B) Native images, end-diastole
(A) and end-systole (B). The endocardium of the lateral wall is not visible, and the apex cannot be seen. (C,D) Contrast-enhanced images,
in the same moments in the cardiac cycle. The LV contour is clearly delineated, during systole there is complete cavity obliteration, with
an apical aneurysm (arrow). Source: personal collection.

Video 4. Apical hypertrophic cardiomyopathy, microbubble-
enhanced echocardiography. The images correspond to the pa-
tient in Fig. 4. There is mid-cavity obliteration, with a dyski-
netic apical pouch (apical aneurysm), which were not seen on
native images. The embedded movie may also be viewed at
https://doi.org/10.31083/j.rcm2306202.

Fig. 5. Ultrasound-enhanced TEE used to facilitate the safety
of an atrial fibrillation cardioversion procedure. (A) Mid-
esophageal view at 60◦, demonstrating a hyperechoic signal (ar-
row) inside the left atrial appendage (LAA), which could be an
artefact, but a thrombus cannot be excluded because of “smoke” in
the LAA. (B) By adding intravenous ultrasound enhancing agent,
the LAA appears free of any abnormal echo. In the absence of
thrombus, the cardioversion was successfully performed. Modi-
fied with permission from Doukky R et al. [36].
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Fig. 6. Transoesophageal echocardiography in a patient with a Watchman left atrial appendage (LAA) closure device.
Microbubble-enhanced ultrasound was used in order to detect a suspected residual leak around the occluder. On non-enhanced mul-
tiplane and live 3D images (A) a gap is visible (red arrows) between the rim of the device and the LAA. Because of shadowing, the
sealing of the LAA cannot be verified. By adding intravenous contrast (B) and using harmonic imaging with a mechanical index of 0.2,
contrast is seen in the LAA, surrounding the device (yellow arrows), demonstrating incomplete sealing of the LAA. Source: personal
collection.

Video 5. Microbubble-enhanced transoesophageal echocar-
diography biplane images focused on the left atrial appendage
(LAA). In the LAA a closure device (Watchman) is present, but
the sealing is incomplete, contrast can be seen all around the de-
vice, enhancing its borders. The patient corresponds to Fig. 6. The
embedded movie may also be viewed at https://doi.org/10.31083/
j.rcm2306202.

this volume is found in the capillaries. If the myocardium is
fully saturated during a continuous UEA infusion, the UEA
in the myocardium will reflect the distribution of the cap-
illary circulation [52]. This means that simply measuring
the intensity of signal enhancement with UEA provides a
quantitative measure of intact microcirculation in the my-
ocardium. Using this approach, the extent and distribution
of viable (perfused) myocardium can be assessed (Fig. 8,
Video 7) with a sensitivity and specificity similar to sin-
gle photon emission computed tomography (SPECT) tech-

Fig. 7. Microbubble enhanced stress echocardiography. Base-
line non-enhanced images are recorded in apical 4 and 2 chambers
(A,B), demonstrating insufficient delineation of the endocardial
borders; With contrast (C,D) the LV contours become clearly vis-
ible. Source: personal collection.

niques [41] or magnetic resonance imaging (MRI) [53].
Experimental data demonstrated that the myocardial

capillary flow has a velocity of 1 mm/s within a beam ele-
vation of 5 mm. This means that the total filling of the cap-
illaries takes around 5 seconds (5 cardiac cycles at a heart
rate of 60/min) at rest [54]. If for some reason the blood
flow is slowed down (stenosis) or accelerated (vasodila-
tion), this time will be modified accordingly [54]. During
stress the myocardial blood flow increases 4–5-fold, which
means that replenishment will be achieved in 1 to 2 seconds
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Video 6. Dobutamine stress echocardiography, baseline im-
ages. The upper panels are non-enhanced, LV walls and endo-
cardial borders are difficult to see. The lower panels show the
contrast-enhanced images, the LV contours and wall motion are
clearly visible. The movie corresponds to Fig. 7. The embed-
ded movie may also be viewed at https://doi.org/10.31083/j.rc
m2306202.

Fig. 8. Detection of coronary artery disease by using myocar-
dial perfusion imaging. Patient with dyspnoea but no typical
chest pain. (A) LVO images demonstrate a discrete anomaly in the
septal kinetics. (B) Myocardial perfusion imaging shows a suben-
docardial perfusion defect in the anterior and anteroseptal seg-
ments. Patient underwent coronary angiography and stent plac-
ing in the left anterior descendent coronary. (C) Follow-up study
before discharge: LVO normal kinetics. (D) Follow-up perfusion
study on discharge: homogeneous perfusion. Source: personal
collection.

Video 7. Detection of coronary artery disease by using my-
ocardial perfusion imaging. Upper panels: acute phase; Lower
panels: discharge. In the acute phase myocardial perfusion imag-
ing (upper right panel) shows a subendocardial perfusion defect
in the anterior and anteroseptal segments, with mild hypokinesia.
Patient underwent coronary angiography and stent placing in the
left anterior descendent coronary. Perfusion was homogeneous at
discharge. Themovie corresponds to Fig. 8. The embeddedmovie
may also be viewed at https://doi.org/10.31083/j.rcm2306202.

(2–3 cardiac cycles at a heart rate above 120/min).
Assessing myocardial perfusion has incremental ben-

efit over wall motion analysis in detecting coronary artery
disease (CAD) [55]. The myocardial contrast signal ob-
tained in a steady state (continuous infusion) can be nor-
malized to the LV cavity signal and this represents the my-
ocardial capillary volume [54]. By delivering a series of
high-power (high mechanical index) ultrasound frames to
the region of interest, cavitation and destruction of the UEA
bubbles is initiated; the analysis of the progressive recov-
ery of the contrast signal in the myocardium provides in-
formation on the myocardial capillary flow [54–56] (Fig. 9,
Video 8).

The sensitivity and specificity of myocardial contrast
stress echocardiography in detecting CAD are 83% and
79% respectively for a vasodilator stress (dipyridamole or
adenosine) and 88% and 77% respectively for dobutamine
or exercise stress studies [7,57]. Two large multicenter
studies demonstrated superior sensitivity ofmyocardial per-
fusion stress echocardiography as compared to SPECT, but
lower specificity [58,59]. The higher sensitivity may be due
to the fact that SPECT only detects the myocardial blood
volume, and not the kinetics of myocardial blood flow,
as opposed to contrast-enhanced stress echocardiography,
which can assess both [54]. The lower specificity may be
related to artefacts during stress echocardiography, mainly
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Fig. 9. Vasodilator stress echocardiography with Adenosine, using a low-MI setting and flash-replenishment technique. (A–D)
Baseline end-systolic frames before flash (A), flash (B), immediately post flash (C, myocardium is dark because of the destruction of
contrast), and post-replenishment frame (D) when perfusion is again homogeneous. (E–H) After adenosine infusion, the same order
of frames. (H) Post replenishment end-systolic frame demonstrating a subendocardial perfusion defect in the inferosetptal segements
(arrow). Of note, during stress myocardial replenishment occurs faster than at rest because of the pharmacological vasodilation. The
patient underwent coronary angiography and stent placing in the right coronary artery. Source: personal collection.

Video 8. Adenosine contrast-enhanced stress echocardiogra-
phy, with a flash-replenishment cycle. After the flash there is
a persistent perfusion defect in the inferoseptal segments. The
movie corresponds to Fig. 9. The embedded movie may also be
viewed at https://doi.org/10.31083/j.rcm2306202.

in the apex (near-field destruction) and basal segments (far
field attenuation in apical view).

There is now a large body of evidence supporting the
added value of myocardial perfusion imaging over wall mo-
tion assessment alone in stress echocardiography [55,60–
66]. When using vasodilator stress, the use of high-power
flash-replenishment technique is likelymore important than
during dobutamine or exercise stress, where wall motion
abnormalities and perfusion defects may be more evident
because of the higher oxygen demand during this type of
stress [67].

4.3.2 Myocardial Viability
As mentioned earlier, the intramyocardial UEA sig-

nal intensity correlates with the microvascular density in
the area, and would naturally be lower in regions with high
collagen content [68,69]. Dobutamine stress echocardiog-
raphy is routinely used for the assessment of myocardial
viability. A contractile response during stress relates to
the presence of the microvasculature and the presence of a
blood flow reserve, both of which are particularly well pre-
dicted by MEE. An increasing body of evidence suggests
that MEE is a useful and highly feasible technique for the
evaluation of myocardial viability [53,70–72].

4.3.3 Coronary Flow Reserve
Quantitative approaches to evaluate myocardial perfu-

sion or myocardial flow rate (the β-value = the rate at which
the myocardial blood volume transits the tissue [54]) have
been shown to correlate well with coronary flow, fractional
flow reserve and positron emission tomography [41,54,73–
75]. This can be achieved both with high as well as with
low MI applications. For the high-MI the myocardium is
first cleared of contrast (flash) and then replenishment is as-
sessed with triggered high-MI imaging or continuous low-
MI. The blood flow is estimated as the product of peak
acoustical intensity (db) and flow velocity (db/s), and com-
pared with the values obtained during stress, leading to a
good correlation with invasive coronary flow reserve [73].

It is essential that in quantitative methods, relative in-
dices are used, such as the ratio of stress and rest blood flow.
The interaction between ultrasound power andmicrobubble
concentration is variable in each patient and with each ul-
trasound system, which affects the absolute values of my-
ocardial blood volume and blood flow velocity.
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4.4 Intracardiac Masses

UEA have largely been used in the detection of LV
thrombi [76–78]. This is in fact an application of the LVO
method, enhancing the delineation between the wall, cav-
ity and the thrombus mass (Fig. 10, Ref. [79]). However,
prognostic implications for small mural thrombi are not
clear. Myocardial perfusion detection, as described above,
may help to diagnose small intracardiac or even intramu-
ral masses, by the presence and the dynamics of the vas-
cularization inside the mass [80]. By adding a quantitative
approach, it may even be possible to differentiate not only
thrombi from tumors, but also benign from malignant tu-
mors [79] (Fig. 11, Ref. [79]).

Fig. 10. Detection of an apical thrombus in a patient with
severely depressed EF.Native images in apical 4 (A) and 2 cham-
bers (B) do not demonstrate the presence of an apical mass. (C)
3D contrast-enhanced echocardiography demonstrating an api-
cal filling defect (thrombus-arrows). (D) Apical 2-chambers 2D
contrast-enhanced image, the thrombus is present in the apical LV.
Images modified with permission from Strachinaru et al. [79].

4.5 Cardiac Contrast-Enhanced Ultrasound in Children
and Adolescents

In children, image quality in transthoracic echocar-
diography is usually considered to be significantly better
than in adults, due to body size, depth of the region of in-
terest and degree of soft tissue hydration. This allows for
the use of high-resolution high-frequency transducers, and
also implies that the use of ultrasound enhancing agents
is less frequent. However, echocardiographic images are
not always diagnostic in this patient population, and other
imaging modalities also tend to be used less than in adults
(cardiac computed tomography being a radiation imaging
technology, and cardiac magnetic resonance often requir-

Fig. 11. Hyperechoic and hypermobile mass in a normal LV.
The image quality is good, and the mass is hyperechoic. (A) 4-
chambers view. (B) 2-chambers view. (C) Signal intensity quan-
tification after a flash-replenishment cycle. The replenishment of
the mass is similar to the interventricular septum, but with higher
intensity, signalling the presence of a capillary vascularisation,
with a higher density than the myocardium. (D,E) Parametric map
of signal intensity, demonstrating the same features of the mass.
In this patient the mass was finally diagnosed as a hypervascular
metastasis from a lung carcinoma. Images modified with permis-
sion from Strachinaru et al. [79].

ing sedation for smaller children). All the clinical appli-
cations described above (LVO, myocardial contrast, intrac-
ardiac mass detection) have potential indications in pedi-
atric patients [81,82]. MEE has been described in the de-
tection of coronary involvement in Kawasaki disease or in
congenital heart disease [81,83,84]. In complex congeni-
tal heart disease, the acoustic window may be limited by
post-surgical anatomy and the interposition of strong reflec-
tors (implanted material). In these patients however, there
is a clear benefit from the precise delineation and measure-
ment of the right and left ventricle, which may have unusual
shapes [82].

The safety of UEA in children has been a subject for
debate [13,85–87]. In 2016 the FDA removed the intrac-
ardiac shunt contraindication from all UEA labels. There
are remaining concerns, in particular in congenital patients
with large right-to-left shunting, that the UEA microbub-
bles may directly enter the arterial circulation, potentially
inducing microvascular obstruction [13]. There are no cur-
rent studies on the safety of UEA in patients under the age
of 5.

For these reasons, the use of contrast agents is cur-
rently considered safe only in pediatric and congenital heart
disease patients older than 5, without large right-to-left
shunts. Further studies are needed in this direction, and
a thorough benefit/risk assessment should be performed in
each case. Optimal dosing of UEA in children corresponds
to body weight.
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Fig. 12. High frame rate echo particle velocimetry (HFR echoPIV) in a heart failure patient. (A) early diastolic inflow, correspond-
ing to the Doppler E wave; (B) intraventricular flow in mid-diastole, during diastasis; (C) Flow during mid-systole. Inflow, outflow
direction and magnitude can be visualized and quantified. Rotational flow (vortices) can also be seen and measured. Source: personal
collection.

4.6 Emerging Applications
4.6.1 Intracardiac Flow Tracking and Quantification

Blood flow in the heart is classically imaged using
colour Doppler, which has some inherent disadvantages:
angle-dependency, relatively low frame rate, low veloc-
ity range and semi-quantitative nature. New ultrasound
techniques, generally referred to as vector flow imaging,
can estimate the location, direction and magnitude of the
velocity vectors that describe flow in a region of inter-
est. One such technique, Echo-Particle Image Velocimetry
(echoPIV), tracks the speckle of ultrasound contrast agent
(UEA)microbubbles [88,89]. These intricate echoPIV flow
fields may offer additional meaningful insights, such as de-
rived quantities (vorticity, circulation, kinetic energy, ki-
netic energy dissipation) [90]. The precise clinical mean-
ing of these derived parameters still needs to be investi-
gated. One of the limitations of conventional echoPIV is
the relatively low frame rates permitted by conventional
line-scanning based ultrasound imaging (maximum ~100
Hz). In contrast, high frame rate (HFR) echoPIV, using
diverging-wave transmit sequences, allows for frame rates
in the kHz range and makes tracking of fast flow in the left
ventricle (LV) possible [90–93] (Fig. 12, Video 9). How-
ever, these methods are still in development as clinical high
frame rate imaging is still far from implementation [94].

4.6.2 Ultrasound Targeted Microbubble Destruction
(UTMD) and Derived Applications

Recent studies demonstrated that targeted drug and
gene delivery can be done non-invasively. Genes or other
substances may be incorporated on the surface of custom-
generated microbubbles, or even inside the shell, and then
destroyedas they reach the target area by using high-energy
ultrasound pulses [95,96] (Fig. 13). Because the UEA mi-
crobubbles are purely intravascular, delivery occurs to the
vascular endothelium, but the ultrasound field and the en-
ergy generated by cavitation of the microbubbles can facil-

Video 9. High frame rate echoPIV in a heart failure patient.
Individual bubbles are tracked in their motion, and their direction
and velocity represented with arrows. This is both a qualitative
and quantitative method, allowing to estimate velocity anywhere
in the region of interest (here the LV end-diastolic contour, traced
with a red dotted line). The movie corresponds to Fig. 12. The
embedded movie may also be viewed at https://doi.org/10.31083/
j.rcm2306202.

itate transfection into the extravascular tissue also [97–99].
Ongoing work is directed towards improving transfection
of the drugs/genes into the target cells.

High-MI ultrasound pulses induce cavitation, which
can increase local blood flow through the generation of ni-
tric oxide [100]. This particular effect of UTMD has been
recently used to improve perfusion in sickle-cell anemia
[101], and in the myocardium in animal models [102].

4.6.3 Sonothrombolysis
High-MI ultrasound pulses have the potential to dis-

rupt and dissolve intravascular thrombi [103–106]. Prelimi-
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Fig. 13. Theoretical principle of ultrasound targeted microbubble destruction (UTMD) applications. The bubbles can be “fitted”
with a drug/gene/other marker, which can be released at the target site by destroying the bubbles with high-MI pulses. Source: personal
collection.

nary studies have demonstrated the recanalization of throm-
bosed vessels, without the adjunction of any drug treatment
[103]. Preliminary clinical studies in ST-elevation myocar-
dial infarction (STEMI) patients showed that guided high-
MI pulses improve early recanalization rates and restoremi-
crovascular flow, reducing the infarct size [106]. Future
and ongoing studies focus on the use of sonothrombolysis
in acute coronary syndromes and stroke.

4.6.4 Molecular Imaging

UEA are distributed strictly intravascular. By attach-
ing certain ligands on their surface, they can target the sur-
face of dysfunctional endothelium in certain diseased ar-
eas. This is achieved through modified UEAmicrobubbles,
which are relatively easy to engineer and in large quantities.
By using contrast-specific imaging modalities, and imag-
ing after the normal time of clearance of the free contrast
microbubbles, the diseased area can be selectively high-
lighted [107]. This method has been used in myocardial
ischemia, allograft rejection, myocarditis and angiogenesis
[108–111].

All these cutting-edge applications of MEE in the di-
agnosis and treatment of heart disease are mostly at the
stage of early clinical translation, but they have shown clin-
ical promise and are gaining momentum through the inno-
vative work of several research groups.

4.7 Safety

Following their initial clinical use in the 90’s, ultra-
sound enhancing agents underwent a period of limited use,
induced by fears of adverse events [112]. However, sub-
sequent large studies demonstrated that in various settings
(inpatients, outpatients, critically ill, rest or stress testing),

no excess in mortality or myocardial infarction was ob-
served when compared to control populations [113,114].
In critically ill patients on mechanical circulatory support
devices data has only been reported in a few small single-
center reports [20,115,116]; however, none of these studies
noted supplementary adverse events in this patient popula-
tion. Furthermore, contrast-enhanced stress echocardiogra-
phy was not associated with an increase in adverse events
[117–119].

Rare (between 1/1000 and 1/10000 patients) side ef-
fects have been noted with contrast agents, usually mild and
transient (headache, nausea, dizziness, paraesthesia, taste
disturbances or reactions at the injection site). Serious al-
lergic reactions have a very low incidence [120] (considered
low-risk, with an incidence of 0.005–0.015%).

Therefore, the clinical use of MEE is considered very
safe in all its applications. Meanwhile the FDA has lifted
the contraindications initially issued in the 2007 “black box
warning” [112]. The only absolute contraindications per-
sisting today are in patients with known or suspected large
intracardiac shunting and those with hypersensitivity to the
UEA.

Intracoronary administration is also considered con-
traindicated, despite its systematic and uneventful use in hy-
pertrophic cardiomyopathy patients undergoing septal abla-
tion.

It is recommended that all personnel in contact with
a patient during any MEE study should be familiar with
early identification of an allergic reaction and the appro-
priate treatment. Allergy kits including auto-injectable
epinephrine should be available and easily accessible [7,
13].
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5. Conclusions
Contrast-enhanced echocardiography is amature tech-

nique, with an established safety profile allowing for its rou-
tine clinical use. Yet, in spite of extensive clinical expe-
rience and research, contrast-enhanced echocardiography
remains underused, largely due to insufficient experience
of the clinicians and unjustified fear of adverse effects.
Through this review we covered the current and future per-
spectives of MEE, which we hope will facilitate the under-
standing and incorporation of this method in everyday clin-
ical practice.
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