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Abstract

Background: Valvular heart disease (VHD) is a major precipitating factor of atrial fibrillation (AF) that contributes to decreased cardiac
function, heart failure, and stroke. Stroke induced by VHD combined with atrial fibrillation (AF-VHD) is a much more serious condition
in comparison to VHD alone. The aim of this study was to explore the molecular mechanism governing VHD progression and to
provide candidate treatment targets for AF-VHD.Methods: Four public mRNA microarray datasets were downloaded and differentially
expressed genes (DEGs) screening was performed. Weighted gene correlation network analysis was carried out to detect key modules and
explore their relationships and disease status. Candidate hub signature genes were then screened within the key module using machine
learning methods. The receiver operating characteristic curve and nomogrammodel analysis were used to determine the potential clinical
significance of the hub genes. Subsequently, target gene protein levels in independent human atrial tissue samples were detected using
western blotting. Specific expression analysis of the hub genes in the tissue and cell samples was performed using single-cell sequencing
analysis in the Human Protein Atlas tool. Results: A total of 819 common DEGs in combined datasets were screened. Fourteen modules
were identified using the cut tree dynamic function. The cyan and purple modules were considered the most clinically significant for
AF-VHD. Then, 25 hub genes in the cyan and purple modules were selected for further analysis. The pathways related to dilated
cardiomyopathy, hypertrophic cardiomyopathy, and heart contraction were concentrated in the purple and cyan modules of the AF-VHD.
Genes of importance (CSRP3, MCOLN3, SLC25A5, and FIBP) were then identified based on machine learning. Of these, CSRP3 had
a potential clinical significance and was specifically expressed in the heart tissue. Conclusions: The identified genes may play critical
roles in the pathophysiological process of AF-VHD, providing new insights into VHD development to AF and helping to determine
potential biomarkers and therapeutic targets for treating AF-VHD.
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1. Introduction
Atrial fibrillation (AF) is the most prevalent arrhyth-

mia within the general population [1]. Morbidity and mor-
tality linked to AF represent a significant public health bur-
den worldwide [2]. There are multiple factors contributing
to AF, including valvular heart disease (VHD), hyperten-
sion, age, obesity, and diabetes [3,4]. VHD is a signifi-
cant cause of arrhythmia and stroke. Stroke induced by
AF-VHD is a more serious condition compared to VHD
alone [5,6]. However, the mechanism for the development
of VHD into AF-VHD is not yet fully understood. It is
therefore essential to investigate the pathogenesis and clar-
ify the precise molecular mechanisms involved in AF-VHD
progression.

Lamirault et al. [7] identified the gene expression pro-
file associated with human AF-VHD. In their study, ight
atrial appendages in 11 patients with AF-VHD and 7 pa-

tients with sinus rhythm with VHD (SR-VHD) undergoing
open heart surgery were included in cardiac-specific mi-
croarray analysis. The results indicated that 169 genes were
differentially expressed between the two groups. Notably,
cysteine- and glycine-rich protein 3 (CSRP3) was found to
be highly expressed in AF-VHD and involved in cardiac
contraction. Furthermore, Yan et al. [8] and Li et al. [9]
screened key immune-related genes in AF-VHD. Liu et al.
[10] also identified feature genes for AF with VHD using
integrative transcriptomic, proteomic, and machine learn-
ing approaches. In our study, by contrast, we merged re-
lated datasets and used weighted gene co-expression net-
work analysis (WGCNA), a statistical method that is simi-
lar to cluster analysis but is more biologically meaningful,
and machine learning methods to identify specific biomark-
ers [11,12]. Even though many studies have investigated
AF-VHD markers, specific predictive biomarkers are still
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lacking to enable early detection. The communicative reg-
ulatory mechanisms of AF-VHD also remain poorly under-
stood.

In the present study, co-expression networks were
constructed using the dataset GSE115574’s expression pro-
file to identify key modules and hub genes related to AF
with VHD. The genes were then subjected to gene ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) ontology enrichment analyses. Subsequently, im-
portant genes (CSRP3, Transient Receptor Potential Chan-
nel Mucolipin 3 (MCOLN3), solute carrier family 25 mem-
ber 5 (SLC25A5), and FGF1 intracellular binding protein
(FIBP)) were identified using a machine learning approach
and their potential clinical significance was determined.
Notably, the clinical significance of CSRP3 and MCOLN3
was statistically significant. Functional enrichment results
showed that CSRP3 has a strong association with heart de-
velopment and MCOLN3 is linked to the calcium channel
complex. Additionally, the available literature indicated
that CSPR3 is closely involved in the process of cardiac hy-
pertrophy [13,14]. These observations may link AFwith di-
lated or hypertrophic cardiomyopathy, providing novel ev-
idence for the diagnosis and treatment of AF with VHD in
a clinical setting.

2. Methods
2.1 Atrial Fibrillation Datasets Filtration

Gene Expression Ominibus (GEO, https://www.ncbi
.nlm.nih.gov/geo/) was used to extract the raw datasets and
included if datasets met the following criteria. (1) The ex-
pression profiling was acquired by array; (2) The exper-
imental platform belonged to GPL570 platform; (3) Data
sets should include gene expression profiles of human left
or right atria tissues; (4) All experiments included controls
and the minimum sample size used was three.

2.2 Data Collection
Based on the criteria mentioned above, four publicly

microarray datasets (GSE79768, GSE115574, GSE14975
and GSE41177) were filtered and downloaded. In the
GSE115574 dataset, the expression matrix of a total of 59
samples was acquired from the human atrial tissue, contain-
ing 15 patients diagnosed with AF-VHD, and 15 with SR-
VHD. Left atrial appendage and right atrial appendage sam-
ples (except 1 patient) were obtained from each patient. In
GSE79768, a total of 7 patients with AF-VHD and 6 with
SR-VHD provided atrial tissue samples. GSE14975 con-
tained 5 atrial tissue samples from AF-VHD patients and 5
from SR-VHD control. The GSE41177 dataset included 16
patients with persistent AF receiving valvular surgery and
3 patients diagnosed with SR with VHD.

2.3 Data Preprocessing and Differentially Expressed
Genes (DEGs) Screening

Furthermore, Probe IDs were mapped to gene sym-
bols in each dataset by extracting them from the respec-
tive platform file. The microarray data preprocessing, con-
taining normalization and background correction, was con-
ducted by applying the “Affy” package in R [15]. Then, us-
ing the “sva” package of the R software (version 3.6.3) to
merge and batch normalization four datasets. Afterwards,
the “limma” package was used to identify the DEGs be-
tween the AF-VHD and SR-VHD. The statistical cutoff val-
ues were an absolute log2 FC >0.3 (FC, fold change) and
adjust p-value < 0.05 in combined datasets. Volcano plot
and Heatmap were generated according to the data above
by using R package “ggplot2” and “pheatmap”.

2.4 Functional Enrichment Analysis

In order to explore the biological function of the DEGs
and genes in key modules, GO analysis and a KEGG terms
enrichment analysis were performed using Metascape tool
(http://metascape.org) and ClusterProfiler (version 3.6.0)
software in R language [16,17]. Enrichment significance
thresholds were set at an adjust p-value below 0.05. Fur-
thermore, Gene set enrichment analysis (GSEA) was per-
formed by clusterProfiler (R package) and GSEA plots
were visualized by “gseaplot” package [18]. Results with
a |NES| >1 and FDR <0.25 were regarded as statistically
significant (NES, normalized enrichment score; FDR, false
discovery rate).

2.5 Construction of Weighted Gene Co-Expression
Network

Based on the median absolute deviation of the genes,
we selected the top 5000 genes for WGCNA using the R
package “WGCNA” [19,20]. Biological networks were
constructed with a value of 9 for the soft thresholding pa-
rameter to satisfy the scale-free assumption (linear regres-
sion model fitting index R2 = 0.91). We calculated pair-
wise Pearson’s correlation matrix and then transformed it
into an adjacency matrix. A Topological Overlap Measure
(TOM)-based dissimilarity matrix (DissTOM) was created
by transforming the adjacency matrix, and modules were
generated by hierarchical average linkage clustering anal-
ysis for the gene dendrogram. After acquiring modules,
module eigengene (ME), first principal component of the
expression matrix of the referred to module, was calculated
using the “Module Eigengenes” function. The relationship
between clinical parameters and modules were indirectly
assessed by looking at the correlation between MEs and
clinical traits. Module significance (MS) was calculated by
taking the average of the gene scores for all genes within
a module. Modules with the highest MS scores were re-
garded as key modules and selected for subsequent analy-
sis. Additionally, we extracted gene expression profiles of
each module genes for further analysis.
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2.6 Identification of Candidate Hub Genes in Key Module
The module membership (MM) was also calculated,

which was regarded as the degree of association between
the ME and the gene expression matrix. Then, the in-
tramodular hub genes were identified based on gene sig-
nificance (GS) >0.2 and MM >0.8 [21]. Heatmaps were
conducted to demonstrate the putative candidate genes’ ex-
pression patterns with the R package “pheatmap” [22]. We
also made Venn diagrams for common DEGs in four public
microarray datasets and hub genes in WGCNA.

2.7 TF-miRNA Network of Hub Genes
The TF-miRNA regulatory network was constructed

by overlapping TF-hub genes and miRNA-hub genes using
the Network-Analyst database (http://www.networkanalyst
.ca) and then visualized by performing Cytoscape (version
3.7.2) [23–25] (TF, transcription factor).

2.8 Machine Learning: Construction of Lasso and
Random Forest Model

We performed least absolute shrinkage and selection
operator (LASSO) regression by applying the “glmnet”
package in R software to identify the candidate predictive
features based on a generalized linear model [26]. More-
over, we constructed Random Forest (RF)Model to identify
the important variables by using “Random Forest” package
[27]. Finally, we screened real hub gene signatures by in-
tersecting gene signatures from the LASSO and RF.

2.9 Development and Validation of a Prognostic Model
The association analysis between hub genes was per-

formed by using the spearman rank correlation coefficient,
illustrated by heat-map. To screen out the potential clini-
cal significance of hub genes, the receiver operating char-
acteristic curve (ROC)was created using “pROC” packages
[28]. A multivariate regression formula was built based on
the hub genes’ expression value and their regression coeffi-
cients under the merged datasets. Finally, a nomogram was
constructed based on the selected predictive factors identi-
fied by using the “rms” package in R to predict the preva-
lence of AF-VHD. Calibration curves were plotted to evalu-
ate the difference between the predicted probability and the
actual probability. In addition, a decision curve analysis
(DCA) can be used to measure the net benefit of a predic-
tive model [29].

2.10 Patients
Left atrial appendages were obtained from 6 VHD pa-

tients with AF and 5 VHD patients with SR undergoing
open heart surgery. Patients with hyperthyroidism, dia-
betes, hypertension and infectious diseases were excluded
from our study. After the surgical operation, liquid ni-
trogen was immediately applied to the tissue specimens.
Human participants in the studies were reviewed and ap-
proved by the ethics committee of the Guangdong General

Hospital, Guangdong Academy of Medical Sciences (No.
GDREC2017111H). A signed informed consent form was
provided to all patients and their legal representatives.

2.11 Western Blot Analysis
The experiment was conducted based on the procedure

reported as previously [30]. Antibodies used were men-
tioned as follows: anti-CSRP3 antibody [1:1000, Abcam
Cat# ab172952]; anti-MCOLN3 antibody [1:1000, Thermo
Fisher Invitrogen Cat# PA5-109339]; anti-GAPDH anti-
body [1:5000, Proteintech Cat# 60004-1-lg].

2.12 Specific Expression Analysis of Hub Genes in Tissue
and Cells

We used Human Protein Atlas (HPA) (https://www.pr
oteinatlas.org/) tool to validate the mRNA and protein ex-
pression levels of the hub genes in all tissues. The Single
Cell Type Atlas part in HPA as used to illustrate the expres-
sion of hub genes in single specific cell types [31].

2.13 Statistical Analysis
A description of the bioinformatic analyses appeared

in corresponding subsections. In all cases, values were ex-
pressed as means and standard deviations (SD), and Stu-
dent’s t-test was used to determine pairwise statistical sig-
nificance of the differences between two group means. A
p-value < 0.05 was defined as statistically significant.

3. Results
3.1 Study Workflow

The flowchart for the study analysis strategy is shown
in Fig. 1. Fourteen modules of co-expressed genes were
identified via weighted gene correlation network analysis.
The cyan and purple modules were identified as the most
clinically significant. GO and KEGG analyses were per-
formed on both modules, with similar processes being car-
ried out on the hub genes within the key modules. Cru-
cial candidate genes were identified by intersecting the hub
genes in WGCNA and common DEGs in merged datasets.
TF-crucial genes and miRNA-crucial gene networks were
visualized using Cytoscape. Machine learning methods, in-
cluding Lasso and random forest, were implemented to se-
lect the potential significant genes and to construct a diag-
nosis prediction model. The ROC curve and DCA were
utilized on this prediction model to assess the predictive
power. Then, protein expression levels of important genes
in AF-VHDwere verified using western blot analysis. Spe-
cific expression analysis of hub genes in tissue and cell sam-
ples was performed to identify specific biomarkers.

3.2 DEGs Screening
Datasets GSE115574, GSE41177, GSE79768, and

GSE14975 were included in the analysis. Based on the
screening criteria, 819 genes in the merged datasets were
screened out as common DEGs, of which 725 genes were

3

http://www.networkanalyst.ca
http://www.networkanalyst.ca
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.imrpress.com


Fig. 1. Flowchart of the analysis strategy.

up-regulated and 94 genes were down-regulated (Fig. 2A).
DEGswere ranked according to the fold change expression,
and the top 40 were represented using a heatmap (Fig. 2B).

3.3 Functional Enrichment of DEGs

A ll DEGs were used in functional annotation analy-
ses. The top five significant terms were displayed in bub-
ble plots according to their adjusted p-values (Fig. 3A,B).
The GO terms were associated with the molecular func-
tions (MFs), cellular components (CCs), and biological pro-
cesses (BPs). Those linked withMFs included extracellular
matrix structural constituent, extracellular matrix structural
conferring tensile strength, IgG binding, electron activity,
and heparin binding. CCs included collagen-containing
extracellular matrix, mitochondrial inner membrane, en-
doplasmic reticulum lumen, and collagen trimer. BPs in-
cluded extracellular matrix organization, collagen fibril or-
ganization, neutrophil activation, and neutrophil-mediated

immunity (Fig. 3A). Terms of the enriched KEGG path-
way are represented in Fig. 3B, including the phagosome,
Fc gamma R-mediated phagocytosis, regulation of actin cy-
toskeleton, carbon metabolism, and the advanced glycation
end products (AGEs) and its synergetic receptor-AGEs-
RAGE signaling pathway in diabetic complications. De-
tailed results are summarized in the Supplementary Ta-
bles 1,2. The top 6 BP enrichment terms were determined
by their adjusted (adj) p-values and BgRatio values. and
chord plots were used (Fig. 3C) in order to better under-
stand the molecular functions of DEGs and the potential bi-
ological processes in which they could be involved. GSEA
was performed based on all genes (Fig. 3D). The AF-VHD
groups were enriched in terms of class I major histocom-
patibility complex (MHC)-mediated antigen presentation,
neutrophil degranulation, platelet activation signaling and
aggregation, and extracellular matrix organization.
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Fig. 2. DEG identification. (A) Volcano plot visualization of dif-
ferentially expressed genes and their statistical significance. The
red dots indicate up-regulated genes, and the blue dots indicate
down-regulated genes. (B) Heatmap showing expression profiles
of top 40 DEGs. DEGs, differentially expressed genes.

3.4 Construction of Co-Expression Network Using
WGCNA

Two outliers (Sample15/GSM3182694; Sam-
ple26/GSM3182705) were observed (Supplementary
Fig. 1) in the atrium samples in GSE115574. A total
of 26 AF with VHD samples and 31 SR with VHD
samples were included in the analysis after discarding
the outliers. To satisfy the scale-free assumption of the
constructed biological networks, the soft threshold power
β = 9 was selected for the AF- and SR-VHD samples
(Supplementary Fig. 2A,B). By calculating the scale-free
topology fitting index, the value of R2 was shown to reach
0.91. The results were represented via a histogram and
a linear plot (Supplementary Fig. 2C,D). Additionally,
an average hierarchical linkage clustering was calculated
using TOM-based dissimilarity measurements with a

minimum size of 30 genes. Modules of every gene cluster
were identified based on the hierarchical cluster analysis
(Fig. 4A). Following the merging of similar modules with
a clustering height cut-off of 0.25 (Fig. 4B), a total of 14
modules with a high credibility were obtained, with the
initial and merged modules presenting under the clustering
tree (Fig. 4C).

3.5 Identification of the Most Significant Modules and
Hub Genes

The module-trait relationships illustrate the correla-
tion between the available clinical features (disease status,
tissue site) and each module in GSE115574 by calculating
the value of MS (Fig. 5A). Notably, the ME of the cyan
module (r = 0.54, p = 1× 10−5) showed the highest linkage
with AF-VHD, followed by the purple module (r = –0.51,
p = 4 × 10−5). Additionally, the mean GS across all genes
in each module was illustrated by the MS values displayed
in a bar diagram. The cyan and purple modules showed to
be of substantial interest (Fig. 5B). Therefore, the cyan and
purple modules were selected as the main focus modules,
and scatter plot analysis was conducted to determine the
correlation between the GS and MM of the cyan (Fig. 6A)
and purple (Fig. 6B)modules. Highly connected genes (hub
genes) were defined using module connectivity (MM>0.8)
and clinical trait relationship (GS>0.2). Under these crite-
ria, 25 genes were identified as candidates for further anal-
ysis. MM and GS values were detailed in Supplementary
Table 3. A heatmap visualizing gene expression changes
for 25 hub genes in merged datasets was shown in Fig. 6C.

3.6 Function Enrichment Analysis of Genes in Key
Modules

GO and KEGG analyses were performed to gain a
deeper understanding of the biological functions of genes in
the cyan and purple modules. The GO results showed that
genes in the purple module were mainly clustered in MF,
CC, and BP, including “metal ion transmembrane trans-
porter activity”, “voltage-gated ion channel activity”, “sar-
coplasm”, “T-tubule”, “muscle system process”, “regula-
tion of blood circulation”, and “regulation of heart con-
traction” (Fig. 5C). In addition, KEGG analysis of genes
in the purple modules showed that they were mainly en-
riched in the following terms: adrenergic signaling in car-
diomyocytes, HIF-1 signaling pathway, hypertrophic car-
diomyopathy, and dilated cardiomyopathy (Fig. 5D). The
top five terms from theMetascape analysis of the cyanmod-
ule included carbon metabolism, striated muscle cell de-
velopment, cardiac muscle cell development, nucleoid, and
regulation of membrane permeability. The top 20 cluster-
enriched sets are shown in Fig. 5E.
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Fig. 3. Functional enrichment analysis of DEGs and GSEA results. (A) GO term enrichment with top five significant adjusted p-
values for DEGs illustrated in relation to biological process, molecular function, and cellular component. (B) Top five enriched KEGG
pathways for DEGs. (C) Chord plots for gene enrichment analysis. (D) GSEA plots.

3.7 Screening Candidate Hub Genes

In order to screen the candidate hub genes for fur-
ther analysis, DEGs of the combined datasets (GSE115574,
GSE41177, GSE79768, and GSE41177) were overlapped
with the hub genes in the key modules using a Venn di-
agram. A total of 15 candidate hub genes were identi-
fied (Fig. 7A). They were mainly enriched in the Mitogen-
Activated Protein Kinase (MAPK) signaling pathway (gene
ratio 4/10), arrhythmogenic right ventricular cardiomyopa-
thy (gene ratio 3/10), dilated cardiomyopathy, cardiac mus-
cle contraction (gene ratio 2/10), structural constituent of
muscle, calcium channel activity (gene ratio 4/14), and cal-
cium ion transmembrane transporter activity (gene ratio
3/14; Fig. 7B). To determine which TFs and miRNAs may
be responsible for the altered candidate hub gene expres-

sion, transcription factor and miRNA analyses were per-
formed using NetworkAnalyst. A total of 61 TFs and 96
miRNAswere identified (Fig. 7C). The correlation between
11 hub genes was determined using Spearman’s rank test.
A positive correlation was observed between CSRP3 and
SLC25A5 (Fig. 7D).

3.8 Identification of Real Hub Genes in AF-VHD

Lasso and RF analyses were performed to screen sig-
natures within 15 candidate hub genes in AF-VHD. First,
the Lasso algorithm identified ten signatures—CSRP3,
MCOLN3, SLC25A5, FIBP, ABCF1, ACTN2, ASTN2,
CACNA2D2, OTOGL, and DUSP3—under the condition
of the best penalty parameter (λ) (Fig. 8A,B). Using RF,
the top five most important variables were screened, which
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Fig. 4. Construction of weighted gene co-expression network of AF-VHD and SR-VHD samples. (A) Gene dendrograms and
modules were acquired using average linkage hierarchical clustering with dissimilarity according to topological overlap. Color beneath
each row is a reflection of module assignment; there are different colors for different modules. (B) Dendrogram clustering was performed
with 0.25 as height to identify similar modules. (C) After dynamic tree cutting and merging, 14 gene modules were obtained.
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Fig. 5. Functional enrichment of the key module. (A) Module-trait relationship plot. There is one row for each module eigengene
and one column for each trait. Correlation coefficients and p-values are displayed in each cell. Red represents a positive correlation,
and blue represents a negative correlation. RA, right atrium; LA, left atrium. (B) Bar plot of module significance (MS) defined as the
average absolute value of gene significance (GS) for all genes in a module. The cyan and purple modules are the most promising. (C,D)
GO enrichment and KEGG analyses for purple module. (C) Top five GO category terms of biological process (BP), cellular component
(CC), and molecular function (MF) were identified. (D) Top four terms of KEGG analysis. A p-value (adjusted) < 0.05 was considered
significant. (E) Top 20 clusters from Metascape GO enrichment analysis of cyan module-associated genes.
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Fig. 6. Identification of hub genes in the key module. (A) Scatterplot of disease status for gene significance (GS) vs. disease status
for module membership (MM) in cyan module. (B) Scatterplot of GS vs. MM for purple module. Hub genes were screened based on the
following criteria: GS >0.2 and MM >0.8. (C) Although the two groups of samples are not completely separated, heatmaps can show
the expression level and trend of change patterns of hub genes in key modules.

were CSRP3, OXCT1, SLC25A5, FIBP, and MCOLN3
(Fig. 8C,D). After intersecting the gene signatures selected
by Lasso and RF, CSRP3, MCOLN3, SLC25A5, and FIBP
were determined to be the real hub genes in AF-VHD

(Fig. 8E). The mRNA expression levels of hub genes in SR-
and AF-VHD were investigated (Fig. 8F).
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Fig. 7. Overlap of genes in key modules with DEGs and construction of TF-miRNA networks. (A) Venn diagram represents
unique and shared genes between common DEGs in merged datasets and hub genes in WGCNA. A total of 15 candidate hub genes were
identified. (B) Functional enrichment analysis of candidate hub genes. (C) TF-miRNA regulatory network. Red rectangle represents hub
genes, blue V represents TFs, and green triangle represents miRNAs. (D) Heatmap with Spearman’s correlations among 11 hub genes.

3.9 Construction and Validation of Diagnosis Model
The ROC analysis was conducted to further validate

the diagnostic value of the hub genes in merged datasets.
The results demonstrated that CSRP3 (Area Under Curve,
AUC 0.843), MCOLN3 (AUC 0.771), SLC25A5 (AUC
0.795), and FIBP (AUC 0.735) had a general ability to
discriminate between AF with VHD and SR with VHD
(Fig. 9A). Multiple biomarkers were combined as a sensi-
tive screening index for AF-VHD in order to improve the
diagnosis sensitivity. A combined diagnosis model of four
vital genes was used to show that the AUC value of AF-
VHD reached 0.866 (95% confidence interval (CI): 0.798–
0.935; Fig. 9B). Calibration curves revealed that the diag-
nosis model had a good performance when predicting AF-
VHD incidence (Fig. 9C). The blue line in the DCA curve

remained above the gray and black lines between 0 and 0.8,
implying that decisions based on the diagnosis model may
be beneficial to AF-VHD patients (Fig. 9D). A nomogram
was established using the RMS package for the diagno-
sis of AF-VHD based on the four crucial genes (CSRP3,
MCOLN3, SLC25A5 and FIBP) (Fig. 9E).

3.10 Key Genes Specifically Expressed in Heart Tissue

Four genes were selected to calculate the risk score ac-
cording to their coefficients, where risk score = –20.0615
+ 1.838 × CSRP3 + –0.9575 × MCOLN3 + 0.1821 ×
SLC25A5 + 0.1969 × FIBP. Based on the median risk
score, patients were categorized into high-risk and low-risk
groups. As indicated in Fig. 10A, the prevalence of AF-
VHD was significantly increased with an increased risk
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Fig. 8. Identification of real hub gene signatures using machine learning. (A) Lasso coefficient profiles of the key genes in AF-VHD.
Coefficients are illustrated via corresponding fraction deviance. (B) Selection of tuning parameter in Lasso regression models. This is a
plot of the binomial deviance metrics (the y-axis) against log(λ) (the bottom x-axis). Red dot indicates average deviance values for each
model with a given λ. (C) Error rate of the random forest model (1000 trees). (D) Variable importance measure plot with horizontal axis
as IncNodePurity. (E) Venn diagram showing Lasso and RF sharing four common genes (CSRP3, MCOLN3, SLC25A5, and FIBP). (F)
mRNA expression levels of CSRP3,MCOLN3, SLC25A5, and FIBP in AF-VHD and SR-VHD sample groups based on merged datasets.

11

https://www.imrpress.com


Fig. 9. Identification of crucial genes and evaluation of their clinical significance. (A) ROC analysis for individualMCOLN3,CSRP3,
SLC25A5, and FIBP genes in AF-VHD vs. SR-VHD in merged datasets. (B) Estimation of clinical diagnostic efficacy of four crucial
gene signature (AUC = 0.866, 95% CI = 0798–0.935) (Logistic regression model = –20.0615 + 1.838 × CSRP3 + –0.9575 ×MCOLN3
+ 0.1821 × SLC25A5 + 0.1969 × FIBP) (ROC, receiver-operating characteristic; AUC, area under curve). (C) Predictive ability of the
diagnosis model represented by a calibration curve. (D) Decisions based on the diagnosis model had a better net benefit and broader
threshold probability. (E) Construction of a nomogrammodel based on the four crucial genes. The potential clinic significance of CSRP3
andMCOLN3 were statistically significant.
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score in combined GSE datasets. The AF-VHD group
had higher risk scores compared to the SR-VHD group
(Fig. 10B). The CSRP3 and MCOLN3 protein expression
levels in left atrial appendages from SR and AF patients
with VHD were determined. Results indicated that the pro-
tein levels of CSRP3 were higher in the AF-VHD samples
than in the SR-VHD controls, whereas the MCOLN3 ex-
pression did now show a significant difference in the two
groups (Fig. 10C,D). The HPA tool showed that CSRP3
was specifically expressed in the heart and skeletal muscle
(Fig. 10E). The Single Cell Type Atlas in HPA indicated
the expression of CSRP3 in different cell types. All data
were derived from the available published single-cell RNA
sequencing analysis (Fig. 10F).
4. Discussion

AF is one of the most common tachyarrhythmias ob-
served in the clinic. It increases patient morbidity and mor-
tality, imposes an economic burden on patients, and seri-
ously affects their quality of life [32]. VHD dramatically
increases the risk of AF [33,34]. Nevertheless, the mech-
anism for development of VHD into AF-VHD is still not
completely understood. Therefore, it is essential to inves-
tigate the progression of AF-VHD and to identify specific
biomarkers and potential therapeutic targets.

Based on previous studies, it has been shown that
immune infiltration and atrial fibrosis are involved in the
pathophysiological process of AF-VHD [8–10]. However,
despite much work in this field, accurate and specific diag-
nostic biomarkers for AF-VHDare lacking. Our study iden-
tified four such biomarkers: CSRP3, MCOLN3, SLC25A5,
and FIBP. CSRP3 and MCOLN3 in particular have impor-
tant biological and clinical implications.

Microtubule-associated protein CSRP3, affiliated
with the cysteine-rich protein (CSRP/CRP) family, is ex-
pressed in both cardiac and muscle tissue. CSRP3 plays a
pivotal role in the development and maintenance of cardiac
cytoarchitectural organization [35,36]. It was found to be
differentially expressed in AF-VHD and potentially related
to myocardial contractility [7]. Evidence has shown that
CSRP3mutations can result in both hypertrophic cardiomy-
opathy (HCM) and dilated cardiomyopathy (DCM) in pa-
tients [34,35]. HCM and DCM have been shown to be re-
lated to the occurrence and development of AF, which indi-
rectly revealed thatCSRP3might be connected to the devel-
opment of AF-VHD. Li et al. [36] also demonstrated that
cardiomyocytes derived from human embryonic stem cells
withCSRP3 deficiencymimic heart failure (HF) 30 days af-
ter differentiation, increasing reactive oxygen species gen-
eration and exhibiting mitochondrial damage and impaired
Ca2+ handling. By restoring Ca2+ homeostasis, verapamil
can trigger an inhibitory effect on HCM and HF, indicat-
ing that elevated intracellular Ca2+ concentration plays a
critical role in the pathogenesis of CSRP3 deficiency [36].
Our experimental results implied that CSRP3 is highly ex-
pressed in AF-VHD, and the higher the CSRP3 expression,

the greater the odds of belonging to the AF-VHD group.
Additionally, the enrichment analysis revealed that CSRP3
is related to heart development. Single-cell analysis also
showed that CSRP3 is specifically expressed in myocardial
cells. In conclusion, CSRP3 was shown to be specifically
highly expressed in AF-VHD, with a potential clinical sig-
nificance in the diagnosis of AF-VHD, which may indicate
that CSRP3 is a potential biomarker, as well as a promising
therapeutic target, for AF-VHD.

SLC25A5, also known as ANC3 or ANT2, is a mem-
ber of the mitochondrial carrier subfamily of solute carrier
protein genes. SLC25A5 is highly expressed in high ener-
getic demand organs, such as the heart, kidney, liver, and
spleen, contributing to mitochondrial energy metabolism
regulation and apoptosis prevention [37,38]. However, the
role of SLC25A5 in AF is unknown. In our study, we found
that SLC25A5 is positively correlated with CSRP3, indicat-
ing that SLC25A5 might also participate in the process of
myocardial hypertrophy.

MCOLN3, also known as TRPML3, is a gene with
the highest correlation with AF-VHD among the crucial
genes. MCOLN3/TRPML3 is a cation channel permeable
to Ca2+ expressed in multiple subcellular compartments
with dynamic localization. The findings by Kim et al.
[39] has demonstrated that Ca2+ is released with a robust
response when MCOLN3/TRPML3 is activated intracellu-
larly. It has been previously shown that MCOLN3 regu-
lates autophagy by specifically interacting with mammalian
GABA(A) Receptor-Associated Protein Like 1 (ATG8) ho-
mologue GATE16 [40]. Nevertheless, the presence of
MCOLN3 in the heart has been rarely reported. Recently,
Düzen et al. [41] found that the expression of MCOLN3
is up-regulated in patients with non-valvular AF (NVAF).
It was the first study to reveal the expression pattern of a
leukocyte TRP channel gene in NVAF. Our study indicated
from the reverse side that the MCOLN3/TRPML3 expres-
sion was reduced in valvular AF (VAF), which proved the
expression of MCOLN3 was associated with AF from an-
other perspective. However, the results showed no differ-
ence in MCOLN3 protein level between the AF-VHD and
control groups. This might ybe due to an yinsufficient sam-
ple size in the study. In summary,MCOLN3 plays an essen-
tial role in the regulation of Ca2+ trafficking, which may
mediate the development of AF-VHD. However, the de-
tailed action mechanism forMCOLN3 in AF-VHD remains
poorly understood, and further research is needed.

FIBP interacts directly with the fibroblast growth fac-
tor 1 (FGF1) [42]. FIBP is known to be involved in the
FGF receptor signaling pathway and platelet aggregation
[42,43]. Although few studies have reported on the effect
of FIBP on AF or VHD, Lu et al. [44] demonstrated that
FGF1 might be involved in AF via modification of oxida-
tive stress and sodium/calcium homeostasis, suggesting that
FIBPmay genetically interact withFGF1 to regulate the de-
velopment of AF.
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Fig. 10. CSRP3 is specifically expressed in the heart. (A) Risk score distribution, disease status, and gene expression values of final
predictors in the combined datasets. Dotted black line represents the median risk score cutoffs for classifying patients as high- or low-
risk. Blue dots represent SR-VHD, and red dots represent AF-VHD. Heatmap showing gene expression values for corresponding sample.
(B) Risk score differences between SR-VHD and AF-VHD. (C,D) CSRP3 and MCOLN3 protein expression levels were analyzed and
quantified in atrial tissue from AF-VHD and SR-VHD patients. (E) In human tissue, CSRP3 expression was predominantly found in
heart and skeletal muscle. (F) The mRNA levels of CSRP3 expression in different cell types showed that CSRP3 was mainly expressed
in cardiomyocytes.
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Our study has some limitations. First, due to the lim-
ited sample size derived from the public database, further
research with a larger sample size should be conducted
to strengthen the conclusion. Second, the biological and
molecular functions of these molecules will need to be de-
termined through further experimental studies.

5. Conclusions
In ysummary, four crucial genes (CSRP3, MCOLN3,

SLC25A5, and FIBP) associated with development of AF-
VHD were identified using comprehensive bioinformatics
yanalysis. Based on their biological function and clinical
value, these genes may be associated with the pathophysi-
ological process of AF-VHD. These findings can facilitate
the diagnosis and development of novel therapeutic targets
for clinical disorders involving AF-VHD.
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