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Abstract

Background: Hypoperfusion, a common manifestation of many critical illnesses, could lead to abnormalities in body surface thermal
distribution. However, the interpretation of thermal images is difficult. Our aim was to assess the mortality risk of critically ill patients at
risk of hypoperfusion in a prospective cohort by infrared thermography combined with deep learning methods. Methods: This post-hoc
study was based on a cohort at high-risk of hypoperfusion. Patients’ legs were selected as the region of interest. Thermal images and
conventional hypoperfusion parameters were collected. Six deep learning models were attempted to derive the risk of mortality (range: 0
to 100%) for each patient. The area under the receiver operating characteristic curve (AUROC) was used to evaluate predictive accuracy.
Results: Fifty-five hospital deaths occurred in a cohort consisting of 373 patients. The conventional hypoperfusion (capillary refill time
and diastolic blood pressure) and thermal (low temperature area rate and standard deviation) parameters demonstrated similar predictive
accuracies for hospital mortality (AUROC 0.73 and 0.77). The deep learning methods, especially the ResNet (18), could further improve
the accuracy. The AUROC of ResNet (18) was 0.94 with a sensitivity of 84% and a specificity of 91% when using a cutoff of 36%.
ResNet (18) presented a significantly increasing trend in the risk of mortality in patients with normotension (13 [7 to 26]), hypotension
(18 [8 to 32]) and shock (28 [14 to 62]). Conclusions: Interpreting infrared thermography with deep learning enables accurate and
non-invasive assessment of the severity of patients at risk of hypoperfusion.
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1. Introduction

Tissue hypoperfusion is a common manifestation of
many critical illnesses and is also one of the major con-
tributing factors of in-hospital death [1–3]. For patients at
risk of hypoperfusion, clinicians should recognize the rele-
vant risk factors, assess the current severity, take necessary
interventions, and monitor consequent changes. In recent
years, investigators have been exploring methods, which
are easy to be used and non-physician dependent, to assess
the severity of patients with hypoperfusion. These tools,
such as lactate, skin mottling and capillary refill time (CRT)
[4], however, are difficult to reconcile simplicity with ac-
curacy.

Physiologically, the continuity and quantity of skin
blood flow is reduced when tissue perfusion deteriorates,
which in turn results in uneven thermal distribution on the
body surface [5]. Several studies have found that surface
temperature differences and trajectories correlate with the

prognosis of patients with sepsis [6,7]. Our group have es-
tablished a prospective cohort gathering infrared images of
the legs of critically ill patients at high risk of hypoperfu-
sion, collecting routine hypoperfusion parameters and fol-
lowing up on their prognosis. Based on these data, we de-
fined parameters reflecting thermal inhomogeneity of body
surface (e.g., low temperature area rate [LTAR] and stan-
dard deviation [SD]) using traditional mathematical meth-
ods and found that these parameters varied among patients
with different severity of hypoperfusion and could be used
to predict the risk of mortality [8].

However, the accuracy of interpreting body surface
infrared images based on conventional algorithms to pre-
dict mortality risk is not yet very satisfactory. As we have
known, the body surface thermal distribution is visually a
two-dimensional grey-scale image and, in principle, deep
learning algorithms (especially convolutional neural net-
works), which are excellent at supervised image recogni-
tion tasks, can identify and interpret the information behind
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these thermal images [9] and thus enabling more accurate
prediction of the severity for patients at high risk of hypop-
erfusion.

We performed this post hoc analysis of the cohort
dataset with the aim of developing deep learning models to
interpret infrared thermography to assess the mortality risk
of patients at risk of hypoperfusion.

2. Materials and Methods
2.1 Patients

This study conducted a post-hoc analysis of a 373-
patient cohort at risk of hypoperfusion from a cardiac surgi-
cal intensive care unit (ICU) during a one-year period (June
2020 toMay 2021) [8]. This cohort was establishedwith the
approval of the Ethics Committee of Zhongshan Hospital,
Fudan University (Number B2020-057). Patients with any
high-risk factors of hypoperfusion were enrolled, includ-
ing hypotension, cardiac dysfunction, tachycardia, hyper-
lactatemia, oliguria, skin mottling or prolonged CRT [8].
The exclusion criteria were patients <18 years, pregnant,
severe arterial or cutaneous abnormalities, other conditions
impeding acquisition of complete image or expected to be
transferred out of ICU within 24 hours [8].

2.2 Data Collection
Data for this study were obtained from body surface

infrared images of the original cohort [8]. Thermal images
of patient’s legs (below the perineum and above the ankle)
were acquired by an infrared thermography (A615, 640 ×
480 pixels, ±0.05 °C, Teledyne FLIR LLC, CA, USA) in
the supine position and then converting to temperature ma-
trix by using the official FLIR tools software. Background
values outside the lower limb area were removed. With the
thermal data, several parameters of thermal inhomogeneity
(SD, Kurtosis [10], Skewness [10], Entropy [11] and LTAR)
were calculated. The LTAR was defined as the proportion
of the leg area with a temperature lower than 10% of the
maximum temperature [8]. Demographics, routine labora-
tory examinations, conventional circulatory and hypoper-
fusion parameters were collected. The dose of vasopressor
or inotropes was transferred to vasoactive inotropic score
(VIS) [12].

2.3 Outcome Definitions
The circulatory status was divided into three cat-

egories, i.e., normotension, hypotension (systolic blood
pressure [SBP] <90 mmHg or vasopressor use) or shock
(hypotension and hyperlactatemia [lactate ≥4 mmol/L])
[13], for comparisons among subgroups. All patients were
followed up until death or hospital discharge and the hospi-
tal mortality was used as the primary outcome.

2.4 Statistical Analysis
Data were presented as the mean ± SD (if normal) or

medianwith interquartile range (IQR) (if non-normal) or to-

tal numbers with percentage and compared with Student’s
t-test or Wilcoxon (or Friedman) rank-sum test or Fisher’s
exact test, as appropriate. The temperature matrix of lower
limbs were used as input. Deep learning models were con-
structed using convolutional neural network frameworks.
Depending on the backbone and the number of layers, there
were six models: Alexnet [14], Mobilenet v3 [15], Shuf-
flenet v2 (1.0 or 1.5) [16], Resnet (18 or 34) [17] (Fig. 1 &
Supplementary Fig. 1). The final outputs of the models
were the risk of mortality, ranging from 0–100%.

Receiver operating characteristic (ROC) curves were
generated and the areas under the ROC curves (AUROC)
were calculated to evaluate the predictive accuracy for mor-
tality risk. Sensitivity, specificity, positive and negative
predictive values (PPV and NPV) and associated 95% con-
fidence intervals (CI) were calculated based on the cutoff
value as determined by the Youden Index. The gray zone
of best cutoff and patients in the gray zone was also cal-
culated [18]. Calibration plot and Brier score were used to
assess the agreement between predictions and observations.
In addition, we used a 5-fold cross-validation to assess in-
ternal validity. The relationships among model outputs and
conventional variables were explored by two-dimensional
histograms with Loess regression curves. Statistical analy-
ses were performed using Python (version 3.9, Python Soft-
ware Foundation, Delaware, USA) and R (version 4.1.1, R
Foundation for Statistical Computing,Vienna, Austria), p<
0.05 was considered statistically significant.

3. Results
3.1 Characteristics of Study Cohort

Of the 373 patients, 55 patients died during hospi-
tal stay. The median length of hospital stay was 16 [IQR
12–105] days. When compared to the surviving patients,
the deceased patients had higher heart rate (HR: 100 vs.
89 bpm, p < 0.001) and VIS (23 vs. 6 µg/kg/min, p <

0.001) while lower diastolic blood pressure (DBP: 50 vs. 59
mmHg, p< 0.001), mean arterial pressure (MAP: 67 vs. 75
mmHg, p < 0.001). Besides, hematological (Hemoglobin:
8.2 vs. 9.5 g/dL, p < 0.001; Platelet: 80 vs. 107 × 109/L,
p < 0.001), renal (Creatinine: 172 vs. 115 µmol/L, p <

0.001), hepatic (Bilirubin: 44 vs. 23, p < 0.001), cardiac
(N-terminal pro brain natriuretic peptide: 8099 vs. 1384
pg/mL, p < 0.001) and infectious (Procalcitonin: 7.7 vs.
1.0, p< 0.001) parameters were also worse in dead patients.
There were also significant differences in the urine output
(UO) (1.3 vs. 0.8 mL/kg/h, p < 0.001), lactate (1.9 vs. 7.0
mmol/L, p < 0.001), CRT (1.1 vs. 1.9, p < 0.001) and oc-
currence of skin mottling (1% vs. 20%, p< 0.001) between
surviving and deceased patients.

3.2 Performance of Deep Learning Models
The AUROCs of six deep learning models for predict-

ing hospital mortality ranged from 0.68 to 0.94 (Table 1
and Fig. 2). Of them, ResNet (18) (AUROC: 0.94 [95%
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Fig. 1. Construction of a predictive model based on convolutional neural networks.

CI: 0.91–0.96]) and ResNet (34) (AUROC: 0.89 [95% CI:
0.85–0.92]) had better predictive accuracy than other mod-
els. The ResNet (34) model, despite more neural net-
work layers and larger multiply-accumulate operations than
ResNet (18), did not further improve the prediction ac-
curacy. Therefore, we finally settled on the ResNet (18)
model as the final choice. The best cutoff value of ResNet
(18) was 36% and only 58 (13%) patients located in the
gray zone of 27% to 38%. Correspondingly, the sensitiv-
ity, specificity, PPV and NPV were 84 (95% CI: 71–92),
91 (95% CI: 87–94), 58 (95% CI: 46–68) and 97 (95% CI:
94–99), respectively.

Fig. 2. Receiver operating characteristic curves for deep
learning models and conventional hypoperfusion or thermal
parameters.

3.3 Models Validation

Supplementary Fig. 2 shows the calibration curves
for each deep learning model. ResNet (18) had the best
calibration curve performance and the lowest Brier score
at 4.8, followed by ResNet (34), while several other mod-
els had much worse calibration curve performance. In the
cross-validation (Supplementary Fig. 3), the AUROCs of
the deep learning models all had fluctuations, but their av-
erage values were still relatively consistent with the values
in Table 1. Of these, ResNet (18) has the most consistent
performance in terms of folds.

3.4 Comparisons with Conventional Parameters

According to our previous study [8], CRT (AUROC:
0.76 [95% CI: 0.71–0.80]), DBP (AUROC: 0.73 [95%
CI: 0.68–0.77]) and LTAR (AUROC: 0.77 [95% CI: 0.72–
0.81]), SD (0.74 [95% CI: 0.69–0.78]) were the most ac-
curate predictors for risk of mortality among conventional
circulatory and body surface thermal parameters. In com-
parison, the AUROC of ResNet (18) is significantly better
than all of these parameters. The grey areas for conven-
tional parameters were also much wider (Table 1), which
means that a significant number of patients would be mis-
classified. Thus, we also found that the PPVs of the con-
ventional parameters were indeed much lower than that of
ResNet (18).

3.5 Mortality Risk Derived from Deep Learning Model in
Different Perfusion Status

For subgroups with normotension, hypotension and
shock, they had decreased mean arterial pressure (78 to 70
to 65 mmHg) and urine output (1.3 to 1.2 to 0.8 mL/kg/h, p
< 0.001) and increased lactate (1.8 to 1.9 to 7.0), ∆PCO2

(6.9 to 7.8 to 8.9), CRT (1.1 to 1.3 to 1.6 s) and occurrence
of skin mottling (2 to 2 to 16%), but there was no significant
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Table 1. Predictive accuracies of deep learning models and hypoperfusion parameters.
Models or parameters AUROC Best cutoff Patients in gray zone Sensitivity Specificity PPV NPV

AlexNet, % 0.79 (0.75–0.83) 38 (32–42) 137 (37%) 75 (61–85) 76 (71–81) 33 (25– 41) 95 (91–97)
MobileNet, % 0.82 (0.78–0.86) 34 (26–40) 144 (39%) 76 (63–87) 74 (69–79) 32 (24–41) 95 (91–97)
ShuffleNet1.0, % 0.79 (0.75–0.83) 39 (25–50) 182 (49%) 76 (63–87) 75 (70–80) 34 (25–43) 95 (91–97)
ShuffleNet1.5, % 0.68 (0.64–0.73) 32 (25–41) 232 (62%) 62 (48–75) 72 (66–77) 25 (18–33) 91 (87– 95)
ResNet (18), % 0.94 (0.91–0.96) 36 (27–38) 48 (13%) 84 (71–92) 91 (87–94) 58 (46–68) 97 (94–99)
ResNet (34), % 0.89 (0.85–0.92) 16 (3–17) 129 (35%) 78 (65–88) 90 (86–93) 54 (43–66) 96 (93–98)
LTAR, % 0.77 (0.72–0.81) 3 (2–16) 143 (38%) 83 (71–93) 62 (56–67) 26 (20–33) 96 (92–98)
SD, °C 0.74 (0.69–0.78) 0.87 (0.63–1.17) 230 (62%) 76 (62–87) 66 (61–72) 27 (20–35) 94 (90–96)
CRT, s 0.76 (0.71–0.80) 1.7 (1.0–2.3) 201 (54%) 61 (47–74) 80 (75–84) 30 (22–40) 92 (88–95)
DBP, mmHg 0.73 (0.68–0.77) 48 (45–64) 215 (58%) 52 (38–66) 84 (80–88) 36 (25–49) 90 (86–93)
CRT, capillary refill time; LTAR, low temperature area rate; SD, standard deviation; DBP, diastolic blood pressure.

Table 2. Distribution of mortality risks derived from deep learning methods in different perfusion status.
Normotension (n = 195) Hypotension (n = 127) Shock (n = 51) p value

Alexnet, % 29 (21 to 39) 32 (25 to 41) 37 (30 to 41) <0.001
Mobilenet, % 25 (18 to 37.50) 28 (21 to 37) 34 (25.50 to 44) 0.001
Shufflenet1.0, % 29 (21 to 40) 30 (20 to 44.50) 39 (27.50 to 54) 0.001
Shufflenet1.5, % 27 (24 to 33) 31 (25 to 37) 32 (29 to 39) <0.001
Resnet (18), % 13 (7 to 26) 18 (8 to 32) 28 (14 to 62) <0.001
Resnet (34), % 2 (1 to 8) 3 (1 to 9.50) 12 (3 to 71) <0.001

differences in ScvO2 (71 vs. 69 vs. 69%, p = 0.225). For the
thermal inhomogeneity parameters, LTAR increased from
1 to 3 to 7%, while SD increased from 0.81 to 0.88 to 0.94
°C. In addition, we found that the risk of mortality derived
from deep learning models also exhibited increasing trends
in normotension, hypotension and shock patients (Table 2).
For example, the mortality probability given by Resnet (18)
steadily increases from 13 to 18 to 28% (Table 2).

3.6 Mortality Risk Derived from Deep Learning Model
Correlated with Conventional Parameters

There were general correlations between the output
of the deep learning model, i.e., the risk of mortality, and
parameters of conventional circulation, hypoperfusion and
thermal inhomogeneity. As the risk of mortality increases,
patient’s perfusion pressure (MAP) gradually decreased and
parameters reflecting the severity of hypoperfusion (CRT,
VIS, lactate) gradually increased, along with thermal inho-
mogeneity parameters (LTAR and SD) (Fig. 3).

4. Discussion
This study was conducted with a cohort dataset of crit-

ically ill patients at risk of hypoperfusion. Deep learning
algorithms were developed to interpret the information con-
tained in the infrared thermographic images of the patients’
legs. Of them, the model based on the residual network had
superior accuracy in predicting mortality risk and demon-
strated general correlations with conventional perfusion pa-
rameters and the severity of hypoperfusion.

Medical scientists have long noted that local changes
in blood flow or metabolism can lead to thermal abnormal-

ities, which can then be used to diagnose diseases, such as
breast cancer [19,20] and arterial stenosis [21]. Such an
approach focusing on changing in thermal parameters has
been expanded to the intensive care units recently. Periph-
eral to central temperature gradient was found to be corre-
lated with perfusion pressure and cardiac output [5]. Be-
sides, toe-to-room temperature gradient could reflect the
severity of sepsis [6]. Nagori et al. [22] also used deep
learning to interpret whole-body infrared images to achieve
prediction of the probability of shock in pediatric patients.

Combing infrared thermography and deep learning
algorithms to study hypoperfusion has great potential in
making more accurate predictions of patient’s mortality
risk. Traditionally, CRT is a single, non-invasive, easily
accessible, and most prognostically relevant parameter of
hypoperfusion. Our previous work showed that infrared
thermography-based parameters of inhomogeneity in body
surface thermal distribution, such as LTAR and SD, had
similar accuracies to CRT and could achieve higher predic-
tive precision when used in combination (AUROC: 0.865)
[8].

Despite good interpretability, the accuracy of algo-
rithms constructed on the basis of conventional methods
has reached a ceiling and there is little potential for further
improvement. Considering that the body surface thermal
distribution is a two-dimensional grey-scale image, we can
apply deep learning algorithms, particularly convolutional
neural networks [9,23,24], to exploit the information be-
hind these images and thus make more accurate predictions
about patients’ risk of mortality.

In this study, six models were constructed using a
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Fig. 3. Two-dimension histograms with loess regression curves between ResNet (18) deep learning model and conventional hy-
poperfusion or thermal parameters.

deep learning framework based on convolutional neural
networks. These models also varied in accuracy, com-
plexity and the amount of computation required to pro-
cess each sample. AlexNet introduces a Rectified Linear
Unit (ReLU) function with a simpler architecture and faster
training, achieving an accuracy (AUROC: 0.79) similar to
that of CRT and LTAR in this study population. MobileNet,
with its hardware-aware network architecture search, could
realize higher accuracy (AUROC: 0.82) in a relatively short
time. ShuffleNet has a much lighter architecture. We tried

the second version, which is currently the most mainstream,
but its accuracy improvement was not significant (AUROC:
0.68 and 0.79). ResNet adopted shortcut connectionswithin
every stage, so that the stacked layers learn the residual
information. The ResNet (18) model is well balanced,
with high accuracy (AUROC: 0.89 and 0.94) and moderate
model complexity and requirements of computing power.
In the near future, we propose to create an online tool to
help other healthcare providers to use our models.

Our study has several limitations. Firstly, this post-
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hoc study was based on data from a single center. In this
dataset, temperature distribution data were measured only
once per patient. In the future, validation using external
data has also been planned. Secondly, only one image
was taken per patient. Dynamic monitoring would be more
helpful for clinical management. Thirdly, some patients are
excluded because of lower limb vascular disease or preg-
nancy, reducing the applicability of the population to some
extent. Foutrh, the infrared thermography which was not
calibrated with a blackbody had better sensitivity than ac-
curacy. Finally, the present study was based primarily on
the cardiac critical illness population. The accuracy of the
prediction model in other critically ill populations, particu-
larly sepsis, needs to be validated.

5. Conclusions
The interpretation of infrared thermography images

using deep learning algorithms enables non-invasive and
more accurate assessment of the risk of mortality in criti-
cally ill patients at risk of hypoperfusion.
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