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Abstract

Chemotherapies have changed the prognosis of patients affected by cancer over the last 20 years, with a significant increase in survival
rates. However, they can cause serious adverse effects that may limit their use. In particular, anthracyclines, widely used to treat both
hematologic cancers and solid cancers, may cause cardiac toxicity, leading to the development of heart failure in some cases. This
review aims to explore current evidence with regards to anthracyclines’ cardiotoxicity, with particular focus on the classifications and
underlying molecular mechanisms, in order to provide an overview on the current methods of its diagnosis, treatment, and prevention.
An attentive approach and a prompt management of patients undergoing treatment with anthracyclines is imperative to avoid preventable
antineoplastic drug discontinuation and is conducive to improving both short-term and long-term cardiovascular morbidity and mortality.
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1. Introduction

Heart failure (HF) is a clinical syndrome consisting
of typical symptoms, such as breathlessness and fatigue,
and signs, like elevated jugular venous pressure, pulmonary
crackles, and peripheral oedema. It is caused by a struc-
tural and/or functional abnormality of the heart that results
in elevated intracardiac pressures and/or inadequate cardiac
output at rest and/or during exercise [1]. Nowadays, the in-
cidence of HF in Europe is about 3/1000 person-years [2]
whilst its increasing prevalence has reached about 1–2% of
adults [3]. Despite improvements in HF treatment, mortal-
ity rate is still high (67% within 5 years from the diagno-
sis) [4]. The main causes of HF are coronary artery dis-
ease, hypertension, valve disease, arrhythmias, cardiomy-
opathies, diabetes, congenital heart disease, infectious dis-
eases, and drugs [1]. Drug-induced HF is emerging as a
potentially preventable form, with cytostatic agents, antide-
pressants, and immunomodulatory agents being the most
common drugs correlated with HF. First recognized in 1960
with the introduction of anthracyclines as a treatment in
oncological patients, drug-induced HF remains of interest
today for its impact and severity [5]. Anthracyclines are
cytostatic antibiotics derived from Streptomyces spp. and
are used in the treatment of various types of cancers, as
they have been the most important class of antitumor drugs
available for years [6]. Doxorubicin (DOX) (also called
adriamycin) is extensively used for the treatment of several
solid tumors, such as soft tissue and bone sarcomas, breast,

ovary, bladder, thyroid and lung cancer [7]. Daunorubicin
and idarubicin are used for the treatment of hematologic
cancers, such as leukemia [8,9]. Epirubicin is indicated in
the treatment of breast cancer both in metastatic disease and
as adjuvant therapy in women with early breast cancer [10].
Their anticancer activity depends on their ability to interact
with DNA through different mechanisms, including topoi-
somerase II inhibition, DNA intercalation, and DNA strand
breakage leading to cancer cell death. Anthracyclines may
also inhibit polymerase activity, regulate gene expression,
and cause damage to the DNA of cancer cells by producing
reactive oxygen species (ROS) [11,12].

In this review, we summarize the available literature
on the adverse effects of anthracyclines on the heart with re-
gards to the epidemiology and pathogenetic mechanisms of
cardiac toxicity. Furthermore, we will also discuss the di-
agnostic workflow, the treatments available at present, and
possible prevention strategies for this drug-related compli-
cation.

2. Methods
We comprehensively searched the literature for data

on the epidemiology, molecular mechanisms, diagnos-
tic workflow, therapies, and preventive strategies of
anthracyclines-induced cardiotoxicity. We used “anthracy-
clines” or “doxorubicin” or “daunorubicin” or “idarubicin”
or “epirubicin” and “cardiovascular prevention” or “car-
diotoxicity” or “cardio-oncology” or “left ventricular dys-
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function” or “heart failure” as search terms. Articles pub-
lished from 1998 to 1st October 2022 in English on both
PubMed and MEDLINE were included. Most recent and
largest original articles and meta-analyses have been se-
lected. Reviews, consensus papers and guidelines were in-
cluded if relevant. A search across the references of se-
lected reports helped to identify further additional relevant
studies.
3. Epidemiology of Anthracyclines-Induced
Cardiotoxicity

According to 2022 European Society of Cardiology
(ESC) guidelines on cardio-oncology [13], anthracyclines-
induced cardiotoxicity may be either symptomatic, when
signs and symptoms of HF appear, or asymptomatic, if there
is only a reduction in systolic left ventricular (LV) function
parameters in absence of symptoms. It can be acute, early
onset chronic, or late onset chronic [14]. When acute, it oc-
curs usually after a single dose. This presentation accounts
for <1% of patients undergoing treatment and is charac-
terized by an early onset of symptoms of HF, usually pre-
senting as a transient LV dysfunction. Chronic presentation
can have an early-onset or late onset. The first represents
the most common type, occurring within one year of treat-
ment with a dilated-hypokinetic cardiomyopathy possibly
progressively evolving towards HF. Late-onset chronic car-
diotoxicity usually develop after years (a median of 7 years
after treatment) with a clinical presentation similar to that
of early-onset. The chronic forms of cardiotoxicity are con-
sidered irreversible with a poor prognosis [14]. There is
discordant data regarding the incidence of cardiotoxicity.
Most of the data derives from retrospective studies, with
substantial variability in its reported incidence, depending
on the its definition, the type and cumulative dose of anthra-
cyclines, and patient age and comorbidities. A recent large
meta-analysis of all studies involving at least 100 patients
treated with anthracyclines found an overall incidence of
3.1% for clinical HF, with an incidence of 2.0% in those
with breast cancer and 4.8% in those with lymphoma pa-
tients [15]. Subclinical cardiotoxicity was seen in 13.8%
of overall patients, 10.3% of the subset with breast can-
cer and 19.8% of the subset with lymphoma patients. The
incidence of HF correlated with increasing age and cumu-
lative dose [15]. Accordingly, another report found con-
gestive HF in 2–4%, subclinical LV dysfunction in around
10%, and cardiac biomarker rise in 30–35%of patients [16].
Cardinale et al. [14] conducted a prospective study involv-
ing 2625 patients, with a mean follow-up of more than 5
years, and showed an overall incidence of anthracyclines-
induced cardiotoxicity of 9%, with 98% occurring within
the first year after the completion of chemotherapy. Re-
cently a study reported the incidence for cardiotoxicity in
long term survivors of pediatric cancer as being 5.98%, after
a mean follow-up period of 9 years [17]. Anthracyclines-
related cardiotoxicity is dose-dependent and it is related to
cumulative dose of drugs as indicated in Table 1 [18,19].

Table 1. Dosages of anthracyclines and incidence of left
ventricular dysfunction.

Dose of drug (mg/m2) Incidence of left ventricular dysfunction (%)

Doxorubicin 400 3–5
Doxorubicin 550 7–26
Doxorubicin 700 18–48
Epirubicin >900 0.9–11.4
Idarubicin >90 18

4. Pathogenesis of Anthracyclines-Induced
Cardiotoxicity

Cardiomyocytes are vulnerable to anthracycline-
induced toxicity and as such, LV systolic dysfunction
is the most common cardiac adverse effect of anthracy-
clines [19]. Several mechanisms have been implicated in
the pathophysiology of cardiotoxicity, including oxidative
stress, inflammation, mitochondrial injury, apoptosis, cal-
cium (Ca2+) dysregulation, endoplasmic reticulum (ER)
stress, increased fibrosis, and dysregulation of autophagy.

It has long been known that anthracyclines can cause a
dose-dependent redox cycling with increased level of intra-
cellular ROS [20]. The oxidative stress caused by the pro-
duction of both ROS and reactive nitrogen species (RNS),
via induction of nitric oxide synthase, seems to play a cru-
cial role in the development of cardiotoxicity [19]. In-
deed, DOX has a quinone moiety which facilitates elec-
tron transfer to oxygen molecules and other cellular redox
enzymes (e.g., cytochrome P450 reductase, NADH dehy-
drogenase). Reduction of DOX produces the semiquinone
radical, which re-oxidizes in the presence of O2 generating
ROS that is associated with protein oxidation lipid peroxi-
dation and DNA damage [20]. RNS can damage cardiomy-
ocytes through nitration and inactivation of key enzymes in
the heart, such as myofibrillar creatine kinase [21,22]. Free
iron also contributes to DOX-mediated oxidative stress due
to the propagation of ROS formation [23].

There is a strong interplay between inflammation and
oxidative stress, with both causing myocardial injury. In-
deed, oxidative stress may stimulate an inflammatory re-
sponse through activating nuclear factor kappa B (NF-κB),
a redox-sensitive transcription factor [24]. DOX has shown
to upregulate the levels of several inflammatory factors,
including interleukin-1β, IL-6, IL-17, and tumor necro-
sis factor-alpha in the heart [25]. DOX-related oxidative
stress might also activate Nucleotide-binding and oligomer-
ization domain (NOD)-like receptor family pyrin domain-
containing protein 3 (NLRP3) inflammasome, which is a
regulator of the innate immune system [26]. Furthermore,
the transient receptor potential ankyrin 1 (TRPA1) channel
is activated by DOX to cause cardiotoxicity by promoting
oxidative stress and inflammation [25]. Moreover, DOX
has been proven to increase toll-like receptor 5 expression
leading to increased inflammation [27].
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Table 2. Baseline assessment of the risk of cardiotoxicity in patients undergoing to anthracycline treatment.
Risk factors Risk level

Congestive HF or cardiomyopathy Very High
Coronary artery disease High
LVEF reduction (<50%) High
Age ≥80 years High
Previous anthracycline-based chemotherapy High
Previous left chest or mediastinum radiotherapy High
Borderline LVEF (50–54%) Medium (++)
Age 65–79 years Medium (++)
Hypertension Medium-low (+)
Diabetes Medium-low (+)
Chronic kidney disease Medium-low (+)
Previous non-anthracycline-based chemotherapy Medium-low (+)
Current smoker or smoking history Medium-low (+)
Obesity Medium-low (+)
Elevated baseline troponin Medium-low (+)
Elevated baseline BNP or NT-proBNP Medium-low (+)

BNP, brain natriuretic peptide; HF, heart failure; LVEF, left ventricular ejection fraction; NT-
proBNP, N-terminal prohormone of brain natriuretic peptide. “Very High Risk” patients:
congestive HF or cardiomyopathy; “High Risk” patients: ≥5+ or any high-risk factors;
“Medium Risk” patients: 2+ or 3+ or 4+ “Low Risk” patients: 1+ or no risk factors.

Mitochondrial injury is also a hallmark of exposure
to anthracyclines. Indeed, electrostatic binding between
mitochondrial cardiolipin and DOX leads to disruption of
the activity of complexes I, III, and IV in the electron
transport chain (ETC). DOX accumulation in mitochon-
dria is associated with enhanced production of ROS and
RNS [28] followed by peroxidation of lipids and oxida-
tive damage to DNA and proteins, resulting in mitochon-
drial DNA damage, loss of adenosine triphosphate (ATP)
levels, peroxidation of cardiolipin and mitochondrial per-
meability transition [29]. The subsequent release of cy-
tochrome C may trigger apoptosis of cardiac cells. In this
setting, the role of nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase/ROS-mediated NF-κB-signaling
cascade through the extracellular signal-regulated kinases
1 and 2 (ERK1/2) are fundamental in triggering DOX-
mediated apoptosis [30,31]. Indeed, activated ERKs phos-
phorylates p53 leading to cardiomyocyte apoptosis via
downregulation of antiapoptotic B-cell lymphoma 2 (Bcl-
2), upregulation of proapoptotic Bcl-2-associated X pro-
tein (Bax), and activation of caspase-3, caspase-9, and
poly-ADP-ribose polymerase [9,32]. Furthermore, anthra-
cyclines activate, through oxidative stress, p38 mitogen-
activated protein kinase (MAPK), which has a main role
in the apoptotic process [33]. Moreover, DOX has been
shown to mediate cardiomyocyte apoptosis through extrin-
sic pathway mediators such as death receptors (DRs) [34].
DOX might also decrease the expression of Mitofusin 2
(Mfn2), a mitochondrial GTPase fusion protein, to cause
mitochondrial fragmentation and ROS generation, further
causing cardiomyocyte apoptosis [35].

Calcium dysregulation is another well-known and
established mechanism contributing to anthracycline-
induced cardiotoxicity [36]. Anthracyclines might mod-
ulate the sarco/endoplasmic reticulum Ca21 ATPase
(SERCA) present on sarcoplasmic reticulum (SR) and the
sodium/potassium exchanger on sarcolemma [37,38] while
mitochondrial ROS generated from the exposure of car-
diac cells to DOX might lead to an increase in cytosolic
calcium levels. Increased levels of calcium is correlated
with calcineurin-dependent activation of the nuclear factor
of activated T-lymphocytes, which promotes cardiac cell
death. In addition, anthracyclines may also alter adrener-
gic and adenylate cyclase function to trigger abnormalities
in Ca2+ handling and therefore induce systolic ventricular
dysfunction [21].

Recently, Wang et al. [25] found that the DOX-
activated TRPA1 channel in cardiomyocytes could also
cause cardiotoxicity by promoting endoplasmic reticle
stress (ER) stress.

Narikawa et al. [39] demonstrated that DOX could
increase the expression of metalloproteases, transforming
growth factor-β, and collagen in human cardiac fibrob-
lasts through phosphoinositide 3-kinase (PI3K)/Akt signal-
ing pathway activation in order to produce an extracellular
matrix imbalance, resulting in fibrosis and cardiac dysfunc-
tion.

Evidence about the effect of anthracyclines on au-
tophagy regulation in cardiomyocytes is controversial [32].
It has been shown that DOX could stimulate autophagy
through increased ratio of microtubule-associated proteins
1A/1B light chain 3-II and upregulated expression of p62,
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Fig. 1. Main molecular mechanisms of anthracyclines-induced cardiotoxicity. Each arrow pattern, refers to a different molecular
pathway. For more details, see the text. AC, anthracyclines; Ca, Calcium; ETC, electron transport chain; ILs, Interleukins; NADPH,
Nicotinamide Adenine Dinucleotide Phosphate; NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3, NLR
family pyrin domain containing 3; ROS, reactive oxygen species; TLRs, Toll-like receptors.

Beclin-1, by stimulating the expression of c-Jun N-terminal
kinases and p70S6 kinase [32]. Furthermore, the inhibition
of mechanistic target of rapamycin by DOX promotes au-
tophagy [32].

Finally, anthracyclines may suppress protein synthesis
by directly binding to DNA and may also induce sarcom-
ere disruption, with the ensuing cardiac “sarcopenia” being
typically associated to anthracycline-induced HF [40]. Car-
diomyocytes are not the unique target of anthracycline tox-
icity, indeed endothelial cells, progenitor cells and fibrob-
lasts in the heart, are also targets, contributing to a mul-
tifaced pathogenesis of anthracycline-induced cardiotoxic-
ity. Increased arterial stiffness due to endothelial vascular
damage caused by the alteration of the vascular extracellu-
lar matrix and by the interference with the endothelial regu-
lation of vascular tone due to reduction of nitric oxide syn-
thesis is also associated with anthracyclines. They may also
increase the expression of cytokines leading to inflamma-
tion and vascular damage [41]. The main proposed patho-
genetic mechanisms of anthracyclines-induced cardiotoxi-
city are summarized in Fig. 1.

5. Risk Stratification for
Anthracyclines-Induced Cardiotoxicity

Previous epidemiological and observational studies
have shown that specific risk factors in the clinical his-
tory of patients undergoing chemotherapy with anthracy-

clines may increase the chance to develop cardiotoxicity
[16,42,43]. It is fundamental to recognize and, whenever
possible, treat these conditions in order to prevent and to al-
low an early detection of anthracyclines-induced cardiotox-
icity. A recent meta-analysis has shown that traditional car-
diovascular risk factors, such as arterial hypertension (odds
ratio (OR): 1.99; 95% confidence interval (CI): 1.43–2.76),
diabetes mellitus (OR: 1.74; 95% CI: 1.11–2.74), and obe-
sity (OR: 1.72; 95% CI: 1.13–2.61), are associated with an
increased risk of cardiotoxicity. Tobacco smoke (OR: 1.62;
95% CI: 0.94–2.77) and hypercholesterolemia (OR: 1.48;
95% CI: 0.99–2.20) are less associated to cardiotoxicity
[44]. Chronic kidney disease, pre-existing LV dysfunction,
and pre-existing cardiovascular diseases, such as conges-
tive HF, valvular heart disease, and ischemic cardiomyopa-
thy, have been shown to increase the risk of cardiotoxicity
[16]. Pharmacogenomics is emerging as a potential tool to
help identify patients who are at higher risk for cardiotox-
icity [45]. For example, Aminkeng et al. [46] highlighted
that a nonsynonymous variant in Retinoic Acid Receptor
Gamma (RARG) gene is highly associated with anthracy-
clines induced cardiotoxicity. Moreover, risk factors asso-
ciated with cancer therapies, such as a previous or high dose
of anthracyclines (≥250 mg/m2 of DOX or equivalent), ad-
ditional drugs, or radiotherapy, may also increase the risk of
cardiotoxicity [47]. Recently, the Cardio-Oncology Study
Group of the Heart Failure Association (HFA) of the Euro-
pean Society of Cardiology (ESC) in collaboration with
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Table 3. Prognostic values of Global longitudinal strain (GLS).
Primary end point Definition of CTRCD INDEX AUC Sensitivity and Specificity

Wang et al. [68] Early detection of CTRCD LVEF reduction ≥10% to a value <53% Relative GLS reduction of 13.8% at the
third cycle of chemotherapy

0.826 75% and 91%

Negishi et al. [67] Early detection of CTRCD Symptomatic LVEF reduction of 5% or an
asymptomatic 10% reduction to an LVEF of

55%

Relative GLS reduction of 11% at 6 months
after the start of chemotherapy

0.84 65% and 94%

Gripp et al. [69] Early detection of CTRCD Symptomatic LVEF reduction of 5% or an
asymptomatic 10% reduction to an LVEF of

55%

Relative GLS reduction of 14% at 3 months
after the start of chemotherapy.

0.97 80% and 99%

Sawaya et al. [70] Early detection of CTRCD Reduction of LVEF≥5% to <55% with
symptoms of HF or an asymptomatic
reduction of LVEF ≥10% to <55%

Relative GLS reduction of 11% at 3 months
after the start of chemotherapy.

78% and 79%

AUC, area under the curve; CTRCD, cancer therapy related cardiac dysfunction; GLS, Global longitudinal strain HF, heart failure; LVEF, left ventricular ejection fraction.

Table 4. Neurohormonal therapy to prevent anthracycline cardiotoxicity.
Drugs used Type of cancer Inclusion criteria Primary endpoint Results vs controls

Janbabai et al. [87] Enalapril 5 mg bid Breast Cancer Normal LVEF; Normal
troponin level

6 months LVEF change from
baseline

59.61% ± 5.70 vs 46.31% ± 7.04
(p < 0.001)

Bosch et al. [88]
Enalapril 2.5 bid + Carvedilol

6.25 bid
Hematological Normal LVEF + Normal

troponin level
6 months LVEF change

from baseline
–0.17 (–2.41 to 3.13) vs –3.04
(–6.01 to 0.11) (p = 0.04)Malignancies

Kalay et al. [89] Carvedilol 12.5 mg od Breast cancer and Lymphoma Normal LVEF; Normal
troponin level

6 months LVEF change from
baseline

68.9% vs 52.3% (p < 0.001)

Cardinale et al. [90] Enalapril 20 mg od Breast and Hematological
malignancies

Increased Troponin level;
Normal LVEF

Occurrence of cardiotoxicity 0 (0%) vs 25 (43%) (p < 0.001)

Avila et al. [91] Carvedilol from 3.125 mg bid
to 25 mg bid

Breast cancer Normal LVEF Prevention of a 10% reduction in
LVEF

14 (14.5%) vs 13 (13.5%), p = 1

LVEF, Left Ventricular Ejection Fraction.
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the International Cardio-Oncology Society (ICOS) pro-
posed a cardiovascular risk stratification system that can be
applied in patients before starting therapy with anthracy-
clines. According to HFA-ICOS risk assessment, patients
can be classified into low, moderate, high and very high risk
[48]. Baseline cardiotoxicity risk assessment of patients un-
dergoing to anthracycline treatment is summarized in Ta-
ble 2, in accordance to the 2022 ESC guidelines on cardio-
oncology [13]. Subsequent surveillance protocols depend
on the baseline risk profile of each patient [13].

6. Effects of Anthracyclines at Different Ages
As stated previously, age is an important risk fac-

tor for anthracycline-induced cardiotoxicity [13]. Patients
aged between 65–79 years are considered at medium-risk
whilst patients aged ≥80 years are deemed high-risk [13].
Similarly, young patients have also a higher risk of devel-
oping anthracycline-induced cardio-toxicity [19] for sev-
eral reasons. Sarosiek et al. [49] demonstrated that car-
diac mitochondria in adult mice and humans are resistant
to pro-apoptotic signaling while cardiac mitochondria in
young individuals are primed for apoptosis, predisposing
cells to death in response to toxic injuries. Additionally,
children could have higher anthracycline levels in blood
and tissues, which exacerbates adverse effects. In fact, an-
thracyclines have a lipophilic nature and children have an
increased percentage of body fat [50]. Furthermore, an-
thracyclines, through interactions with topoisomerase, are
known to target proliferating cells such as cardiac progen-
itor cells [51], which are most abundant in the neonatal
period [52]. The loss of these cells, which have the ca-
pability to restore myocardium after injury [53,54], could
damage cardiac repair mechanisms and lead to Grinch syn-
drome [55], a form of cardiac remodeling characterized by
decreased cardiac size that occurs in childhood cancer sur-
vivors treated with anthracycline. On the other hand, ad-
vanced age is a risk factor for anthracycline-induced car-
diotoxicity due to a higher incidence and prevalence of hy-
pertension, diabetes mellitus, preexisting cardiac diseases,
and other comorbidities [56,57]. Moreover, elderly indi-
viduals might have altered pharmacokinetics or pharmaco-
dynamics of anthracyclines, which render them more vul-
nerable to adverse effects [58,59]. Finally, an increasing
prevalence of polypharmacy in the elderly predisposes this
age group to an increased risk of toxicity [60,61].

Classification of Anthracycline-associated Car-
diotoxicity

Chemotherapy-associated cardiotoxicity can be di-
vided into five main types:

Type 1: Cardiac dysfunction/cardiomyopathy/HF
(cancer therapy related cardiac dysfunction CTRCD)

Type 2: Myocarditis
Type 3: Vascular toxicity
Type 4: Hypertension
Type 5: Arrhythmias and QTc prolongation [62].

Anthracyclines are primarily associated with cardiac
dysfunction (type 1 cardiotoxicity). According with the
ICOS consensus statement, cardiac dysfunction is divided
into symptomatic and asymptomatic [24]. Symptomatic
systolic dysfunction is characterized by symptoms and
signs of HF due to structural or functional heart damage.
It is classified into very severe, severe, moderate, and mild
based on the intensity of symptoms and the need for hos-
pitalization. Asymptomatic cardiac dysfunction is defined
as LV ejection fraction (LVEF) ≤50% and new relative
decline in global longitudinal strain (GLS) >15% from
baseline and/or new rise in cardiac biomarkers (troponin
I/T >99th percentile, brain natriuretic peptide, BNP ≥35
pg/mL, NT-pro BNP ≥125 pg/mL) [62] (Fig. 2).
7. Multimodality Imaging Evaluation of
Anthracyclines-Induced Cardiotoxicity

Over time, multiple surveillance protocols have been
proposed, according to patients’ baseline risk of toxicity,
to promptly diagnose anthracyclines-induced cardiotoxicity
as to avoid the progression to HF. Most these protocols use
repeated echocardiography and blood tests. The surveil-
lance protocol recently proposed by the ESC is shown in
Fig. 3 [13]. Due to its reproducibility, versatility, and avail-
ability, echocardiography appears to be the cornerstone
method for the evaluation of patients affected by neoplasms
who are candidates to chemotherapy [63]. Modified biplane
Simpson’s technique [31] 2D echocardiography (2DE) has
been the most widely used tool for the evaluation of ventric-
ular contractility [31]. Despite this, it suffers from a series
of limitations:

• LV geometric assumption
• Inadequate apex visualization
• Lack of consideration of subtle regional wall motion

abnormalities
• Inherent variability of the measurement [64]
Compared to the 2D method, 3D echocardiography

(3DE) allows more accurate volume measurements as it is
not affected by geometric approximations and suffers less
temporal variability and has a better intra-interobserver and
test-retest variability [65]. For that reason, in agreement
with the latest guidelines of the European Society of Cardi-
ology, 3DE appears to be the method of choice for measur-
ing the volumes and systolic function of the left ventricle
[65]. 2DE also fails to detect small changes in LV contrac-
tility, underestimating the rate of mild asymptomatic car-
diac dysfunction. The scientific interest has therefore fo-
cused on other parameters, such as those estimating my-
ocardial deformation (strain and strain rate).

Strain refers to the patterns of myocardial contraction
and relaxation that occur during each cardiac cycle. It en-
compasses radial, circumferential, and longitudinal strain.
While evidence for the use of radial and circumferential
strain is scarce, GLS is a parameter with high reproducibil-
ity and accuracy for early detection of subtle alterations in
myocardial function that precede changes in LVEF [66].
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Fig. 2. Classification of Cancer Therapy Related Cardiac Dysfunction. LVEF, Left Ventricular Ejection Fraction; GLS, Global
Longitudinal Strain; HF, heart failure.

Fig. 3. Surveillance protocol during anthracycline treatment. TX, Treatment; TTE, Trans Thoracic Echocardiography.

Negishi et al. [67] evaluated women with breast
cancer who underwent treatment with trastuzumab
(46% of whom received anthracycline sequentially with
trastuzumab) and found that a relative decrease of 11%
in GLS was strongly associated with CTRCD. Similarly,
Wang et al. [68] found that, in patients affected by diffuse
large B-cell lymphomas and undergoing anthracycline

treatment, a relative GLS decrease of 13.8% at the third
month of chemotherapy was the best predictor of CTRCD,
with a sensitivity of 75% and specificity of 91% (Table 3,
Ref. [67–70]). In accordance, the American Society of
Echocardiography (ASE) and the European Association for
Cardiovascular Imaging (EACVI) suggest that a relative
decline in GLS >15% is likely to indicate subclinical LV
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dysfunction [63]. A recent meta-analysis found that also
the absolute values of GLS can be used in the detection of
CTRCD in those who did not perform a baseline echocar-
diography or in those patients in whom the baseline GLS
is not performed [71]. However, there is currently lack of
strong evidence to suggest a GLS-based cardioprotective
approach (CPT) and a strain-guided management of
follow-up for patients exposed to potentially cardiotoxic
therapies [72]. In the Strain Surveillance of Chemotherapy
for Improving Cardiovascular Outcomes (SUCCOUR)
trial involving 331 patients, of which most had breast
cancer, treated with anthracyclines, a CPT strategy based
on GLS was compared to an approach based on LVEF.
Despite its primary outcome not being reached, patients in
the GLS-guided arm experienced less CTRCD compared
to LVEF-guided arm (5.8% vs 13.7% in the EF (p = 0.022))
[72].

Despite its reproducibility and better accuracy than
echocardiography in the evaluation of cardiac volumes and
function, cardiacmagnetic resonance (MRI) is currently not
routinely used [63]. It is particularly useful for the eval-
uation of cardiac masses and in case of technical difficul-
ties in performing echocardiography [13]. Similarly, multi-
gated acquisition (MUGA) has also a limited role, with it
being recommended only when echocardiography is equiv-
ocal and MRI is not available [13].

8. Role of Biomarkers in Detecting
Anthracyclines-Induced Cardiotoxicity

There is still a great debate on the use of biomark-
ers in the setting of CTRCD [73]. Even though, they can
identify subclinical LV dysfunction, the evidence in favor
of their routine use in the follow up of patients undergoing
chemotherapy is scarce and mostly based on expert opin-
ions [74]. Most of the available evidence involves the use
of cardiac troponins (cTnT/I) and natriuretic peptides (NP),
such as brain natriuretic peptide (BNP) and N-terminal pro-
hormone of brain natriuretic peptide (NT-Pro BNP). cTnT/I
are markers of myocardial injury and their role in the con-
text of cardiac ischemic disease is well established [75]. In
a study conducted on 703 patients with breast cancer un-
dergoing anthracyclines-based chemotherapy, it was shown
that an increase in Troponin I levels at 3 and 6 months
was associated with an increased risk of LV systolic dys-
function [76]. Recently a meta-analysis conducted on 61
trials with 5691 patients investigated the predictive values
of both cTnT/I and NP. They found that cTnT/I, but not
NP, might be a useful screening marker for systolic dys-
function (negative predictive value of 93%) [77]. Further-
more, a combined diagnostic approach with cTnT/I and
imaging (such as GLS) could increase its ability to pre-
dict systolic dysfunction [70]. Nevertheless, there is no
conclusive evidence regarding the association between a
rise in cTnT/I levels and the development of cardiotoxicity-
related HF or cardiotoxicity-related mortality. While NP

are a cornerstone in the diagnosis of HF [78], their role
as a predictive tool for cardiotoxicity is less clear. Since
NP are strongly related to a patient’s fluid volume status,
their diagnostic power could be limited [74]. Rug̈er et
al. [79] have shown that levels of NT-pro-BNP measured
at week 6 of anthracycline-regimen in 853 patients with
breast cancer was significantly associated with the devel-
opment of cardiotoxicity (OR: 1.03; 95% CI: 1.008–1.055;
p = 0.01). Most guidelines currently recommend measur-
ing both biomarkers at baseline and repeatedly during a
chemotherapy regimen, in relation to the baseline risk of
cardiovascular toxicity. However, uncertainties about the
correct timing still persist [13].

9. Prevention and Treatment of
Anthracyclines-Induced Cardiotoxicity

Recommendations regarding preventive measures are
based on the baseline risk of anthracycline-related car-
diotoxicity. In patients at high- and very high-risk pf car-
diotoxicity or in those who undergo high doses of anthracy-
clines (i.e., DOX >300 mg/m2), it is recommended to use
specific cancer-related therapies such as dexrazoxane. The
cardioprotective mechanism of dexrazoxane is not fully un-
derstood, but it has been attributed to its strong iron chelat-
ing properties that could reduce the production of ROS
during anthracycline therapy [80]. Dexrazoxane was also
shown to downregulate topoisomerase 2β and prevent the
formation of a complex between topoisomerase 2β and an-
thracyclines [81]. However, concerns about the safety of
dexrazoxane have been raised [50]. A systematic review
suggested that patients treated with dexrazoxane could have
a low response rate to anthracycline [82]. However, an up-
dated version of the same study failed to confirm its find-
ings [83]. More recently, a meta-analysis of 13 random-
ized clinical trials not only confirmed the cardioprotective
effect of dexrazoxane when added to anthracycline-based
chemotherapy (risk ratio (RR): 0.22, 95% CI: 0.11–0.43),
but also indicated that dexrazoxane does not affect the anti-
cancer properties of anthracyclines since there was no dif-
ference in tumor response rate in the dexrazoxane group
(RR: 0.91, 95%CI: 0.79–1.04) [84]. Hence, dexrazoxane is
currently approved by The Food and Drug Administration
(FDA) and by the European Medicine Agency (EMA) to
reduce the cardiotoxicity effect of anthracycline in women
with metastatic or advanced breast cancer who have re-
ceived a cumulative DOX dose of 300 mg/m2 and who will
continue to receive doxorubicin (DOXO) therapy to main-
tain tumor control. Moreover, in 2017 EMA removed the
contraindication for children and adolescents treated with
high cumulative doses of anthracyclines [83–85].

Alternatively, liposomal preparations of DOX are
used to reduce anthracycline toxicity [86] as they block their
entry into cardiac cells, thus limiting their cardiotoxic ef-
fect.
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Table 5. Evidence on the protective role of statins to prevent anthracycline cardiotoxicity.
Drugs used Type of cancer Inclusion criteria Primary endpoint Results: Intervention vs

control

Nabati et al. [94] Rosuvastatin 20 mg od Breast cancer Normal LVEF Changes in the LVEF 53.54% vs 49.95% (p =
0.015)

Acar et al. [95] Atorvastatin 40 mg od Hematologic disorders Normal LVEF Patients with LVEF
<50% after 6 months

1 vs 5 (p = 0.18)

LVEF, Left Ventricular Ejection Fraction.

Fig. 4. Management of patients with anthracycline-induced cardiotoxicity. AC, Anthracyclines; ACE-I, Angiotensin-Converting
Enzyme Inhibitors; ARBs, Angiotensin Receptor Blockers; BB, Beta Blockers.

Current guidelines recommend starting a preventive
therapeutic strategy with beta blockers (BB), angiotensin
converting enzyme inhibitors (ACEI) and statins in patients
with high-/very high-risk of developing cardiotoxicity and
in patients with mild/moderate asymptomatic systolic dys-
function. Neurohormonal therapy may play a crucial role
in preventing cardiotoxicity. Data pointing to a positive ef-
fect of ACEi and BB in preventing the decrease in LVEF are
summarized in Table 4 (Ref. [87–91]). These findings are
consistent with a recent meta-analysis of 17 trials with a to-
tal of 1984 patients with a follow-up ranging from 4months
to 2 years [92]. However, it is currently debated whether the
beneficial effect of neurohormonal therapy might translate
into improved clinical outcomes. It is also interesting to
note that in this large meta-analysis the absolute improve-
ment in terms of LVEF assessed by 2DE was only 5%, i.e.,
that is within the range of interest variability of the mea-
surement.

Statins, among their pleiotropic effects, can also re-

duce ROS generation and can inhibit topoisomerase II.
Since both these mechanisms are involved in anthracycline-
related cardiotoxicity, a beneficial effect of statins has been
hypothesized [93]. Nabati et al. [94] evaluated the effect
of rosuvastatin 20 mg od in the prevention of anthracycline-
related cardiotoxicity during a 6 months follow-up, with ro-
suvastatin having prevented a 2DE estimated drop in LVEF
in the intervention group. However, there was no difference
between the two groups of patients with regards to GLS.
The available evidence investigating the role of statins in
preventing anthracycline-related cardiotoxicity is summa-
rized in Table 5 (Ref. [94,95]).

Sacubitril/Valsartan and sodium-glucose co-
transporter-2 (SGLT2i) are mainstays for the treatment of
HF with reduced EF (HFrEF), with their efficacy having
been shown in different trials and in both acute and chronic
settings [96–98]. However, history of chemotherapy-
induced cardiomyopathy over 12 months was an exclusion
criterion in the main trials for sacubitril/valsartan, such as
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the Angiotensin–Neprilysin Inhibition versus Enalapril in
Heart Failure trial (PARADIGM-HF) trial [97]. Likewise,
patients with active malignancy required treatment were
excluded in the Dapagliflozin in Patients with Heart
Failure and Reduced Ejection Fraction (DAPA-HF) trial.
Therefore, solid indications regarding the use of sacu-
bitril/valsartan and SGLT2i for this purpose is lacking.
Recently, Garcia et al. [99] provided evidence on the
efficacy and safety of Sacubitril/Valsartan for CTRCD
and HFrEF (LVEF <40%) in a retrospective cohort of 67
patients. Most of these patients were women with breast
cancer, mainly treated with anthracycline (70%) and in
median follow-up of 4.6 month. Patients treated with
Sacubitril/Valsartan showed a significant improvement of
LVEF from baseline as well as reversed remodeling. There
was also an improvement in New York Heart Association
(NYHA) functional class (NYHA functional class 2.2 ±
0.6 vs 1.6 ± 0.6). In terms of safety endpoints, there were
no differences between basal and follow-up levels of serum
creatinine or potassium. Evidence regarding the effect
of gliflozins on anthracycline-related cardiac toxicity is
currently limited, despite different studies having proven
their positive effect in DOX-induced cardiomyopathy
in animal models [100]. A recent study Gongora et al.
[101] evaluated the cardioprotective role of SGLT2i in a
retrospective cohort of patients with diabetes mellitus on
treatment with SGLT2 and receiving anthracycline-based
chemotherapy. The primary endpoint was a composite of
HF incidence, HF admission and cardiomyopathy defined
as a 10%> decline in LVEF. Primary outcomes were lower
in patients treated with SGLT2 compared to the control
group not on SGLT2 (3% vs 20%; p = 0.025) while the
SGLT2 group experienced fewer HF admission and cardiac
dysfunction. Moreover, the SGLT2 group had an improve-
ment in the survival rate. Further studies are therefore
needed to confirm the cardioprotective effect of SGLT2 in
patients undergoing treatment with anthracyclines.

The management of patients affected by
anthracycline-induced cardiotoxicity is summarized
in Fig. 4, in accordance with the 2022 ESC guidelines
on Cardio-Oncology [1]. With regards to the treatment
of established anthracycline-induced cardiotoxicity, it
is recommended to suspend chemotherapy and start
cardiovascular therapy when symptoms related to HF
appear, in accordance with the 2021 ESC guidelines on the
management of HF [1].

10. Conclusions
Cardiotoxicity is a potentially troublesome adverse ef-

fect of anthracycline-based chemotherapies since they may
cause LV systolic dysfunction followed by HFrEF, which
tends to be permanent. It is thus of great importance to as-
sess the risk of cardiotoxicity before anthracyclines therapy,
to structure a follow-up plan that is tailored on individual
patient’s risk. Despite there being a general consensus on

the role of echocardiography in diagnosing anthracycline-
related cardiotoxicity, the optimal timeframe to perform it
and the optimal parameters to be evaluated for the diagnosis
are still matter of debate. Biomarkers such as cTnI/T and
NP have proved to have a good negative predictive value
for anthracycline-related cardiotoxicity and as such, most
recent guidelines recommend their serial measurement dur-
ing follow-up. However, convincing evidence about ideal
cut-off values, in terms of reliability, and definitive recom-
mendations regarding its timing are lacking. Since most
cardiotoxicity is early chronic (within 1 year from the start
of anthracyclines), current guidelines recommend a strict
follow up during the first year for patients at high- and very
high-risk of cardiotoxicity along with the introduction of
an ACEi/ Angiotensin Receptor Blockers (ARB) plus BB
treatment regimen. Nevertheless, recommendations differ
significantly between international guidelines. Due to car-
diotoxicity being usually permanent, a deeper knowledge
of the molecular pathways of action of anthracyclines and
their effects on the cardiovascular system is crucial. Hope-
fully this might help minimizing their negative impact on
heart and vessels and to develop more effective preventive
strategies and therapeutic options for anthracycline-related
cardiotoxicity. These are essential steps that would trans-
late in a better survival, limited life-saving chemotherapy
drug discontinuation, and better prognosis for patients un-
dergoing anthracycline-based chemotherapies.
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