Systematic Review

Assessment of Redundant Meta-Analyses on Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure

Luxiang Shang^{1,2,†}, Mengjiao Shao^{3,†}, Mingqi Zhu^{1,4,†}, Jie Li^{2,4}, Mei Gao¹, Yinglong Hou^{1,*}

Academic Editor: Jan Slezak

Submitted: 29 May 2024 Revised: 24 June 2024 Accepted: 2 July 2024 Published: 21 November 2024

Abstract

Background: The utilization of catheter ablation among patients with atrial fibrillation (AF) and heart failure (HF) has garnered significant attention. There has been a rapid proliferation of diverse articles addressing this topic. This study evaluated the potential redundancy in meta-analyses about this subject. Methods: We searched PubMed, Embase, and the Web of Science for meta-analyses comparing catheter ablation with other therapies among patients with AF and HF from the inception date to December 25, 2023. The extracted data encompassed details about the author, country, publication time, journal, pre-registration status, number and type of included studies, primary endpoints, and results. Additionally, we scrutinized whether these meta-analyses referenced, described, or discussed prior relevant meta-analyses, or were cited within prominent international guidelines. Results: A total of 34 meta-analyses were included. Authors predominantly originated from the United States and China. The majority of articles were published in cardiovascular journals without pre-registration. There were two publication peaks, notably in 2018–2019 and 2023. Primary endpoints predominantly focused on all-cause mortality and alterations in left ventricular ejection fraction (LVEF). A consistent trend emerged across most articles, indicating a 40–50% reduction in mortality and a 5–9% elevation in LVEF associated with catheter ablation. Approximately 79.4%, 64.7%, and 50% of the articles respectively cited, described, and discussed previous meta-analyses on the same subject. Only 9 meta-analyses were referenced in impact international guidelines. Conclusions: Our study demonstrates a notable prevalence of redundant meta-analyses within the domain of catheter ablation among patients with AF and HF.

Keywords: redundant publications; meta-analysis; heart failure; atrial fibrillation; catheter ablation

1. Introduction

Meta-analysis, a method consolidating and statistically analyzing data from diverse independent studies, offers comprehensive insights into specific topics. High-quality meta-analyses, particularly those grounded in randomized controlled trials (RCTs), serve as pivotal evidence for medical guidelines and clinical decision-making. Moderate meta-analyses, conducted at appropriate intervals to ensure relevance and avoid redundancy, are necessary as they can integrate the latest evidence, increase statistical power, resolve deficiencies in previous meta-analyses, and also help avoid repetitive RCTs [1].

Over the last few decades, the number of biomedical papers published has surged, paralleled by a remarkable upswing in meta-analyses publications. A recent study showed that the number of published meta-analyses increased by nearly 27-fold from 1994 to 2014 [2]. Nevertheless, an alarming trend of redundant meta-analyses has emerged in genetics, oncology, dermatology, and other fields [3–5]. Notably, the volume of published meta-

analyses has eclipsed that of original studies. These redundant meta-analyses not only foster repetition but also sow confusion and controversy with conflicting results, impeding medical science's advancement [2].

Atrial fibrillation (AF) and heart failure (HF) coexist in nearly 30% of patients and correlate with unfavorable prognoses [6]. While the optimal treatment for these patients remains unclear, catheter ablation has surfaced as a promising therapeutic avenue. Studies evaluating the efficacy and safety of catheter ablation for AF in patients with HF have increased markedly. This study aims to assess the redundancy prevalent in meta-analyses within this domain.

2. Methods

In this study, we selected eligible meta-analyses comparing catheter ablation with other therapies among patients with AF and HF. We followed the principles of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [7] and the PRISMA Checklist 2020 was used for quality checking of the sys-

¹Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014 Jinan, Shandong, China

²Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250062 Jinan, Shandong, China

³The Fifth Affiliated Hospital of Sun Yat-sen University, 519099 Zhuhai, Guangdong, China

⁴Shandong First Medical University & Shandong Academy of Medical Sciences, 250062 Jinan, Shandong, China

^{*}Correspondence: yinglonghou@hotmail.com (Yinglong Hou)

[†]These authors contributed equally.

tematic review. This study did not involve any patient data and was therefore exempt from informed consent and ethics review. No prior registration was conducted for this study.

2.1 Literature Search

A comprehensive online search was conducted in PubMed, Embase, and the Web of Science databases. Detailed search strategies for these three databases are outlined in **Supplementary Table 1**. Key search terms included "atrial fibrillation", "heart failure", "catheter ablation", and "meta-analysis". Two investigators (LXS and MQZ) independently identified relevant studies from the inception of databases to December 25, 2023.

2.2 Study Selection

The criteria for inclusion of meta-analyses in this study were as follows: (1) The study population comprised patients with AF and HF, regardless of the type and etiologies of HF; (2) Comparison of catheter ablation with other treatment modalities, encompassing drugs, devices, etc.; (3) Reporting of cardiovascular related outcomes; (4) Inclusion of meta-analyses based on RCTs, with potential inclusion of meta-analyses incorporating both RCTs and observational studies. We excluded original studies, case reports, reviews, editorials, letters, animal experiments, and all non-full-length publications.

2.3 Data Collection and Results Display of Included Meta-Analyses

Two authors (LXS and MJS) independently extracted information from each eligible study. Any discrepancies were deliberated and resolved through consensus in a meeting involving a third investigator (MQZ). Data on the first author, journal name, study location, publication date, online-search date, numbers of enrolled RCTs, study outcomes, type of pooled effect, and type of analysis were systematically recorded using a pre-designed electronic form. The original RCTs incorporated by meta-analyses were also recorded. Forest plots were utilized to visually represent the primary study outcomes of the included meta-analyses, including effect sizes and 95% confidence intervals. As our study aims to investigate the current status of redundant meta-analyses, we did not conduct assessments for risk of bias, heterogeneity evaluation, syntheses of results, or sensitivity analyses.

2.4 Citations and Cited Analysis of Included Meta-Analyses

Each meta-analysis article included in the study underwent a meticulous review where citations, descriptions, and discussions of previously published meta-analyses on this topic were recorded. The delineations of citation, description, and discussion were established in line with the framework introduced by Helfer *et al.* [8]. In short, citation refers to instances where the article references any pre-

viously published meta-analysis on the topic, description entails presenting the results or conclusions of prior metaanalyses within the text, while discussion involves a comparative or analytical evaluation of those preceding findings.

Moreover, the cases in which the included metaanalyses were cited within renowned guidelines on AF or HF were meticulously documented. The relevant guidelines referenced here were issued by the European Society of Cardiology (ESC), the American College of Cardiology (ACC), or the American Heart Association (AHA).

3. Results

3.1 Characteristics and General Information of the Included Meta-Analyses

All articles underwent screening following the PRISMA 2020 flow chart (Fig. 1). After eliminating duplicates and records failing to meet inclusion criteria, and cross-referencing potential articles, a total of 34 meta-analyses were included in the study [9–42]. Table 1, Table 2 (Ref. [9-42]) present the characteristics and general information of these included meta-analyses. Predominantly, articles hailed from authors based in the United States (12/34, 35.3%) and China (9/34, 26.5%). The majority of these articles found their place in cardiovascular professional journals (28/34, 82.4%), with only 2 articles appearing in high-impact journals (2022 Impact Factor >10), and most lacking pre-registration (28/34, 82.4%). Regarding publication timeline, the earliest meta-analysis dates back to 2011, with publication peaking notably in 2018-2019 and 2023. Early meta-analyses (pre-2018) primarily focused on changes in left ventricular ejection fraction (LVEF), while later ones predominantly centered around hard endpoints (such as all-cause mortality). All meta-analyses were conducted at the study level, none at patient level.

3.2 Results of the Included Meta-Analyses

The results of included meta-analyses originated from 9 RCTs [43–51] and a subgroup analysis from one RCT the CABANA trial [52], as listed in Table 3 (Ref. [9–42]). Detailed information about these original studies can be found in Supplementary Table 2. Among the 9 RCTs, 8 conducted comparisons between AF ablation and standard drug therapy (comprising rate or rhythm control medications) in patients with HF [44-51], while one contrasted AF ablation with rate control treatment utilizing atrioventricular junction ablation coupled with biventricular pacing, instead of drug-based therapies [43]. The CABANA trial aims to evaluate the superiority of catheter ablation over conventional medical therapy in enhancing outcomes among individuals with AF [52]. Notably, within this trial, 35% of patients presented with New York Heart Association class >II [52].

The findings across these meta-analyses underscore the burgeoning evidence supporting the advantages of

Table 1. Characteristics of included meta-analyses.

Table 1: Characteristics of included i	
Characteristics	N (%)
Location of the corresponding author	
USA	12 (35.3)
China	9 (26.5)
Australia	3 (8.8)
Italy	2 (5.9)
UK	2 (5.9)
Other	6 (17.6)
Type of the journals	
Cardiovascular professional journals	28 (82.4)
General journals	6 (17.6)
Impact Factor of journals*	
<5	28 (82.4)
5–10	4 (11.8)
>10	2 (5.9)
Year of publication	
2011	1 (2.9)
2015	2 (5.9)
2016	2 (5.9)
2018	8 (23.5)
2019	5 (14.7)
2020	2 (5.9)
2021	3 (8.8)
2022	3 (8.8)
2023	8 (23.5)
Pre-registered	
Yes	6 (17.6)
No	28 (82.4)
Type of included studies	
Mixed (RCTs + cohorts)	3 (8.8)
RCTs only	31 (91.2)
N. 4. *2022 I F. 4. C Cl	4. A1-4

Note: *2022 Impact Factor from Clarivate Analytics. RCTs, randomized controlled trials.

catheter ablation for AF in patients with HF. This emphasizes the consistency across clinical trials favoring catheter ablation. Focusing on the critical hard endpoint, the majority of articles align in their conclusions, demonstrating a notable 40–50% decline in all-cause mortality among HF patients undergoing catheter ablation (Fig. 2A). Similarly, concerning the primary structural endpoint—the change of LVEF—most meta-analysis outcomes indicate that catheter ablation, in comparison to other treatments like drug therapy, can elevate LVEF by approximately 5–9% (Fig. 2B).

3.3 Citations and Cited Analysis

Previous research has indicated a tendency in metaanalyses to neglect prior systematic reviews and metaanalyses within the same topic [8]. In our study, there was a marked improvement compared to prior reports, with 79.4% of preceding meta-analyses being cited, 64.7% being described, and 50% of the outcomes being discussed within these included meta-analyses.

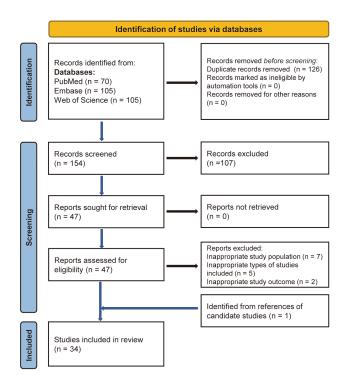


Fig. 1. Flow diagram for literature search and identification.

Since the initial meta-analysis was published in 2011, our search for clinical guidelines commenced from the subsequent year, 2012. Within this span, we identified 9 out of the 34 meta-analyses cited by ESC and ACC/AHA guidelines, garnering a total of 12 citations (**Supplementary Table 3**). Notably, two meta-analyses [11,27] received citations from 2 and 3 guidelines, respectively.

4. Discussion

In this study, we evaluated the existing redundancy in meta-analyses pertaining to AF ablation among patients with HF. Our findings indicate a substantial surplus in the publication count of meta-analyses, surpassing the number of primary studies in this domain. Specifically, 34 meta-analyses can be generated based on 10 RCTs, but only 9 meta-analyses are cited by existing renowned guidelines. Simultaneously, there is a notable need for improvement in the frequency of citing, elaborating, and discussing on previous meta-analyses.

The management of patients with AF and HF poses significant challenges. Catheter ablation emerges as a beacon of hope for this particular patient cohort. As indicated by the meta-analyses' findings included in our study, AF ablation among individuals with HF plays a pivotal role in enhancing quality of life, curbing HF hospitalizations, and mitigating mortality. In the latest 2023 ACC/AHA/ACCP/HRS guidelines on AF [53], catheter ablation has received a grade IA recommendation for AF and HF with reduced EF (HFrEF) patients who undergo guideline-directed medical therapy and with reasonable expectation of procedural benefit.

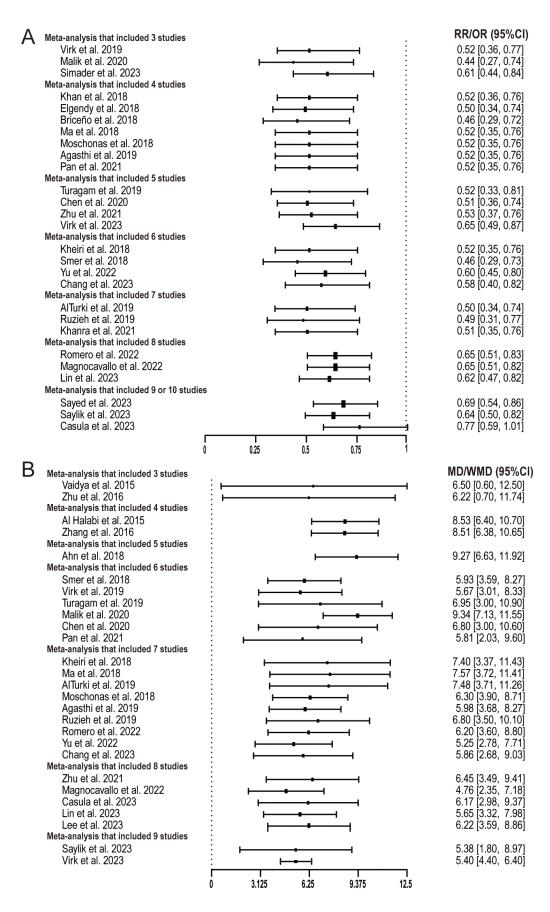


Fig. 2. Results of endpoint estimate by number of studies included in the meta-analyses ((A) all-cause mortality, (B) change of LVEF). LVEF, left ventricular ejection fraction; RR, relative risk; OR, odds ratio; MD, mean difference; WMD, weighted mean difference.

Table 2. General information of the included meta-analyses.

Authors	Pre- registered	Publication date	Online search date	Number of included studies	Type of included studies	Primary/Main outcomes	Pooled effect	Type of analysis	Type of data
Dagres et al. [9]	No	2011.11	2011.04	9	Mixed (RCTs + cohorts)	Change of LVEF	MD	Random effect	Study level
Vaidya et al. [10]	No	2015.08	2014.04	7	RCTs only	Change of LVEF	WMD	Random effect	Study level
Al Halabi et al. [11]	No	2015.06	2015.02	4	RCTs only	Change of LVEF	MD	Random effect	Study level
Zhang et al. [12]	No	2016.06	2014.06	6	Mixed (RCTs + cohorts)	Change of LVEF	WMD	Fixed and Random effect	Study level
Zhu et al. [13]	No	2016.07	2015.12	3	RCTs only	Change of LVEF	WMD	Fixed and Random effect	Study level
Ahn et al. [14]	No	2018.06	2017.11	11	RCTs only	Change of LVEF	RR and MD	Random effect	Study level
Khan et al. [15]	No	2018.05	2018.02	17	RCTs only	All-cause mortality	RR and MD	Random effect	Study level
Kheiri et al. [16]	Yes	2018.10	2018.02	7	RCTs only	HF hospitalization, all-cause mortality, serious adverse events	RR and WMD	Random effect	Study level
Elgendy et al. [17]	Yes	2018.09	2018.01	6	RCTs only	All-cause mortality	RR and SMD	Random effect	Study level
Briceño et al. [18]	No	2018.10	2018.02	7	RCTs only	All-cause mortality, change of LVEF	OR and SMD	Fixed and Random effect	Study level
Ma et al. [19]	No	2018.08	2018.02	7	RCTs only	All-cause mortality, HF hospitalization	RR	Random effect	Study level
Smer <i>et al.</i> [20]	No	2018.11	2018.02	6	RCTs only	LVEF, HF hospitalization, 6MWT, all-cause mortality	OR and MD	Random effect	Study level
Virk et al. [21]	No	2019.05	NA	6	RCTs only	Change of LVEF	RR and MD	Random effect	Study level
Turagam et al. [22]	No	2019.01	2017.09	6	RCTs only	All-cause mortality, HF hospitalization	RR	Random effect	Study level
Malik <i>et al</i> . [23]	No	2020.05	NA	17	RCTs only	All-cause mortality, HF hospitalization, change of LVEF	OR	Random effect	Study level
AlTurki et al. [24]	No	2019.01	2018.02	7	RCTs only	All-cause mortality	RR	Random effect	Study level
Moschonas et al. [25]	No	2018.09	2018.03	7	RCTs only	All-cause mortality	RR	Random effect	Study level
Agasthi et al. [26]	Yes	2019.04	2018.02	7	RCTs only	All-cause mortality, HF hospitalization, AF recurrence	RR and MD	Random effect	Study level
Chen et al. [27]	No	2020.08	2019.04	11	RCTs only	All-cause mortality, re-hospitalization, stroke, thromboembolic events	OR and WMD	Random effect	Study level
Ruzieh et al. [28]	No	2019.01	2018.10	7	RCTs only	LVEF, MLHFQ scores, 6MWT, stroke, HF hospitalization, mortality	OR and MD	Random effect	Study level
Pan et al. [29]	No	2021.01	2019.09	6	RCTs only	All-cause mortality	RR	Random effect	Study level

Table 2. Continued.

Authors	Pre-	Publication date	Online search	Number of	Type of included studies	Primary/Main outcomes	Pooled effect	Type of analysis	Type of data
	registered		date	included					
				studies					
Zhu <i>et al</i> . [30]	No	2021.12	2021.06	9	RCTs only	All-cause mortality, LVEF, 6MWT, MLHFQ scores	RR and MD	Random effect	Study level
Romero et al. [31]	No	2022.11	2022.04	8	RCTs only	All-cause mortality	RR	Fixed and Random effect	Study level
Yu <i>et al</i> . [32]	No	2022.09	2022.01	8	RCTs only	All-cause mortality	RR	Fixed and Random effect	Study level
Şaylık <i>et al</i> . [33]	No	2023.01	NA	10	RCTs only	All-cause mortality, LVEF, 6MWT, MLHFQ scores	RR and MD	Fixed and Random effect	Study level
Chang <i>et al</i> . [34]	No	2023.01	2021.06	7	RCTs only	HF hospitalization, all-cause mortality, serious adverse events	RR and MD	Random effect	Study level
Magnocavallo et al. [35]	No	2022.10	2022.05	9	RCTs only	Composite of all-cause mortality and HF hospitalization	RR	Fixed and Random effect	Study level
Khanra et al. [36]	No	2021.06	2020.10	12	RCTs only	All-cause mortality, change in QoL, AF recurrence and HF hospitalization	OR and MD	Random effect	Study level
Simader <i>et al</i> . [37]	Yes	2023.02	2022.03	8	RCTs only	All-cause mortality	RR	Fixed and Random effect	Study level
Sayed <i>et al</i> . [38]	Yes	2023.09	2022.06	9	RCTs only	All-cause mortality	RR	Fixed and Random effect	Study level
Casula et al. [39]	No	2023.04	2022.06	12	Mixed (RCTs + cohorts)	Mortality, hospitalization, LVEF, 6MWT	RR	Random effect	Study level
Lin <i>et al</i> . [40]	Yes	2023.03	2022.06	9	RCTs only	ly All-cause mortality, OR and MD Random eff re-hospitalization, change of LVEF, AF recurrence		Random effect	Study level
Virk <i>et al</i> . [41]	No	2023.01	2022.03	9	RCTs only	All-cause mortality, HF hospitalization, change of LVEF	RR and MD	Random effect	Study level
Lee <i>et al</i> . [42]	No	2023.05	2023.03	9	RCTs only	LVEF, 6MWT, HF questionnaire score, change of BNP, AF recurrence, HF hospitalization, all-cause mortality	OR	Random effect	Study level

Abbreviations: NA, not available; RCTs, randomized controlled trials; AF, atrial fibrillation; LVEF, left ventricular ejection fraction; HF, heart failure; 6MWT, 6-minute walk test; MLHFQ, Minnesota Living with Heart Failure questionnaire; QoL, quality of life; RR, relative risk; OR, odds ratio; MD, mean difference; WMD, weighted mean difference; SMD, standard mean difference; BNP, B-type natriuretic peptide.

Table 3. Map of original RCTs contained within each included meta-analysis.

Authors of meta-analysis	PABA-CHF 2008	MacDonald et al. 2010	ARC-HF 2013	CAMTAF 2014	AATAC 2016	CAMERA-MRI 2017	CASTLE-AF 2018	AMICA 2019	CABANA HF-subgroup 2019/2021	RAFT-AF 2022
Dagres et al. [9]	1	<u>ui. 2010</u>				2017	2016		2019/2021	
Vaidya et al. [10]	√ √	V	V	V						
Al Halabi <i>et al</i> . [11]	1	V	1	√ √						
Zhang <i>et al.</i> [12]	√ √	V	√ √	√ √						
Zhu <i>et al.</i> [13]	V	V	1	V						
Ahn et al. [14]	2/	V	1	V		V				
Khan <i>et al.</i> [15]	•	V	1	√ √	√	V	V			
Kheiri et al. [16]	2/	N N	V	V	V	V	N N			
Elgendy et al. [17]	V	2/	2/	v 1	V	2	2			
Briceño et al. [18]	2/	2/	2/	v 1	V	2	2			
Ma et al. [19]	2/	2/	2/	1	v 2/	2	2/			
	V	2/	2/	1	v 2/	2	2/			
Smer <i>et al.</i> [20]		2	2	٧	N N	N N	2			
Virk <i>et al</i> . [21]		·V	-/	·\	· V	· V	· V			
Turagam et al. [22]	-1	·V	-/	·\	· V	· V	· V			
Malik <i>et al</i> . [23]	-1	·V	-/	·\	· V	· V	· V			
AlTurki et al. [24]	V	V	V	1	V	V	V			
Moschonas et al. [25]	V	V	V	V	V	N _I	V			
Agasthi et al. [26]	V	V	V	V	V	N _I	V		1	
Chen <i>et al</i> . [27]	1	V	V	V	V	V	V		V	
Ruzieh et al. [28]	V	V	V	V	V	V	V			
Pan et al. [29]		V	V	V	V	V	V	1		
Zhu et al. [30]		V	V	V	V	V	V	V	1	1
Romero et al. [31]		,	V	V	V	V	V	V	V	V
Yu et al. [32]	1	V	V	V	V	V	V	V	V	1
Şaylık et al. [33]	$\sqrt{}$	V	V	V	V	V	V	V	V	V
Chang <i>et al.</i> [34]		V	√ ,	V	√ ,	V	$\sqrt{}$	V	,	,
Magnocavallo et al. [35]	,	V	√	V	√ ,	V	√,	V	$\sqrt{}$	$\sqrt{}$
Khanra et al. [36]	$\sqrt{}$	√,	√	$\sqrt{}$	√	$\sqrt{}$	$\sqrt{}$	√,		,
Simader et al. [37]		$\sqrt{}$	$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$,	V
Sayed <i>et al.</i> [38]		√	√	√	√	√	√	√	$\sqrt{}$	$\sqrt{}$
Casula et al. [39]		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Lin et al. [40]		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$
Virk <i>et al</i> . [41]	\checkmark	√	$\sqrt{}$	√	$\sqrt{}$	√	$\sqrt{}$	√		$\sqrt{}$
Lee et al. [42]		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Abbreviations: RCTs, randomized controlled trials.

Setting aside these redundant meta-analyses, significant avenues remain unexplored within this domain. Firstly, existing RCT studies solely focus on HFrEF, lacking RCT evidence demonstrating the effectiveness of AF catheter ablation in patients with HF with preserved EF (HFpEF), despite numerous observational studies [54] and multiple published meta-analyses [55,56]. Secondly, the outcomes attributing the reduction in mortality and hospitalization to catheter ablation in HFrEF patients were derived from a relatively limited number of events [57,58], rendering definitive conclusions elusive. Consequently, further RCTs with expanded sample sizes are imperative. Consideration of conducting a Trial Sequential Analysis might aid in assessing whether anticipated information based on estimates can be attained, particularly in primary hard endpoints like mortality. Moreover, the comparative effectiveness of catheter ablation against alternative treatment options (such as assist devices and heart transplantation) in patients with severely reduced LVEF (<25%) remains uncertain. Additionally, the meta-analyses included in our study were all conducted at the study level, necessitating a patient-level meta-analysis for a comprehensive understanding.

4.1 Mass Production of Redundant Meta-Analyses

Indeed, the scientific community has acknowledged the issue of redundancy for over a decade [59,60]. As stated at the outset of this article, there's merit in moderately revisiting and updating meta-analyses. This practice enhances the capacity to unveil potentially meaningful outcomes by amalgamating individual studies. Moreover, it aids in pinpointing voids and methodological flaws within existing medical and public health literature, identifies potential sources of heterogeneity among studies, and lays the groundwork for critical future research avenues. However, the current landscape is witnessing an inundation of redundant meta-analyses, with a substantial proportion offering little or no added value.

Apart from concerns revolving around redundancy, there exist substantial apprehensions regarding methodology and quality within this domain. A case in point is highlighted by Milton Packer [58], who conducted a methodological assessment encompassing 14 meta-analyses on this topic. His findings revealed numerous errors committed by meta-analysis authors in the acquisition, extraction, and analysis of outcome data from the original RCTs. These errors could potentially jeopardize the reliability of the conclusions drawn from the meta-analyses. In a recent meta-analysis included in this present study, an inclusion criterion was purportedly limited to RCTs [30]. However, the inclusion of cohort studies within this meta-analysis has raised considerable concerns regarding its overall quality and adherence to specified criteria.

The ramifications of redundant meta-analyses are substantial. Firstly, they represent a significant misallocation

of resources, consuming valuable human capital from researchers, reviewers, journals, and editors. This misdirection of efforts squanders energy and resources that could otherwise be channeled into more productive avenues. Secondly, there is a concerning possibility that these redundant meta-analyses may rely on or even plagiarize previous meta-analyses, casting doubts on their quality and originality. Such practices compromise the credibility of these articles. Additionally, the proliferation of numerous meta-analyses on the same topic contributes to information overload, potentially overshadowing more pertinent data. The absence of comparative analyses between these meta-analyses exacerbates this issue. Moreover, the inundation of "homogeneous" papers could impede the emergence of innovative ideas and inadvertently delay the publication of other exceptional articles [61]. New research papers harboring potentially groundbreaking concepts might encounter hurdles in publication, resulting in low visibility and citations. This conundrum of low visibility inhibits their dissemination and recognition within the academic sphere.

4.2 Potential Reasons

The proliferation of redundant meta-analyses stems from various factors. Firstly, heightened enthusiasm within the scientific community for certain topics contributes to the swift release of meta-analyses summarizing RCT studies following major study outcomes. This fervor is evident in the dual publication peaks observed in our study. Absolutely, the process of article publication involves several stages, including submission, review, and eventual publication, resulting in an inherent time delay. This inherent lag makes it challenging to entirely eliminate redundancy in published literature.

For authors, meta-analysis serves as a secondary analysis built upon original research. Advancements in statistical software, coding accessibility, modeling aids, and artificial intelligence tools have streamlined literature retrieval, data collection, and article composition, rendering meta-analysis implementation more standardized and approachable. Moreover, this trend may also be attributed to the mounting research pressure faced by scientists and clinicians. Research has previously highlighted that the escalating scientific research pressures encountered by young Chinese doctors have led to a rapid surge in published articles, potentially yielding redundant outputs [2,62,63].

Moreover, journals often accord prominence to metaanalyses due to their position at the apex of the evidencelevel hierarchy. These studies are more prone to garner citations and might even be referenced within guidelines, contributing positively to the journal's impact factor. Consequently, editors may exhibit a preference for publishing such articles owing to their potential to enhance the journal's influence and visibility within the academic community [64].

4.3 Strategies for Improvement

Improvement measures to curtail the proliferation of redundant meta-analyses have been proposed, such as advocating for prospective registration via international agreement registries. However, these measures have proven insufficient in stemming the rising tide of redundant meta-analyses. In light of this, we propose the following suggestions.

Establishing a standardized meta-analysis production process is crucial. Requiring prospective registration for all meta-analyses, akin to the mandate for RCTs, would enhance transparency and help preempt redundancy. While the PRISMA 2020 checklist has significantly improved the quality and reporting standards for meta-analyses, its impact on resolving redundancy has been limited [7]. To address this, we propose that major entities expand upon the PRISMA checklist tailored to their specific needs. This extended checklist would provide detailed guidance, contextualized to the unique requirements of each field or domain. By offering a comprehensive framework, authors can gain deeper insights into the checklist's nuances and apply it more effectively, thereby potentially reducing redundancy in meta-analyses.

Absolutely, journals and editors play a pivotal role in minimizing redundancy in meta-analyses. Encouraging additional instructions from authors during the submission of meta-analysis articles could significantly contribute to this effort. Many journals require authors to provide highlights, but it is very easy to find so-called highlights, and authors are likely to ignore published meta-analyses on this topic. Implementing formats like those seen in the Lancet series, which require authors to provide information on the Evidence before the study, the Added value of the current study, and the Implications based on all available evidence, can be more effective than traditional highlight sections. Similarly, initiatives like the JAMA network open editors' requirement for contributors to include a cover letter explaining the freshness of the submitted meta-analysis, detailing previous meta-analyses conducted in the past five years on the topic, and demonstrating consistency or comparative analyses with prior studies, are instrumental in mitigating redundancy [65]. These detailed and stringent requirements compel authors to critically evaluate existing literature, thereby enhancing the value and uniqueness of the submitted meta-analyses. Accelerating the publication timeline for accepted meta-analyses enables swift dissemination of novel findings, potentially deterring overlapping meta-analyses and enhancing the impact of new contributions.

Peer review also plays a critical role in reducing redundancy in meta-analyses. Reviewers are recommended to intensify their scrutiny of potential redundancy during the peer review process by simply searching for recently published similar meta-analyses. Additionally, they should check whether the authors have cited and discussed previ-

ous meta-analyses in their article. This ensures that the proposed meta-analysis genuinely contributes novel insights or methods to the existing knowledge base.

For authors of RCTs, we advocate for the upload of de-identified raw data or providing more efficient methods for data utilization. Meta-analysis authors are also encouraged to conduct comparative analyses with existing metaanalyses, aiming to pinpoint gaps, inconsistencies, or duplications in the current literature before commencing new studies.

To sum up, enhancing communication among trialists, implementing targeted quality controls at the editor and reviewer levels, promoting living systematic reviews, prospective registration of systematic review protocols, and updating the PRISMA checklist to address redundancy and selective reporting bias. These measures, as suggested by Riaz *et al.* [66], are pivotal steps toward mitigating redundant publications in meta-analyses.

5. Limitation

Several limitations warrant acknowledgment in this study. Firstly, inherent limitations within the search databases and temporal constraints might have resulted in the omission of additional published literature. Secondly, our study did not entail an evaluation of the quality of the included meta-analyses, as this aspect lay beyond the scope of our focus. Thirdly, a comparative analysis of the specific differences among these meta-analyses was not conducted. Future investigations are warranted to explore and delineate the variations among meta-analyses concerning the same topic, allowing for a more comprehensive resolution of this issue.

6. Conclusions

Currently, there is a massive production of unnecessary meta-analyses on catheter ablation in AF and HF. The prevalence of redundancy in meta-analysis has emerged as a pressing concern, demanding more robust and effective measures for mitigation.

Availability of Data and Materials

All data used in the current study were included in the manuscript and supplementary materials.

Author Contributions

YH, MG and LS designed the study and provided funds support. LS, MZ, MS and JL performed the literature search and data recording. LS wrote the manuscript. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript. All authors have participated sufficiently in the work and agreed to be accountable for all aspects of the work.

Ethics Approval and Consent to Participate

Not applicable.

Acknowledgment

We sincerely thank "HOME for Researchers" for linguistic assistance. During the preparation of this work, the authors used "ChatGPT" to edit and change the format of the article. After using this service, the authors reviewed and edited the content and took full responsibility for the content of the publication.

Funding

This work was supported by grants from the Natural Science Foundation of China (82100343), China Postdoctoral Science Foundation (2024M751896), Shandong Province Postdoctoral Innovation Projects (SDCXZG-202400007), Scientific Research Foundation of Beijing Municipal Key Laboratory of Clinical Epidemiology, Scientific Research Foundation of Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease (DXWL2022-04), and National Natural Science Foundation of Qianfoshan Hospital (QYPY2020NSFC1012).

Conflict of Interest

The authors declare no conflict of interest.

Supplementary Material

Supplementary material associated with this article can be found, in the online version, at https://doi.org/10.31083/j.rcm2511418.

References

- [1] Finckh A, Tramèr MR. Primer: strengths and weaknesses of meta-analysis. Nature Clinical Practice. Rheumatology. 2008; 4: 146–152.
- [2] Ioannidis JPA. The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses. The Milbank Quarterly. 2016; 94: 485–514.
- [3] Sigurdson MK, Khoury MJ, Ioannidis JPA. Redundant metaanalyses are common in genetic epidemiology. Journal of Clinical Epidemiology. 2020; 127: 40–48.
- [4] Guelimi R, Afach S, Régnaux JP, Bettuzzi T, Chaby G, Sbidian E, *et al.* Overlapping network meta-analyses on psoriasis systemic treatments, an overview: quantity does not make quality. The British Journal of Dermatology. 2022; 187: 29–41.
- [5] Chapelle C, Ollier E, Girard P, Frere C, Mismetti P, Cucherat M, et al. An epidemic of redundant meta-analyses. Journal of Thrombosis and Haemostasis: JTH. 2021; 19: 1299–1306.
- [6] Derndorfer M, Chen S, Pürerfellner H. Atrial Fibrillation Ablation in Heart Failure Patients. Journal of Clinical Medicine. 2021; 10: 3512.
- [7] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. British Medical Journal (Clinical Research Ed.). 2021; 372: n71.
- [8] Helfer B, Prosser A, Samara MT, Geddes JR, Cipriani A, Davis JM, et al. Recent meta-analyses neglect previous systematic reviews and meta-analyses about the same topic: a systematic examination. BMC Medicine. 2015; 13: 82.

- [9] Dagres N, Varounis C, Gaspar T, Piorkowski C, Eitel C, Iliodromitis EK, et al. Catheter ablation for atrial fibrillation in patients with left ventricular systolic dysfunction. A systematic review and meta-analysis. Journal of Cardiac Failure. 2011; 17: 964–970.
- [10] Vaidya K, Arnott C, Russell A, Masson P, Sy RW, Patel S. Pulmonary Vein Isolation Compared to Rate Control in Patients with Atrial Fibrillation: A Systematic Review and Metanalysis. Heart, Lung & Circulation. 2015; 24: 744–752.
- [11] Al Halabi S, Qintar M, Hussein A, Alraies MC, Jones DG, Wong T, et al. Catheter Ablation for Atrial Fibrillation in Heart Failure Patients: A Meta-Analysis of Randomized Controlled Trials. JACC. Clinical Electrophysiology. 2015; 1: 200–209.
- [12] Zhang B, Shen D, Feng S, Zhen Y, Zhang G. Efficacy and safety of catheter ablation vs. rate control of atrial fibrillation in systolic left ventricular dysfunction: A meta-analysis and systematic review. Herz. 2016; 41: 342–350.
- [13] Zhu M, Zhou X, Cai H, Wang Z, Xu H, Chen S, et al. Catheter ablation versus medical rate control for persistent atrial fibrillation in patients with heart failure: A PRISMA-compliant systematic review and meta-analysis of randomized controlled trials. Medicine. 2016; 95: e4377.
- [14] Ahn J, Kim HJ, Choe JC, Park JS, Lee HW, Oh JH, et al. Treatment Strategies for Atrial Fibrillation With Left Ventricular Systolic Dysfunction Meta-Analysis. Circulation Journal: Official Journal of the Japanese Circulation Society. 2018; 82: 1770–1777.
- [15] Khan SU, Rahman H, Talluri S, Kaluski E. The Clinical Benefits and Mortality Reduction Associated With Catheter Ablation in Subjects With Atrial Fibrillation: A Systematic Review and Meta-Analysis. JACC. Clinical Electrophysiology. 2018; 4: 626–635.
- [16] Kheiri B, Osman M, Abdalla A, Haykal T, Ahmed S, Bachuwa G, et al. Catheter ablation of atrial fibrillation with heart failure: An updated meta-analysis of randomized trials. International Journal of Cardiology. 2018; 269: 170–173.
- [17] Elgendy AY, Mahmoud AN, Khan MS, Sheikh MR, Mojadidi MK, Omer M, et al. Meta-Analysis Comparing Catheter-Guided Ablation Versus Conventional Medical Therapy for Patients With Atrial Fibrillation and Heart Failure With Reduced Ejection Fraction. The American Journal of Cardiology. 2018; 122: 806–813.
- [18] Briceño DF, Markman TM, Lupercio F, Romero J, Liang JJ, Villablanca PA, et al. Catheter ablation versus conventional treatment of atrial fibrillation in patients with heart failure with reduced ejection fraction: a systematic review and meta-analysis of randomized controlled trials. Journal of Interventional Cardiac Electrophysiology: an International Journal of Arrhythmias and Pacing. 2018; 53: 19–29.
- [19] Ma Y, Bai F, Qin F, Li Y, Tu T, Sun C, *et al.* Catheter ablation for treatment of patients with atrial fibrillation and heart failure: a meta-analysis of randomized controlled trials. BMC Cardiovascular Disorders. 2018; 18: 165.
- [20] Smer A, Salih M, Darrat YH, Saadi A, Guddeti R, Mahfood Haddad T, et al. Meta-analysis of randomized controlled trials on atrial fibrillation ablation in patients with heart failure with reduced ejection fraction. Clinical Cardiology. 2018; 41: 1430–1438.
- [21] Virk SA, Bennett RG, Chow C, Sanders P, Kalman JM, Thomas S, et al. Catheter Ablation Versus Medical Therapy for Atrial Fibrillation in Patients With Heart Failure: A Meta-Analysis of Randomised Controlled Trials. Heart, Lung & Circulation. 2019; 28: 707–718.
- [22] Turagam MK, Garg J, Whang W, Sartori S, Koruth JS, Miller MA, et al. Catheter Ablation of Atrial Fibrillation in Patients

- With Heart Failure: A Meta-analysis of Randomized Controlled Trials. Annals of Internal Medicine. 2019; 170: 41–50.
- [23] Malik AH, Aronow WS. Comparative Therapeutic Assessment of Atrial Fibrillation in Heart Failure With Reduced Ejection Fraction-A Network Meta-Analysis. American Journal of Therapeutics. 2020; 27: e286–e296.
- [24] AlTurki A, Proietti R, Dawas A, Alturki H, Huynh T, Essebag V. Catheter ablation for atrial fibrillation in heart failure with reduced ejection fraction: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovascular Disorders. 2019: 19: 18.
- [25] Moschonas K, Nabeebaccus A, Okonko DO, McDonagh TA, Murgatroyd FD, Dhillon P, et al. The impact of catheter ablation for atrial fibrillation in heart failure. Journal of Arrhythmia. 2018; 35: 33–42.
- [26] Agasthi P, Lee JZ, Amin M, Al-Saffar F, Goel V, Tseng A, et al. Catheter ablation for treatment of atrial fibrillation in patients with heart failure with reduced ejection fraction: A systematic review and meta-analysis. Journal of Arrhythmia. 2019; 35: 171–181.
- [27] Chen S, Pürerfellner H, Meyer C, Acou WJ, Schratter A, Ling Z, et al. Rhythm control for patients with atrial fibrillation complicated with heart failure in the contemporary era of catheter ablation: a stratified pooled analysis of randomized data. European Heart Journal. 2020; 41: 2863–2873.
- [28] Ruzieh M, Foy AJ, Aboujamous NM, Moroi MK, Naccarelli GV, Ghahramani M, et al. Meta-Analysis of Atrial Fibrillation Ablation in Patients with Systolic Heart Failure. Cardiovascular Therapeutics. 2019; 2019: 8181657.
- [29] Pan KL, Wu YL, Lee M, Ovbiagele B. Catheter Ablation Compared with Medical Therapy for Atrial Fibrillation with Heart Failure: A Systematic Review and Meta-analysis of Randomized Controlled Trials. International Journal of Medical Sciences. 2021; 18: 1325–1331.
- [30] Zhu X, Wu Y, Ning Z. Meta-Analysis of Catheter Ablation versus Medical Therapy for Heart Failure Complicated with Atrial Fibrillation. Cardiology Research and Practice. 2021; 2021: 7245390.
- [31] Romero J, Gabr M, Alviz I, Briceno D, Diaz JC, Rodriguez D, et al. Improved survival in patients with atrial fibrillation and heart failure undergoing catheter ablation compared to medical treatment: A systematic review and meta-analysis of randomized controlled trials. Journal of Cardiovascular Electrophysiology. 2022; 33: 2356–2366.
- [32] Yu Z, Xing Y, Peng J, Xu B, Qi Y, Zheng Z, *et al.* Catheter Ablation Versus Medical Therapy for Atrial Fibrillation in Patients with Heart failure: A Meta-Analysis of Randomized Controlled Trials. Anatolian Journal of Cardiology. 2022; 26: 685–695.
- [33] Şaylık F, Çınar T, Akbulut T, Hayıroğlu Mİ. Comparison of catheter ablation and medical therapy for atrial fibrillation in heart failure patients: A meta-analysis of randomized controlled trials. Heart & Lung: the Journal of Critical Care. 2023; 57: 69– 74.
- [34] Chang TY, Chao TF, Lin CY, Lin YJ, Chang SL, Lo LW, *et al.* Catheter ablation of atrial fibrillation in heart failure with impaired systolic function: An updated meta-analysis of randomized controlled trials. Journal of the Chinese Medical Association: JCMA. 2023; 86: 11–18.
- [35] Magnocavallo M, Parlavecchio A, Vetta G, Gianni C, Polselli M, De Vuono F, et al. Catheter Ablation versus Medical Therapy of Atrial Fibrillation in Patients with Heart Failure: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of Clinical Medicine. 2022; 11: 5530.
- [36] Khanra D, Deshpande S, Mukherjee A, Mohan S, Khan H, Kathuria S, *et al.* Rhythm Control of Persistent Atrial Fibrillation in Systolic Heart Failure: A Bayesian Network Meta-Analysis

- of Randomized Controlled Trials. International Journal of Heart Failure. 2021; 3: 179–193.
- [37] Simader FA, Howard JP, Ahmad Y, Saleh K, Naraen A, Samways JW, *et al.* Catheter ablation improves cardiovascular outcomes in patients with atrial fibrillation and heart failure: a meta-analysis of randomized controlled trials. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology. 2023; 25: 341–350.
- [38] Sayed A, Awad AK, Abdelfattah OM, Elsayed M, Herzallah K, Marine JE, et al. The impact of catheter ablation in patient's heart failure and atrial fibrillation: a meta-analysis of randomized clinical trials. Journal of Interventional Cardiac Electrophysiology: an International Journal of Arrhythmias and Pacing. 2023; 66: 1487–1497.
- [39] Casula M, Pignalosa L, Quilico F, Scajola LV, Rordorf R. A comprehensive meta-analysis comparing radiofrequency ablation versus pharmacological therapy for the treatment of atrial fibrillation in patients with heart failure. International Journal of Cardiology. 2023; 377: 66–72.
- [40] Lin C, Sun M, Liu Y, Su Y, Liang X, Ma S, et al. Catheter ablation vs. drug therapy in the treatment of atrial fibrillation patients with heart failure: An update meta-analysis for randomized controlled trials. Frontiers in Cardiovascular Medicine. 2023; 10: 1103567.
- [41] Virk SA, Hyun K, Brieger D, Sy RW. Prognostic benefit of catheter ablation of atrial fibrillation in heart failure: An updated meta-analysis of randomized controlled trials. Journal of Arrhythmia. 2023; 39: 129–141.
- [42] Lee WC, Fang HY, Wu PJ, Chen HC, Fang YN, Chen MC. Outcomes of catheter ablation vs. medical treatment for atrial fibrillation and heart failure: a meta-analysis. Frontiers in Cardiovascular Medicine. 2023; 10: 1165011.
- [43] Khan MN, Jaïs P, Cummings J, Di Biase L, Sanders P, Martin DO, *et al.* Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. The New England Journal of Medicine. 2008; 359: 1778–1785.
- [44] MacDonald MR, Connelly DT, Hawkins NM, Steedman T, Payne J, Shaw M, et al. Radiofrequency ablation for persistent atrial fibrillation in patients with advanced heart failure and severe left ventricular systolic dysfunction: a randomised controlled trial. Heart (British Cardiac Society). 2011; 97: 740–747.
- [45] Jones DG, Haldar SK, Hussain W, Sharma R, Francis DP, Rahman-Haley SL, *et al.* A randomized trial to assess catheter ablation versus rate control in the management of persistent atrial fibrillation in heart failure. Journal of the American College of Cardiology. 2013; 61: 1894–1903.
- [46] Hunter RJ, Berriman TJ, Diab I, Kamdar R, Richmond L, Baker V, et al. A randomized controlled trial of catheter ablation versus medical treatment of atrial fibrillation in heart failure (the CAMTAF trial). Circulation. Arrhythmia and Electrophysiology. 2014; 7: 31–38.
- [47] Di Biase L, Mohanty P, Mohanty S, Santangeli P, Trivedi C, Lakkireddy D, et al. Ablation Versus Amiodarone for Treatment of Persistent Atrial Fibrillation in Patients With Congestive Heart Failure and an Implanted Device: Results From the AATAC Multicenter Randomized Trial. Circulation. 2016; 133: 1637–1644.
- [48] Prabhu S, Taylor AJ, Costello BT, Kaye DM, McLellan AJA, Voskoboinik A, et al. Catheter Ablation Versus Medical Rate Control in Atrial Fibrillation and Systolic Dysfunction: The CAMERA-MRI Study. Journal of the American College of Cardiology. 2017; 70: 1949–1961.
- [49] Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L, Jordaens L, et al. Catheter Ablation for Atrial Fibrillation with

- Heart Failure. The New England Journal of Medicine. 2018; 378: 417–427.
- [50] Kuck KH, Merkely B, Zahn R, Arentz T, Seidl K, Schlüter M, et al. Catheter Ablation Versus Best Medical Therapy in Patients With Persistent Atrial Fibrillation and Congestive Heart Failure: The Randomized AMICA Trial. Circulation. Arrhythmia and Electrophysiology. 2019; 12: e007731.
- [51] Parkash R, Wells GA, Rouleau J, Talajic M, Essebag V, Skanes A, et al. Randomized Ablation-Based Rhythm-Control Versus Rate-Control Trial in Patients With Heart Failure and Atrial Fibrillation: Results from the RAFT-AF trial. Circulation. 2022; 145: 1693–1704.
- [52] Packer DL, Piccini JP, Monahan KH, Al-Khalidi HR, Silverstein AP, Noseworthy PA, et al. Ablation Versus Drug Therapy for Atrial Fibrillation in Heart Failure: Results From the CABANA Trial. Circulation. 2021; 143: 1377–1390.
- [53] Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2024; 149: e1–e156.
- [54] Xie Z, Qi B, Wang Z, Li F, Chen C, Li C, et al. Ablation for atrial fibrillation improves the outcomes in patients with heart failure with preserved ejection fraction. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology. 2023; 26: euad363.
- [55] Siddiqui MU, Junarta J, Riley JM, Ahmed A, Pasha AK, Limbrick K, et al. Catheter ablation in patients with atrial fibrillation and heart failure with preserved ejection fraction: A systematic review and meta-analysis. Journal of Arrhythmia. 2022; 38: 981–990.
- [56] Aldaas OM, Lupercio F, Darden D, Mylavarapu PS, Malladi CL,

- Han FT, *et al.* Meta-analysis of the Usefulness of Catheter Ablation of Atrial Fibrillation in Patients With Heart Failure With Preserved Ejection Fraction. The American Journal of Cardiology. 2021; 142: 66–73.
- [57] McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal. 2021; 42: 3599–3726.
- [58] Packer M. Methodological and Clinical Heterogeneity and Extraction Errors in Meta-Analyses of Catheter Ablation for Atrial Fibrillation in Heart Failure. Journal of the American Heart Association. 2019; 8: e013779.
- [59] Tugwell P, Knottnerus A, Idzerda L. Updating systematic reviews—when and how? Journal of Clinical Epidemiology. 2011; 64: 933–935.
- [60] Siontis KC, Ioannidis JPA. Replication, Duplication, and Waste in a Quarter Million Systematic Reviews and Meta-Analyses. Circulation. Cardiovascular Quality and Outcomes. 2018; 11: e005212.
- [61] Chu JSG, Evans JA. Slowed canonical progress in large fields of science. Proceedings of the National Academy of Sciences of the United States of America. 2021: 118: e2021636118.
- [62] Yuan HF, Xu WD, Hu HY. Young Chinese doctors and the pressure of publication. Lancet (London, England). 2013; 381: e4.
- [63] Tollefson J. China declared world's largest producer of scientific articles. Nature. 2018; 553: 390.
- [64] Argüelles JC, Argüelles-Prieto R. Are the Editors Responsible for Our Obsession with the Impact Factor? mBio. 2017; 8: e02019-17.
- [65] Berlin JA, Rubenfeld GD, O'Cearbhaill RE, Shah AS, Fihn SD. Keeping Meta-analyses Fresh. JAMA Network Open. 2022; 5: e2228541
- [66] Riaz IB, Khan MS, Riaz H, Goldberg RJ. Disorganized Systematic Reviews and Meta-analyses: Time to Systematize the Conduct and Publication of These Study Overviews? The American Journal of Medicine. 2016; 129: 339.e11–e18.

