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Abstract

Vitamin D is a key regulator of calcium and phosphorus homeostasis; meanwhile, the dietary absence of vitamin D represents the most
common nutritional deficiency worldwide. The discovery of vitamin D receptors and conversion enzymes within the cardiovascular
system has fueled growing interest in the potential roles of vitamin D beyond bone health. Indeed, preclinical studies have suggested that
vitamin D might regulate vascular tone and exert antifibrotic and anti-remodeling effects on the myocardium. Furthermore, a deficit in
vitamin D has been associated with an increased risk of hypertension, atherosclerosis, and heart failure. These findings have prompted
several interventional studies to investigate whether vitamin D supplementation can mitigate cardiovascular risk. However, current
evidence regarding the cardiovascular benefits of vitamin D intake remains inconsistent and inconclusive. This review aims to provide a
comprehensive overview of the “good”, the “bad”, and the “unknown” aspects of the relationship between vitamin D and cardiovascular
disease.
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1. Introduction Originally discovered in the context of rickets, vita-
min D has long been recognized as a cornerstone of cal-
cium and phosphate metabolism [3]. However, the sub-
sequent identification of vitamin D receptors (VDRs) and
associated metabolic enzymes widely expressed across the
cardiovascular tissues, including cardiomyocytes, vascular
smooth muscle cells, and endothelial tissue, have led to the
hypothesis that vitamin D may exert pleiotropic effects on
key pathophysiological mechanisms such as vascular tone
regulation, myocardial remodeling, inflammation, fibrosis,
and atherogenesis [4—0].

Despite significant advances in the prevention and
treatment of cardiovascular disease (CVD), one person in
the United States dies from heart disease or stroke every 34
seconds [1,2]. This alarming statistic underscores the ur-
gent need to identify novel, modifiable risk factors beyond
traditional targets such as hypertension, hyperlipidemia, or
diabetes. Among emerging candidates, Vitamin D, a fat-
soluble nutrient historically associated with bone homeosta-
sis, has garnered increasing attention for its potential role in
CVD health.

Copyright: © 2025 The Author(s). Published by IMR Press.
BY This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://www.imrpress.com/journal/RCM
https://doi.org/10.31083/RCM40001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0000-2161-3066
https://orcid.org/0009-0006-4848-523X
https://orcid.org/0000-0002-2392-9096
https://orcid.org/0000-0001-9269-8829
https://orcid.org/0000-0001-6443-4121
https://orcid.org/0000-0001-7504-3775
https://orcid.org/0000-0002-1418-7908
https://orcid.org/0000-0001-7820-567X
https://orcid.org/0000-0002-0243-3673
https://orcid.org/0000-0003-4435-1235
https://orcid.org/0000-0002-2145-6555
https://orcid.org/0000-0003-0141-0127

Vitamin D deficiency, or hypovitaminosis D, is still
considered the most prevalent nutritional deficiency world-
wide. It affects about one billion people, with high preva-
lence in older adults and those with limited sun exposure
or darker skin pigmentation [7,8]. In addition to its well-
established role in bone health and calcium and phosphorus
homeostasis, low vitamin D levels may increase the risk of
several CVDs, such as hypertension, coronary artery dis-
ease, and heart failure (HF) [9-11]. This knowledge has
raised the possibility that vitamin D could represent a low-
cost and widely accessible tool for cardiovascular risk re-
duction.

Several interventional studies have reported conflict-
ing results and no consistent cardiovascular benefits. Even
a large meta-analysis has failed to establish a definitive role
for vitamin D supplementation in cardiovascular risk re-
duction [12]. In this review, we examined the “good”, the
“bad”, and the “unknown” of the relationship between vita-
min D and cardiovascular health.

2. The Biological Pathway of Vitamin D:
From Skin to Cell Nucleus

Vitamin D exists in two dietary forms: D3 (chole-
calciferol) and D2 (ergocalciferol), which differ slightly
in structure [13]. Vitamin D metabolism begins from
the synthesis of 7-dehydrocholesterol, which undergoes
two sequential hydroxylations: the first, by hepatic 25-
hydroxylase, produces 25-hydroxyvitamin D (25(OH)D),
and the second, by 1-a-hydroxylase in the kidneys, pro-
duces 1,25-dihydroxyvitamin D (1,25(OH)3D), also known
as “calcitriol” which is the biologically active form (Fig. 1).

Both circulating 25(OH)D and 1,25(OH);D are
mainly bound to vitamin D binding protein (DBP) and albu-
min; however, the half-life of circulating 25(OH)D (10-20
days) is higher than that of 1,25(OH)2D (10-20 hours), due
to the higher affinity for DBP of the former [14,15]. Circu-
lating 1,25(OH)2D is tightly regulated by parathyroid hor-
mone (PTH) and fibroblast growth factor-23 (FGF-23) to
maintain plasma calcium and phosphate within their phys-
iological ranges [7,16]. Calcitriol binds the vitamin D re-
ceptor (VDR), inducing a conformational change that leads
to hetero-dimerization with the retinoid X receptor (RXR)
and translocation of this complex into the nucleus, where it
binds to the promoter region of more than 200 target genes
[17]. Although 25(OH)D is the preferred biomarker of vita-
min D level due to its longer half-life, there is still no univer-
sal consensus on the optimal threshold values. Most guide-
lines define deficiency as a serum concentration below 30
nmol/L. In contrast, sufficiency is variably defined, ranging
from >50 nmol/L as recommended by the European Soci-
ety for Clinical and Economic Aspects of Osteoporosis [ 18]
to >75 nmol/L according to the Endocrine Society [7]. To
maintain adequate levels in the absence of enough sunlight
exposure, daily vitamin D intake is generally recommended
to range from 600 to 2000 international units [7].

3. The “Good”

Vitamin D plays an active role in cardiovascular phys-
iology, primarily mediated by the expression of its recep-
tors and activating enzymes in cardiomyocytes, endothelial
cells, and vascular smooth muscle cells [19]. Preclinical
studies have shown that VDR-null mice exhibit increased
left ventricular mass, elevated atrial natriuretic peptide lev-
els, and dysregulation of cardiac metalloproteinases and fi-
broblasts. These alterations promote fibrotic extracellular
matrix deposition, leading to ventricular dilatation and im-
paired electromechanical coupling [20-25].

In endothelial cells, VDR activation regulates vascu-
lar endothelial growth factor expression, influences calcium
influx, and modulates the vascular endothelium-dependent
tone [26,27]. In VDR-deficient mice, endothelial nitric
oxide (NO) synthase is reduced by more than 50%, and
acetylcholine-induced aortic relaxation is considerably im-
paired [28,29]. The increased renin expression and renin-
angiotensin-aldosterone system (RAAS) activation have
been suggested as additional mechanisms, as observed in
Fig. 2 [30]. Therefore, in hypertensive rats, chronic treat-
ment with 1,25(OH),D showed to reduce reactive oxygen
species (ROS) levels and cyclooxygenase-1 (COX-1) ex-
pression with beneficial effects on blood pressure [31].

Vitamin D also exerts significant anti-inflammatory
effects, modulating both innate and adaptive immune re-
sponses. It suppresses proinflammatory cytokines such as
interleukin (IL)-6, tumor necrosis factor-alpha (TNF-q),
and IL-23 while promoting the release of anti-inflammatory
mediators including IL-10 and IL-4 [19,32,33]. No-
tably, both 1,25-dihydroxyvitamin D [1,25(OH);D] and
25-hydroxyvitamin D [25(OH)D] act through mitogen-
activated protein kinase phosphatase-1—a signaling path-
way activated in monocytes and macrophages—to in-
hibit the production of TNF-«a and IL-6 [34]. In vitro
studies have also demonstrated that 1,25(OH);D attenu-
ates Toll-like receptor (TLR)-mediated inflammatory re-
sponses and downregulates the production of proinflam-
matory microRNA-155 in macrophages [35]. Active vita-
min D also promotes macrophage polarization toward an
anti-inflammatory M2 phenotype, as shown by increases in
CD206 and IL-10 expression and enhanced M2 markers in
both cell culture and animal studies [36]. Additionally, vita-
min D/VDR directly suppresses NOD-like receptor family
pyrin domain containing 3 (NLRP3) inflammasome activa-
tion by binding NLRP3 and preventing BRCC3-mediated
deubiquitination, thereby inhibiting IL-1/3 secretion and py-
roptosis [37]. VDR activation also represses NF-xB sig-
nalling and upregulates SOCS1, providing negative feed-
back control of TLR4-mediated signaling [38]. Vitamin D
has further been shown to modulate adaptive immunity by
inhibiting pro-inflammatory T-cell and dendritic cell dif-
ferentiation while supporting T-regulator and natural killer
(NK) cell function [39]. In a double knockout mouse model
lacking both the VDR and IL-10, accelerated progression
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Fig. 1. Vitamin D metabolism pathway. Vitamin D metabolism begins with its production in the skin (under ultraviolet B (UVB)

light, as cholecalciferol or Vitamin D3) or its intake from food (as cholecalciferol, Vitamin D3, or ergocalciferol, Vitamin D2). After

absorption, Vitamin D binds to a transport protein (DBP) and travels to the liver. There, it is converted into calcidiol [25(OH)Ds], the

storage form, by the enzyme 25-hydroxylase. In the kidneys, calcidiol is converted into calcitriol [1,25(OH)2 D3], the active form, through

la-hydroxylase. This step is positively controlled by calcium and phosphate levels and negatively influenced by fibroblast growth factor

(FGF)-23, which also influences the inactivation into [24,25(OH)2D3] by 24-hydroxylase. Calcitriol regulates calcium and phosphate

in the body by increasing their release from bones (through increased osteoclast activity), improving absorption in the gut, and reducing

loss in urine (increased reabsorption in the proximal renal tubule). Created in BioRender (https://BioRender.com/3cghys3). Golino, M.

(2025).

of inflammatory bowel disease was observed, accompa-
nied by increased TNF-« expression. Administration of
1,25(OH)2D combined with a high-calcium diet signifi-
cantly reduced TNF-« levels and attenuated disease sever-
ity [40]. Together, these pathways underscore the multi-
level role of vitamin D in immune homeostasis and its po-
tential to limit chronic systemic and cardiovascular inflam-
mation.

Beyond its broad anti-inflammatory effects, vitamin
D plays a key role in modulating the pathogenesis of
atherosclerosis. It influences monocyte activity and the
regulation of matrix metalloproteinases (MMPs). Specif-
ically, vitamin D has been shown to reduce the expression
of TNF-q, IL-6, IL-1, and IL-8 in isolated blood monocytes
[6,41]. Suppression of IL-6 contributes to decreased C-
reactive protein (CRP) levels, an acute-phase reactant and
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a well-established predictor of atherosclerotic disease and
cardiovascular events [42].

Nakagawa et al. [43] demonstrated that 1,25(OH);D
downregulates MMP-2 and MMP-9 expression in cultured
cells, stabilizing atherosclerotic plaques and reducing the
risk of rupture, thrombosis, and lumen obstruction. Vitamin
D also reduces cholesterol accumulation in macrophages
and inhibits low-density lipoprotein (LDL) uptake within
atheromatous plaques [44]. Furthermore, it modulates
thrombogenic activity by regulating thrombomodulin and
tissue factor expression in monocytes, thereby affecting
platelet aggregation and coagulation potential [45].

Vitamin D improves endothelial function by upregu-
lating endothelial NO synthase (eNOS) through phospho-
inositide 3-kinase/protein kinase B (PI3K/AKT)-dependent
pathways, enhancing NO production and reducing endothe-
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lial oxidative stress [46]. Furthermore, vitamin D sup-
presses NF-xB-mediated expression of endothelial adhe-
sion molecules such as vascular cell adhesion molecule 1
(VCAM-1), intercellular adhesion molecule 1 (ICAM-1),
and E-selectin, thereby limiting monocyte adhesion and
early plaque formation [47]. Vitamin D has also been
shown to inhibit vascular smooth muscle cell proliferation
and migration, thereby reducing neoinitimal hyperplasia
and plaque progression [48]. Vitamin D also exerts athero-
protective effects by inhibiting NLRP3-inflammasome ac-
tivity within endothelial cells and macrophages, leading to
reduced IL-1/ and IL-18 release within plaques [37].

In apolipoprotein E-deficient mouse models, active vi-
tamin D administration reduced the number of atheroscle-
rotic lesions, decreased macrophage infiltration, and lim-
ited CD4+ T-cell accumulation in the aortic sinus. Oral cal-
citriol further attenuated atherosclerosis by promoting the
induction of regulatory T cells and immature dendritic cells
with tolerogenic properties [49].

Experimental evidence also indicates that vitamin D
enhances insulin secretion and sensitivity by modulating
both pancreatic and inflammatory pathways [50]. The dis-
covery of VDRs in pancreatic S-cells has fueled interest
in the potential role of vitamin D deficiency in insulin re-
sistance and type 2 diabetes [51-54]. Calcitriol has been
shown to influence insulin secretion by modulating voltage-
dependent calcium channels, which are essential for insulin
granule exocytosis. In healthy individuals, VDR expression
is particularly enriched in pancreatic islets but is diminished
in individuals with diabetes.

In vitro studies using rat insulinoma-derived S-cells
demonstrated that calcitriol upregulates genes such as Vdr,
Gck (glucokinase), and /nsrb (insulin receptor beta), while
leaving other genes unaffected. Moreover, VDR expression
in human islets correlates positively with the expression of
calcium-handling genes and is upregulated by agents such
as rosiglitazone and dexamethasone but not by metformin
or insulin. These findings support a mechanistic model in
which vitamin D enhances (-cell function and insulin se-
cretion through VDR- and calcium-dependent mechanisms,
independent of phospholipase C activation [51].

These findings suggest that vitamin D may contribute
to glycemic control via direct effects on pancreatic 3-cells
and exert broader cardiometabolic benefits through its anti-
inflammatory, antiatherosclerotic, and immunomodulatory
properties.

4. The “Bad”

The role of vitamin D in cardiovascular health is com-
plex and, at times, controversial. While vitamin D defi-
ciency is associated with adverse outcomes, excessive lev-
els may also have harmful effects. One major concern in-
volves the potential link between vitamin D supplementa-
tion and vascular calcification. Vascular calcification re-
sults from the deposition of calcium phosphate crystals

within arterial walls, reducing arterial compliance and in-
creasing cardiovascular risk. Preclinical studies have re-
ported that supraphysiological vitamin D levels can induce
vascular calcification in animal models [55,56]. For in-
stance, rats administered high doses of vitamin D showed
significant arterial stiffness and aortic calcification [57].
Similarly, vitamin D and calcium supplementation pro-
moted vascular calcification in pseudoxanthoma elasticum
mouse models [58]. Notably, such vascular remodeling ap-
peared reversible upon reduction of vitamin D levels [57].
Human data also support this association. Case reports and
small cohort studies have described metastatic arterial cal-
cifications and soft-tissue calcifications in patients with hy-
pervitaminosis D, hypercalcemia, and extremely elevated
25(OH)D levels (e.g., >150 ng/mL) [59]. Vascular calcifi-
cation has also been observed in patients receiving high-
dose vitamin D or alendronate combined regimens [60].
Observational studies have identified a U- or J-shaped as-
sociation between serum 25(OH)D concentrations and car-
diovascular morbidity and mortality, suggesting that both
low (<20 ng/mL) and high (>50-60 ng/mL) vitamin D
levels are associated with increased risk [61]. However,
a randomized controlled trial using daily vitamin D3 400—
10,000 IU for 3 years found no difference in development or
progression of lower limb artery calcification, suggesting
that vascular calcification may depend on individual vul-
nerability or metabolic context rather than supplement dose
alone [62]. Despite these concerns, randomized trials inves-
tigating the effects of vitamin D supplementation on blood
pressure and arterial stiffness have mainly yielded disap-
pointing results. For instance, administration of high-dose
cholecalciferol (15,000 International Units (IU)/day for 1
month) to obese hypertensive subjects resulted in a mod-
est reduction in mean arterial pressure but also heightened
angiotensin sensitivity and increased aldosterone secretion
[63,64]. Several meta-analyses have confirmed the lack of
significant clinical benefit of vitamin D supplementation on
vascular stiffness and endothelial function. In a review of
13 Randomized Controlled Trials (RCTs), Rodriguez ef al.
[65] reported nonsignificant reductions in pulse wave ve-
locity and augmentation index (0.1 m/s and —0.15, respec-
tively; p = 0.17 and 0.08). Similar findings were observed
by Joris and Mensink [66], and Stojanovi¢ and Radenkovié
[67], who found no improvement in brachial artery flow-
mediated dilation after vitamin D intake, across diverse
populations.

Large-scale RCTs, including patients with pre-
hypertension or stage I hypertension, further reinforced
these findings. A six-month study comparing daily high-
dose (4000 IU) versus low-dose (400 IU) cholecalciferol
found no significant difference in 24-hour systolic blood
pressure (0.8 vs —1.6 mm Hg; p = 0.71) [68]. Likewise,
an Austrian RCT of 188 hypertensive patients receiving
25(0OH)D <30 ng/mL showed no antihypertensive effect
with 2800 IU/day compared to placebo (-0.4 mm Hg; p =
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Fig. 2. Mechanisms of Vitamin D on the cardiovascular system. The active form of Vitamin D (calcitriol or 1,25(OH)2D3) binds to

the Vitamin D receptor (VDR), which heterodimerizes with the retinoid X receptor (RXR). This complex binds to vitamin D response

elements (VDRESs) in target genes, modulating transcription via co-activators and co-repressors. The effects are cell-type specific: in

parathyroid cells, Vitamin D downregulates parathyroid hormone (PTH) expression; in bone cells, it promotes FGF-23 production; and

in cardiovascular cells-including cardiomyocytes, vascular smooth muscle cells, and endothelial cells-it mediates beneficial effects via:

inhibition of the renin-angiotensin-aldosterone system (RAAS), downregulation of pro-inflammatory cytokines (IL-6, IL-1, IL-8, TNF-

«), and enhancement of endothelial nitric oxide production and vascular tone. These actions collectively contribute to reduced blood

pressure, decreased inflammation, and improved vascular function. Created in BioRender (https://BioRender.com/t231764). Pastena, P.

(2025).

0.712) [69]. These results are further supported by a com-
prehensive meta-analysis of 46 RCTs involving 4541 par-
ticipants, which found no significant effect of vitamin D
supplementation on systolic (—0.5 mm Hg; p = 0.27) or di-
astolic (0.2 mm Hg; p = 0.38) blood pressure [70]. Simi-
larly, Qi et al. [71] evaluated 8 RCTs in non-chronic kidney
disease (CKD) individuals with pre-hypertension or hyper-
tension and found no significant effect of vitamin D sup-
plementation on either systolic (-0.08 mm Hg; p = 0.2) or
diastolic (0.09 mm Hg; p =0.155) blood pressure compared
to placebo.

Large-scale randomized controlled trials underscore
this lack of clinical benefit (Table 1, Ref. [72—74]). VIN-
DICATE (VItamiN D treatIng Patients with Chronic heArT
failurE) [72], VITAL (VITamin D and omegA-3) [73], and
VIDA (Vitamin D Assessment Study) [74], trials failed to
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demonstrate meaningful reductions in cardiovascular out-
comes with vitamin D supplementation. The VINDICATE
trial, which focused on patients with systolic HF, evaluated
4000 IU/day of vitamin D3 for 12 months. Although im-
provements in left ventricular structure and function were
seen, no gains were observed in functional capacity, as mea-
sured by the six-minute walk test, suggesting limited clin-
ical impact despite structural changes [72]. The VITAL
trial [73] enrolled over 25,000 middle-aged and older adults
and randomized them to receive vitamin D3 (2000 [U/day)
and/or omega-3 fatty acids. After more than six years of
follow-up, no significant reductions were observed in rates
of myocardial infarction, stroke, or cardiovascular death
when compared with placebo. In the ViDA trial conducted
in New Zealand, participants received 100,000 IU/month of
vitamin D3 or placebo for approximately three years. This
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Table 1. Recent RCTs on vitamin D supplementation and cardiovascular outcomes.

Study Year Study design Population Intervention Outcomes Main findings
VINDICATE (VitamIN 2016 Randomized, n =229 adults with Daily vitamin D3 (4000 Primary endpoint: 6MWT distance. No improvement in 6MWT.
D treatlng patients with double-blind, HFrEF and vit D 1U) vs. placebo for 12 Secondary endpoints: LVEF, left 1 LVEF by 6.1%, | LV dimensions.
Chronic heArT failurE) placebo-controlled trial deficiency months ventricular dimensions (LVEDD, Safe, no hypercalcemia or renal harm.
study [72] LVESD), left ventricular volumes
(LVEDV, LVESV), renal function, serum
calcium, PTH levels

VITamin D and OmegA- 2019 Randomized, n= 25,871 adults, >50 Daily vitamin D3 (2000 Major cardiovascular events (myocardial No reduction in major CVD (HR 0.97),
3 TriaL (VITAL) [73] double-blind, (men)/>55 (women), 1U) vs. placebo for 5.3 infarction, stroke, cardiovascular total cancer (HR 0.96), or mortality.

placebo-controlled trial (including 5106 African years mortality), total cancer incidence, cancer | Cancer mortality after excluding first 2

Americans) mortality, all-cause mortality years (HR 0.75).

Vitamin D Assessment 2020 Randomized, n = 5110 adults 50-84 Monthly high-dose Primary endpoints: CVD, acute No effect on CVD (HR 1.02), fractures,
(ViDA) study [74] double-blind, yrs vitamin D3 (100,000 1U) respiratory infections, fractures, falls, falls, or cancer. Improved statin

placebo-controlled trial

vs. placebo for a median
of 3.3 years

total cancer incidence.
Secondary outcomes: statin persistence,
lung function, BMD, arterial function.

adherence (HR 1.15; p = 0.02), better
lung function in ever-smokers (+57 mL
FEV1; p =0.03), and enhanced arterial
function in vitamin D—deficient
individuals (p = 0.03).

o)

)

(i

4

Ss3id NI

Studies are ordered by year of publication. Abbreviations: 6MWT, 6-Minute Walk Test; BMD, Bone Mineral Density; CVD, Cardiovascular Disease; FEV1, Forced Expiratory Volume in 1 Second; HF, Heart
Failure; HFrEF, Heart Failure with Reduced Ejection Fraction; HR, hazard ratio; LVEDD, Left Ventricular End-Diastolic Diameter; LVEDYV, Left Ventricular End-Diastolic Volume; LVEF, Left Ventricular Ejection
Fraction; LVESD, Left Ventricular End-Systolic Diameter; LVESV, Left Ventricular End-Systolic Volume; LVSD, Left Ventricular Systolic Dysfunction; PTH, Parathyroid Hormone; RCT, Randomized Controlled

Trial; ViDA, Vitamin D Assessment study; 1, Increase; | , Reduction.
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regimen also did not reduce the incidence of cardiovascular
events, including myocardial infarction, angina, or stroke
[74].

5. The Unknown

A persistent uncertainty in the relationship between
vitamin D—and cardiovascular disease lies in the incon-
sistency across the available evidence. Meta-analyses by
Parker et al. [75], Zittermann et al. [76], and Gaksch et
al. [77] report inverse associations between circulating vi-
tamin D levels and cardiovascular risk or all-cause mortal-
ity. Parker et al. [75] found that individuals with the highest
vitamin D levels had 43% lower odds of cardiometabolic
disorders (odds ratio (OR) 0.57, 95% confidence interval
(CI): 0.48-0.68); Zittermann et al. [76] observed a nonlin-
ear reduction in all-cause mortality with optimal 25(OH)D
concentrations around 75-87.5 nmol/L; and Gaksch et al.
[771, using pooled individual data from over 26,000 par-
ticipants, showed significantly higher mortality risk at lev-
els below 30 nmol/L compared to the reference range of
75-100 nmol/L. However, these findings contrast sharply
with the results from RCTs, which have not consistently
demonstrated the clinical benefits of vitamin D supplemen-
tation. In particular, the meta-analysis by Barbarawi et al.
[12] found no significant reduction in major adverse car-
diovascular events among vitamin D-treated patients, and
Bjelakovic et al. [78] reported only a minor all-cause mor-
tality benefit, exclusively linked to vitamin D3 and not D2
or active analogs. These discrepancies may be attributed
to methodological differences, confounding factors such as
physical activity, sun exposure, comorbidities, and base-
line 25(OH)D levels. Notably, neither VITAL [73] nor
ViDA [74] stratified participants by baseline vitamin D sta-
tus, which may have diluted any effect in individuals with
profound deficiency.

In VITAL, for instance, only a small subset of ~500
participants had 25(OH)D levels below 25 nmol/L [73].
Additionally, ethnic disparities may contribute to inconsis-
tent findings. For example, individuals with darker skin
pigmentation often have lower serum 25(OH)D levels due
to reduced cutaneous synthesis, yet the clinical relevance
of this biochemical deficiency remains debated [79,80]. In
VITAL, over 20% of participants were African American,
a group that tends to have lower vitamin D levels but may
be less susceptible to its adverse skeletal or cardiovascu-
lar consequences, possibly due to differences in vitamin D-
binding protein polymorphisms and tissue-level vitamin D
responsiveness [81]. Thus, any potential benefit may be re-
stricted to severely deficient individuals underrepresented
in these trials. Future trials may need to stratify by eth-
nicity, baseline deficiency, and genetic polymorphisms to
more accurately identify responders to vitamin D supple-
mentation.

Vitamin D status is heavily influenced by non-
nutritional variables, making causal inference complex.
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Physical activity strongly correlates with higher serum
25(OH)D levels, possibly through enhanced lipolysis and
release from adipose stores [82—86]. However, this associ-
ation may be exercise-specific: while continuous combina-
tion training increased serum vitamin D, endurance train-
ing did not show similar effects [85]. Sun exposure, the
major endogenous source of vitamin D, introduces further
bias. Individuals with higher outdoor activity levels not
only have greater vitamin D production but also tend to have
lower baseline cardiovascular risk, potentially confounding
associations between vitamin D and CV outcomes. The het-
erogeneity in dosing regimens, supplementation duration,
and study populations further limits comparability across
trials and the generalizability of results. Many trials en-
rolled elderly, institutionalized, or comorbid individuals
whose high disease burden may have masked subtle car-
diovascular benefits from vitamin D repletion.

There is no consensus on optimal serum 25(OH)D
thresholds for cardiovascular protection. The Institute of
Medicine (IOM) recommends daily intakes of 400-800
IU primarily for skeletal health but notes that current ev-
idence is insufficient to support recommendations for car-
diovascular outcomes [87]. Meanwhile, others suggest that
1500-2000 IU/day may be necessary to maintain optimal
serum levels (>30 ng/mL), especially in at-risk individu-
als or those at higher latitudes [88,89]. However, a linear
inverse relationship between 25(OH)D and CVD risk ap-
pears to plateau around 60 nmol/L, and higher levels do
not confer further protection, raising concern about over-
supplementation [7]. Preliminary evidence suggests that
specific subgroups, such as patients with congestive HF,
CKD, or poorly controlled diabetes, may derive modest,
condition-specific benefits from vitamin D. In patients with
advanced CKD and low 25(OH)D, supplementation was
associated with reduced cardiovascular events [90]. In
contrast, in patients with diabetes and low vitamin D sta-
tus, a single high-dose administration improved systolic BP
and B-type natriuretic peptide levels [91]. Yet overall, the
long-term cardiovascular effects of vitamin D remain unre-
solved. Furthermore, several studies suggest that the effects
of vitamin D may vary depending on specific patient char-
acteristics. For instance, hormonal differences may modu-
late vitamin D metabolism, with estrogens increasing con-
version to its active form, potentially explaining sex-based
differences in vitamin D response [92,93]. Women, partic-
ularly postmenopausal, may benefit more in terms of bone
and cardiovascular health [94]. In patients with diabetes,
vitamin D may improve insulin sensitivity and S-cell func-
tion [95-97], although results from meta-analyses remain
mixed [98,99]. One placebo-controlled trial in South Asian
women with insulin resistance showed improved glycemic
indices following vitamin D supplementation [100]. Sim-
ilarly, individuals with advanced CKD often show severe
25(OH)D deficiency, and observational data support a sur-
vival benefit from vitamin D analogs in hemodialysis pa-
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tients [101-104]. These findings emphasize the need for
future RCTs to stratify by baseline vitamin D status, comor-
bidities, and demographic variables to clarify population-
specific benefits.

6. Additional Evidence From Observational
Studies

To complement interventional evidence, several high-
quality observational studies have consistently reported an
inverse association between serum 25(OH)D levels and car-
diovascular outcomes. Large prospective cohorts such as
the Third National Health and Nutrition Examination Sur-
vey (NHANES III) [105], the Ludwigshafen Risk and Car-
diovascular Health Study (LURIC) study [106], and the
Framingham Offspring Study [9] demonstrated that indi-
viduals with lower 25(OH)D concentrations had signifi-

Table 2. Recent observational studies evaluating the associatio

cantly higher risks of all-cause or cardiovascular mortality.
Specifically, Melamed et al. [105] found that the lowest
quartile of 25(OH)D (< 17.8 ng/mL) was associated with in-
creased all-cause mortality (hazard ratio (HR) 1.26; 95% CI
1.08-1.46), although cardiovascular-specific associations
were not statistically significant. Dobnig et al. [106] re-
ported that both the lowest and second-lowest quartiles of
25(OH)D were linked to increased all-cause (HR up to 2.08;
95% CI 1.60-2.70) and cardiovascular mortality (HR up to
2.22; 95% CI 1.57-3.15). Wang et al. [9] demonstrated
that 25(OH)D levels <15 ng/mL were associated with an in-
creased risk of first cardiovascular events (HR 1.62; 95% CI
1.11-2.36), with an even stronger association observed in
hypertensive patients (HR 2.13; 95% CI 1.30-3.48). Other
studies provided additional insights into specific cardiovas-
cular outcomes. Pilz ef al. [107] found that severe vitamin

n between vitamin D status and cardiovascular outcomes.

First ~ Author  Year Population (N) Study design Outcomes
[Reference]
Melamed, ML 2008 13,331 US adults Prospective Lowest quartile of 25(OH)D (<17.8 ng/mL) associated
[105] (NHANES 11I) with increased all-cause mortality (HR 1.26; 95% CI
1.08-1.46); association with CV mortality not statistically
significant.
Dobnig, H 2008 3258 patients referred to Prospective Lowest quartiles of 25(OH)D (medians 7.6 & 13.3 ng/mL)
[106] coronary angiography associated with increased all-cause mortality (HR up to
(LURIC cohort) 2.08; 95% CI 1.60-2.70) and cardiovascular mortality
(HR up to 2.22; 95% CI 1.57-3.13).
Wang, TJ [9] 2008 1739 participants from Prospective Lowest 25(OH)D levels (<15 ng/mL) associated with
the Framingham increased risk of first cardiovascular events (HR 1.62;
Offspring Study, free of 95% CI 1.11-2.36); association stronger in hypertensive
cardiovascular disease at patients (HR 2.13; 95% CI 1.30-3.48).
baseline
Pilz, S[107] 2008 3299 patients referred Cross-sectional with  Severe vitamin D deficiency (<25 nmol/L) was associated
for coronary longitudinal with increased risk of death due to heart failure (HR 2.84;
angiography follow-up 95% CI 1.20-6.74) and sudden cardiac death (HR 5.05;
95% CI2.13-11.97).
Acharya, P 2021 20,025 U.S. Veterans Retrospective, Patients who achieved >75 nmol/L after supplementation
[108] with baseline 25(OH)D case-control had lower MI risk compared with those remaining <50
<50 nmol/L nmol/L (HR 0.73; 95% CI 0.55-0.96); those achieving
50-75 nmol/L also had reduced MI risk (HR 0.65; 95% CI
0.49-0.85).
Simon, J [109] 2024 86 acute ischemic stroke Prospective 25(OH)D deficiency (<20 ng/mL) significantly associated
patients with greater stroke severity (higher NIHSS); inverse
correlation (r =—0.408; 8 =-0.3994; p < 0.001).
Candemir, B 2025 120 obese patients (BMI Retrospective Lowest 25(OH)D levels (<20 ng/mL) significantly

[110] >30 kg/m?) undergoing
coronary angiography

(for stable angina)

associated with higher SYNTAX scores (independent
predictor: OR = 0.809 per 1 ng/mL increase; 95% CI
0.743-0.881; p < 0.001); strong inverse correlation (r =
—0.77; p < 0.001).

Studies are ordered by year of publication. Abbreviations: BMI, body mass index; CI, confidence interval; CV, cardiovascular; HR, hazard

ratio; MI, Myocardial Infarction; LURIC, Ludwigshafen Risk and Cardi

ovascular Health Study; NHANES III, Third National Health and

Nutrition Examination Survey (1988-1994); NIHSS, National Institutes of Health Stroke Scale; SYNTAX, Synergy Between PCI With

TAXUS and Cardiac Surgery.
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D deficiency (<25 nmol/L) significantly increased the risk
of death due to HF (HR 2.84; 95% CI 1.20-6.74) and sud-
den cardiac death (HR 5.05; 95% CI 2.13—11.97). In a ret-
rospective case-control study of over 20,000 U.S. Veterans
[108], patients who achieved 25(OH)D levels >75 nmol/L
after supplementation had a lower risk of myocardial in-
farction compared to those who remained <50 nmol/L (OR
0.73; 95% CI 0.55-0.96). Achieving 50—75 nmol/L also
reduced MI risk, though to a lesser extent (HR 0.65; 95%
CI 0.49-0.85). Other studies linked vitamin D deficiency
to neurologic outcomes and coronary disease severity. In
ischemic stroke patients [109], 25(OH)D deficiency (<20
ng/mL) was associated greater stroke severity, measured
using the National Institutes of Health Stroke Scale (in-
verse correlation r =—-0.408; p < 0.001). Finally, in patients
undergoing coronary angiography for stable angina [110],
25(0OH)D level <20 ng/mL was independently associated
with higher Synergy Between Percutaneous Coronary In-
tervention with TAXUS and Cardiac Surgery (SYNTAX)
scores, indicating more severe coronary artery disease (ad-
justed OR = 0.809 per | ng/mL increase; 95% CI 0.743—
0.881; p < 0.001), with a strong inverse correlation (r =
—0.77; p < 0.001). These findings, summarized in Table 2
(Ref. [9,105—110]), support the hypothesis that low vita-
min D status is not only a marker of increased cardiovascu-
lar risk but may also represent a potentially modifiable risk
factor.

7. Recently Completed Trials, Ongoing
Research and Future Direction

Several high-quality trials have recently been com-
pleted and contribute valuable insights into the cardiovas-
cular effects of vitamin D supplementation (Table 3, Ref.
[111-115]). The VITAL trial [111], which enrolled over
25,000 U.S. adults without prior cardiovascular disease,
showed that daily supplementation with 2000 IU of vita-
min D3 did not reduce the incidence of major cardiovas-
cular events (myocardial infarction, stroke, cardiovascu-
lar mortality) compared to placebo. The VITAL Rhythm
substudy [112] focused on atrial fibrillation and similarly
found no overall reduction in AF incidence, although a sub-
group analysis suggested a possible benefit in Black partic-
ipants. The VITAL Heart Failure (VITAL HF) substudy
[116], which evaluated HF outcomes, reported no signif-
icant effect of vitamin D3 on incident HF. Other recently
completed studies include: the DO-HEALTH trial [113],
which found no benefit on major adverse cardiovascular
events (MACE) or hypertension, although omega-3 sup-
plementation improved lipid profiles; the D2d trial [114],
which showed no significant reduction in MACE, but a
small improvement in atherosclerotic cardiovascular dis-
ease (ASCVD) risk score; the D-Health Trial [115], which
reported no reduction in CVD incidence or mortality with
monthly high-dose vitamin D3, but observed that baseline
vitamin D deficiency was associated with higher cardio-
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vascular risk. Finally, the COSMOS trial (NCT02422745)
explored cardiovascular outcomes using a factorial design
involving cocoa extract and multivitamins; although com-
pleted, cardiovascular-specific results are still under anal-
ysis. These trials underscore the current limitations of vi-
tamin D interventional research: despite strong mechanis-
tic and observational data, large RCTs have yet to confirm
clear cardiovascular benefits. One possible explanation lies
in the heterogeneity of study designs, including substantial
variability in baseline vitamin D status, dosing regimens
(daily vs. bolus), treatment duration (weeks vs. years), and
inconsistent thresholds for what constitutes sufficiency or
deficiency. In many cases, participants were enrolled re-
gardless of their vitamin D levels, potentially diluting the
benefit among those who were already replete. Most tri-
als did not stratify or tailor therapy based on vitamin D
deficiency, nor did they incorporate biomarkers to iden-
tify those most likely to benefit. For example, individu-
als with severe deficiency (<10 ng/mL) may experience
different physiological responses than those with mild in-
sufficiency, yet this distinction was often overlooked. Fur-
thermore, genetic variability—including polymorphisms in
DBP, VDR receptors, and enzymes involved in vitamin D
metabolism—remains poorly accounted for in most studies,
despite growing evidence that these factors significantly in-
fluence absorption, transport, and biological activity. Sim-
ilarly, metabolic heterogeneity, including comorbid con-
ditions such as chronic kidney disease, obesity, or dia-
betes, may alter vitamin D kinetics and modify cardiovas-
cular risk independently. Yet, subgroup analyses for these
populations remain limited or underpowered in most trials.
The lack of consensus on appropriate surrogate endpoints—
such as inflammatory markers, left ventricular function, or
vascular stiffness—further complicates the interpretation of
results and hinders the identification of mechanistic signals
that could precede clinical benefit. In short, the “one-size-
fits-all” approach in these RCTs may have masked benefits
in more vulnerable subgroups, highlighting the urgent need
for more personalized, biomarker-guided, and hypothesis-
driven trial designs moving forward.

To address these gaps, several ongoing studies are
focusing on more personalized and targeted approaches.
Trials such as INVITe (NCT02925195) are ongoing and
aim to uncover genetic and metabolic predictors of in-
dividual responses to vitamin D. Others, like TARGET-
D (NCT02996721) and VINDICATE 2 (NCT03416361),
are selectively enrolling participants with documented de-
ficiency and high cardiovascular risk, aiming to clarify
whether supplementation is beneficial in those who are
most likely to respond. Pediatric populations are also be-
ing investigated. The Vitamin D and Vascular Health in
Children (NCT01797302) trial assesses vascular function
in obese children and evaluates the effects of daily supple-
mentation (600-2000 IU) over six months, while Low vs.
Moderate to High Dose Vitamin D for Prevention of CO-
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Table 3. Recently completed and ongoing studies investigating vitamin D in cardiovascular diseases.

Study ClinicalTrials.gov ~ Start year Study design Population Intervention/Exposure  Primary endpoint(s) Secondary endpoint(s) Major findings
Identifier or
Reference
Recently Completed
VITAL [111] 2010 Interventional; Adults aged >50 Daily vitamin D3 Major Coronary No significant reduction in the
Randomized, years (men) and (2000 IU) and/or cardiovascular revascularization, death incidence of major
placebo-controlled >55 years (women) marine omega-3 events (myocardial from invasive cancer, cardiovascular events (MI,
trial without prior CVD, fatty acids (EPA 465 infarction, stroke, death from any cause stroke, CV death) or cancer with
stroke or cancer mg + DHA 375 mg) cardiovascular vitamin D3 (2000 [U/day)
vs. placebo for a mortality), invasive supplementation vs. placebo in
median of 5.3 years cancer the general population.
VITAL Rhythm [112] 2012 Interventional, Adults aged >50 Daily vitamin D3 Incident AF AF subtypes No reduction in incident atrial
Randomized, years (men) and (2000 IU) and/or (paroxysmal vs. fibrillation with vitamin D3
double-blind, >55 years (women) marine omega-3 persistent AF); sudden (2000 IU/day) or omega-3 fatty
placebo-controlled without prior AF, fatty acids (EPA 460 cardiac death; ECG acids.
trial CVD, or cancer (n=  mg + DHA 380 mg) changes
25,871) vs. placebo for a
median of 5.3 years
DO-HEALTH [113] 2012 Randomized, Elderly (mean age Vitamin D3 (2000 Hypertension, Lipid biomarkers, BP, No benefit on MACE; omega-3
placebo-controlled 74), 61.7% women 1U/day) 4+ omega-3 MACE, lipid profile physical activity improved lipids
trial + SHEP vs. placebo
D2d [114] 2013 Randomized, Adults with Vitamin D3 (4000 MACE, ASCVD BP, lipids, hs-CRP, No MACE reduction; small
placebo-controlled prediabetes (n = 1U/day) vs. placebo risk score ASCVD risk factors benefit in ASCVD risk score
trial 2423)
D-Health Trial [115] 2014 Randomized, 21,315 adults aged Monthly oral CVD incidence and All-cause mortality No CVD reduction; deficiency
placebo-controlled 6084 years in vitamin D3 (60,000 mortality linked to higher CVD risk

trial

Australia, without
known vitamin D

deficiency

IU) vs. placebo for 5
years

Ss3id NI
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Table 3. Continued.

Study ClinicalTrials.gov Start year Study design Population Intervention/Exposure Primary endpoint(s) Secondary endpoint(s) Major findings
Identifier or
Reference
Ongoing
TARGET-D NCT02996721 2017 Interventional; Patients with a history of MI and Standard of care vs. Death, myocardial NA Pending
Randomized, vitamin D deficiency individualized vitamin infarction, heart
Open-Label, Parallel D3 supplementation to failure
Assignment achieve 25(0OH)D >40  hospitalization, and
ng/mL CVA
INVITE NCT02925195 2017 Interventional; 1600 Adults from the Daily vitamin D3 (2000  To identify genetic Change in blood Pending
Randomized, Multi-Ethnic Study of IU) vs. placebo in 3:1 polymorphisms, pressure, in urine
Double-blind, Parallel Atherosclerosis (MESA) study ratio for 16 weeks clinical calcium concentrations
Assignment, characteristics, and and serum calcium
placebo-controlled trial biomarkers that concentrations
modify the biologic
response to vitamin
D3 treatment
VINDICATE-MI  NCT03086746 2018 Prospective cohort Adults (>18 years) with recent Baseline vitamin D Left ventricular Vitamin D, Vitamin D Pending
(<72 hours) STEMI levels remodeling (>5%  binding protein and PTH
Vitamin D3 reduction in LVEF levels
supplementation (4000  or >15% increase in
IU daily) vs. placebo LVESVi) at 6
months
VINDICATE 2 NCT03416361 2023 Interventional, Adults (>18 years) with CHF 4000 IU Vitamin D3 Time to death or Total mortality, Pending
Randomized, due to LVSD (LVEF <50%), (chewable tablets, 2 per  first hospitalization  cost-effectiveness (ICER
Quadruple-Blind, vitamin D deficiency (<50 day) vs. placebo for heart failure (24 for vitamin D), change
Parallel Assignment nmol/L), and at least one months) in patient quality of life
(EQ5D-5L)

high-risk criterion (recent HF
hospitalization, high-dose
diuretics, diabetes, or ischemic
heart disease)
Studies are ordered by year of publication. Abbreviations: AF, Atrial fibrillation; ASCVD, Atherosclerotic Cardiovascular Disease; BP, Blood Pressure; CHF, Chronic heart failure; CVA, Cerebrovascular accident;
CVD, Cardiovascular disease; DHA, Docosahexaenoic acid; ECG, Electrocardiogram; EQ5D-5L, EuroQol 5-Dimension 5-Level questionnaire (measure of health-related quality of life); EPA, Eicosapentaenoic
acid; HF, Heart failure; hs-CRP, High-Sensitivity C-Reactive Protein; ICER, Incremental cost-effectiveness ratio; LVEF, Left ventricular ejection fraction; LVESVi, Left ventricular end-systolic volume index;
LVSD, Left ventricular systolic dysfunction; MACE, Major Adverse Cardiovascular Events; MI, Myocardial infarction; NA, Not Applicable; SHEP, simple home-based exercise program; RCT, Randomized

Controlled Trial; STEMI, ST-elevation myocardial infarction.
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VID-19 (NCT04868903) explores optimal dosing in
infants. In acute care settings, the VIOLET trial
(NCT03096314) tests whether a single high dose (540,000
IU) of vitamin D3 could reduce mortality in critically ill, vi-
tamin D—deficient patients. Additional studies are explor-
ing metabolic and structural outcomes, such as glycemic
control in children with type 1 diabetes (NCT05141968)
and cardiac remodeling following myocardial infarction or
in HF, such as in VINDICATE-MI (NCT03086746). Col-
lectively, these trials aim to address key knowledge gaps re-
garding optimal dosing strategies, the most responsive tar-
get populations, and the true efficacy of vitamin D in car-
diovascular prevention and therapy. Their results may help
reconcile the current discrepancies between observational
and interventional evidence and determine whether vitamin
D can play a meaningful role in cardiovascular health.

8. Conclusion

Vitamin D remains a compelling yet enigmatic player
in cardiovascular health. The Good includes its anti-
inflammatory, antifibrotic, and vasoprotective properties.
The Bad highlights concerns surrounding the potential ad-
verse effects of over-supplementation and the unmet expec-
tations in large RCTs. Finally, the Unknown lies in the per-
sistent gap between association and causation, complicated
by confounding variables, heterogeneous populations, and
inconsistencies in dosing regimens. As ongoing large-scale
trials unfold, there is cautious optimism that great clarity
will emerge, revealing whether vitamin D is a silent by-
stander or a modifiable contributor to cardiovascular dis-
ease prevention and management.
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growth factor-23; RXR, retinoid X receptor; ROS, reactive
oxygen species; COX-1, cyclooxygenase-1; IL, interleukin;
TNF-q, tumor necrosis factor-alpha; TLR, Toll-like recep-
tor; CRP, C-reactive protein; LDL, low-density lipoprotein;
MMP, matrix metalloproteinase; RCT, randomized con-
trolled trial; CVD, cardiovascular disease; CKD, chronic
kidney disease; OR, odds ratio; IOM, Institute of Medicine;
VINDICATE, VItamiN D treatlng Patients with Chronic
heArT failurE; VITAL, VITamin D and omegA-3 Trial;
VIDA, Vitamin D Assessment Study; INVITe, Individual
response to Vitamin D trial; COSMOS, COcoa Supple-
ment and Multivitamin Outcomes Study; VIOLET, Vitamin
D to Improve Outcomes by Leveraging Early Treatment;
TARGET-D, Trial of Administration of Vitamin D after
Myocardial Infarction; OR, odds ratio; CI, confidence inter-
val; HR, hazard ratio; MACE, major adverse cardiovascular
events; ASCVD, atherosclerotic cardiovascular disease.
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