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Abstract

Owing to the aging global population, cardiovascular disease (CVD) has become the leading cause of morbidity and mortality worldwide.
The aging process is closely associated with cardiac neurovascular interface deterioration, particularly autonomic nervous system (ANS)
dysfunction, which has profound effects on cardiovascular health. Recent studies have suggested that long-term moderate exercise can
improve ANS function and alleviate CVD risk. This review evaluates the effects of exercise on the cardiac neurovascular interface and
ANS function, with a particular focus on the distinct roles of aerobic and anaerobic exercise on cardiac health. Research has shown
that exercise significantly enhances heart rate variability, improves autonomic regulation of the heart, and reduces oxidative stress and
inflammation, thereby improving cardiac function and reducing the incidence of CVD. Specifically, high-intensity interval exercise and
combination training incorporating both aerobic and anaerobic exercise improve the cardiac neurovascular interface and promote cardiac
repair. However, while the benefits of exercise are widely recognized, understanding of the factors such as individual differences, exercise
intensity, and exercise type needs to be improved to optimize the effectiveness of exercise interventions. Thus, future research should
focus on personalized exercise interventions and the identification of biomarkers, such as microRNAs, to enhance the effectiveness of
exercise intervention as a clinical treatment strategy.
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1. Introduction

According to the World Health Organization, the
global population of elderly individuals is projected to ex-
ceed 1.2 billion by 2025 [1]. Demographic aging is accel-
erating worldwide. It is estimated that by 2040, individuals
aged 60 and older will constitute 19.2% of the global pop-
ulation, with Europe, North America, and Australia/New
Zealand experiencing the most pronounced age-structure
transitions [2]. Advancing age is correlated with substan-
tially higher rates of age-related morbidity and mortal-
ity, notably from cardiovascular diseases and cancer [1,3].
Moreover, regional trajectories diverge markedly: devel-
oped countries already maintain a sizeable proportion of
elderly people, while developing countries are experienc-
ing rapid demographic transitions but continue to record
lower health-adjusted life expectancy among older cohorts
[4-6]. Aging is closely associated with morphological and
functional changes in the cardiovascular system, which are
strongly correlated with the incidence of cardiovascular dis-
ease (CVD) [7]. CVD remains the leading cause of mor-

bidity and mortality globally, with over 18.5 million people
dying from CVD annually, accounting for 31% of global
deaths [8].

Studies have observed a close association between
cardiac neurovascular interface deterioration and auto-
nomic nervous system (ANS) dysfunction, primarily man-
ifesting as reduced heart rate variability (HRV) and abnor-
mal heart rate recovery. The ANS plays a crucial role in
regulating cardiovascular function, and ANS dysfunction
can lead to a range of CVDs [9-11].

Low-intensity exercise (heart rate <140 bpm) induces
minimal perturbation of sympathovagal balance, primar-
ily characterized by parasympathetic dominance. Time-
domain HRV indices exhibit only transient reductions and
typically return to baseline within minutes, indicating rapid
restoration of autonomic homeostasis [12—14]. Moderate-
intensity exercise (140 bpm < heart rate < 150 bpm) ef-
fectively enhances HRV, boosts parasympathetic activity,
and improves cardiovascular and neuroregulatory function
[13,15,16]. HRV recovery to baseline is achieved within a
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short period, and cardiac vagal modulation shows its great-
est increases under these conditions [13,16]. In contrast,
high-intensity exercise and high-intensity interval training
(HIIT) (heart rate >150—160 bpm)—and high-intensity ex-
ercise induce pronounced sympathetic activation, marked
reductions in HRV, and suppression of parasympathetic ac-
tivity, resulting in prolonged autonomic recovery [12,13,
15,17-19]. During the post-exercise period, elevated heart
rate and plasma norepinephrine persist, and HRV remains
suppressed for an extended duration [12,17-19]. There-
fore, moderate-intensity exercise emerges as the optimal
approach to enhancing ANS function: It activates car-
diac vagal pathways, increases HRV, promotes parasym-
pathetic activity, and avoids the excessive sympathetic ac-
tivation and delayed recovery inherent to high-intensity ex-
ercise [13,15,16]. Systematic reviews and numerous exper-
imental studies have shown that moderate-intensity exer-
cise leads to quicker ANS recovery and the most signifi-
cant improvements in cardiovascular and neural regulation,
making it the optimal choice for enhancing ANS function
[13,16]. Exercise intensity and duration are key determi-
nants of post-exercise ANS disruption and recovery rate.
High-intensity, short-duration exercise tends to slow ANS
recovery [12,15,18], while moderate- to low-intensity exer-
cise over an appropriate and sustained period is more ben-
eficial for ANS function and rapid recovery [13-15,17,18].
Strategic periodization of frequency, intensity, and duration
can enhance ANS adaptability and improve long-term car-
diovascular health.

1.1 Differences in ANS Responses Between Acute and
Chronic Exercise

The ANS also responds differently to acute (single-
session) versus chronic (long-term) exercise. Acute exer-
cise triggers immediate sympathovagal adjustments, typi-
cally manifesting as increased sympathetic excitation and
vagal withdrawal [20-23]. In contrast, chronic exercise
elicits autonomic plasticity: regular training plays a signif-
icant role in enhancing ANS function and reducing cardio-
vascular risk [21,23].

1.2 Neural Mechanisms of Exercise-Induced Cardiac
Autonomic Regulation

During physical activity, cardiac autonomic regu-
lation is achieved through the integrated modulation of
sympathetic and parasympathetic outflows to meet the
metabolic demands of skeletal muscles [24—26]. This in-
tegration arises from four principal neural circuits: central
command, the exercise pressor reflex, the arterial barore-
ceptor reflex, and cardiopulmonary baroreceptors [23,24,
27]. Central command from higher brain centers rapidly
triggers sympathetic drive and vagal withdrawal; in par-
ticular, hypothalamic orexinergic neurons are rapidly re-
cruited during exercise, serving as a key nexus between mo-
tor activity and autonomic cardiovascular regulation [28].

In addition, exercise induces upregulation of dopamine (-
hydroxylase and oxytocin signaling pathways within au-
tonomic nuclei, fostering synaptic plasticity that enhances
parasympathetic tone and baroreceptor reflex function in
aged hypertensive animal models [29].

1.3 Mechanisms Underpinning Exercise-Induced
Modulation of Autonomic Pathways

Physical exercise drives adaptive remodeling of both
sympathetic (SNS) and parasympathetic (PNS) outflows,
thereby optimizing autonomic balance. With escalating
workload, SNS and PNS circuits engage in increasingly co-
ordinated responses, reflected in concurrent shifts in heart
rate variability, cutaneous blood flow, and electrodermal
activity [15].

1.4 Dose-Dependent Effects of Intensity, Duration, and
Frequency on Autonomic Recovery

Exercise intensity and duration are the main fac-
tors determining the magnitude of autonomic perturbation
and the kinetics of post-exercise recovery. High-intensity,
short-duration exercise slows down ANS recovery [12,13,
30], while moderate- to low-intensity exercise elicits more
tempered sympathetic responses and accelerates recovery
[13,17,30-32]. If the frequency, intensity, and duration
of training are periodized appropriately, training fosters
greater autonomic adaptability and promotes long-term car-
diovascular health.

1.5 Autonomic Dysfunction and Neurovascular Interface
Degeneration: Aging-Related and Disease-Specific
Mechanisms

ANS dysfunction and degeneration of the cardiac neu-
rovascular interface arise both as a function of chrono-
logical aging and in response to specific pathologies.
With advancing age, cardiac sympathetic and parasym-
pathetic fibers undergo progressive attrition, neurotrophic
support wanes, and the neurovascular interface degrades,
culminating in heightened arrhythmogenicity and electri-
cal instability—changes underpinned by cellular senes-
cence and oxidative stress pathways [33]. Parallel disease-
specific processes exacerbate these deficits: myocardial
infarction and cardiomyopathies provoke localized neu-
rotransmitter imbalances and fibrotic remodeling of in-
tramyocardial nerves; malignant arrhythmias and refractory
hypertension exhibit sustained sympathetic overdrive and
vagal withdrawal; and diabetic autonomic neuropathy—
characterized by loss of small-fiber innervation—increases
cardiovascular morbidity [34—37]. Neurodegenerative dis-
orders such as Parkinson’s disease further illustrate how
central neuronal loss and peripheral autonomic denervation
converge to impair cardiovascular reflexes and hemody-
namic stability [38].

In terms of interventions, both moderate-intensity aer-
obic exercise and HIIT have been shown to improve ANS
function, restore sympathetic-parasympathetic balance, re-
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duce cardiovascular risk, and enhance cardiac structure and
function, providing potential benefits for patients with car-
diovascular diseases [39,40]. Both modalities mitigate age-
and disease-related declines in nerve density and function,
improve heart rate variability, and remodel maladaptive
neural circuits, thereby reducing arrhythmic risk and aug-
menting cardiac performance [33,34,39,40].

Exercise promotes cardiovascular health and enhances
the heart’s adaptability and repair capacity, thereby improv-
ing cardiac function and exercise endurance. A study by
Iellamo et al. (2019) [11] suggested that endurance train-
ing can enhance autonomic control and improve cardiopul-
monary function. Moderate exercise is especially impor-
tant for cardiovascular health, particularly for patients with
chronic heart failure, and high-intensity interval exercise
(HIIE) has been shown to enhance vagal nerve modulation
and reduce the incidence of arrhythmias [41]. Furthermore,
the impact of exercise on the cardiac microenvironment has
attracted substantial research attention. Studies have shown
that exercise regulates specific microRNAs to promote my-
ocardial cell growth and regeneration, thereby aiding in car-
diac repair and functional recovery [42,43].

The role of exercise in cardiac rehabilitation has been
widely validated. Giallauria ef al. (2013) [44] found that
early exercise-based cardiac rehabilitation significantly im-
proved myocardial perfusion and left ventricular function
while reducing cardiac remodeling. This intervention not
only enhanced exercise capacity, but it also improved au-
tonomic function, reducing the risk of arrhythmias [45,46].
Raczak et al. (2006) [47] observed that moderate-intensity
endurance training enhanced parasympathetic nervous sys-
tem activity, while an excessive exercise load increased
sympathetic nervous system tone, further emphasizing the
positive impact of moderate exercise on the ANS.

Although research has explored the effects of exercise
on ANS function, further studies are required to determine
whether long-term exercise effectively improves autonomic
dysfunction caused by cardiac neurovascular interface de-
terioration. This research direction not only provides new
insights into the prevention and treatment of CVDs, but it
also offers potential intervention strategies for improving
patients’ quality of life [48—50]. Danitowicz-Szymanowicz
et al. (2011) [51] demonstrated that long-term moderate
exercise significantly improved ANS function, providing a
basis to further explore the mechanisms underpinning these
effects.

2. ANS Dysfunction Induced by Cardiac
Neurovascular Interface Deterioration

The heart is one of the most vital organs in the hu-
man body. It is primarily responsible for delivering oxygen
and nutrients throughout the body via the blood circulation,
which is necessary to sustain life. However, with aging, the
heart gradually deteriorates, and arrhythmias become in-
creasingly common [52,53]. Numerous studies have shown
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that aging is accompanied by sustained overactivation of the
sympathetic nervous system, which is closely linked to an
increase in sympathetic nerve fiber firing rate. This height-
ened sympathetic activity ultimately leads to a reduction in
parasympathetic nervous system activity [45,54]. The vas-
cular system and the ANS form a complex highly branched
network, with both systems functionally dependent on each
other. The arrangement of blood vessels and nerves is regu-
lated by neurogenic or angiogenic signals, which modulate
the alignment of endothelial cells and nerve fibers, thereby
regulating blood vessel and neuronal function and influ-
encing axonal growth. Any imbalance in the function of
either of these systems can lead to arrhythmias. Research
has shown that there is a close relationship between the in-
cidence of CVDs and sympathetic nervous system activ-
ity with aging, with excessive sympathetic activity being
strongly associated with CVD onset and progression [55].

Recently, a research team from the German Center for
Cardiovascular Research (DZHK) was the first to demon-
strate the relationship between ANS dysfunction and aging.
With advancing age, the junction between the left ventricu-
lar blood vessels and the nervous system in elderly individ-
uals showed neurodegeneration, making it difficult for the
heart to regulate heart rate and pulse under stress, ultimately
leading to impaired rhythm [33]. Using anti-aging drugs,
such as dasatinib and quercetin, the researchers were able
to reverse this age-related degeneration, restore heart rate
patterns, and reduce electrophysiological instability. De-
spite these promising results, the effects of aging delay still
require further investigation. Many researchers are attempt-
ing to directly intervene in the physiological processes that
underpin aging [33].

Research suggests that the primary methods for delay-
ing aging are dietary and lifestyle adjustments. To date,
anti-aging research has primarily focused on physiologi-
cal mechanisms, such as inhibiting the nutrient-sensing net-
work, clearing senescent cells, reversing stem cell aging,
modulating the microbiome, guiding autophagy, and re-
ducing inflammation [56]. Although some anti-aging sub-
stances have shown promising anti-aging effects in animal
studies, they still face challenges with regard to their clin-
ical application. For example, rapamycin has been shown
to extend the lifespan of Rats by nearly 60% through the
inhibition of mechanistic target of rapamycin complex 1
(mTORCT1), but it has demonstrated side effects in clinical
use [56-58]. Metformin is thought to extend the lifespan
by activating adenosine monophosphate-activated protein
kinase (AMPK), regulating the rats gut microbiota, and af-
fecting chromatin, but it has not been proven to extend the
lifespan of individuals without diabetes mellitus, and the
findings require further validation [59,60]. Acarbose, sper-
midine, and non-steroidal anti-inflammatory drugs (such as
aspirin and ibuprofen) have also shown lifespan-extending
effects in animal experiments, but they exhibit sex differ-
ences and side effects, which require further investigation
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Table 1. Relationship between aging, ANS dysfunction, and HRV metrics.

Metric Full name Primary indicator Aging/Disease trend
SDNN Standard deviation of NN intervals Overall HRV level | Decreased
RMSSD Root mean square of successive differences Parasympathetic activity | Decreased
LF/HF Ratio Low frequency/high frequency ratio Sympathetic—parasympathetic balance 1 Increased or imbalanced

HRYV, heart rate variability; ANS, autonomic nervous system.

[61-64]. Other approaches, such as systemic circulatory
factor replacement and microbiome modulation, also show
potential, but a clear mechanistic understanding of their ef-
fects is still lacking [65,66].

The aging process leads to cardiac neurovascular in-
terface deterioration by regulating the miR-145/semaphorin
3A (Sema3A) axis and cellular senescence [67]. This mech-
anism not only affects neural density, but it is also closely
associated with cardiac dysfunction. Although some anti-
aging substances have demonstrated partial anti-aging ef-
fects in animal experiments, they still face numerous chal-
lenges and controversies with regard to their clinical appli-
cation. Therefore, identifying and validating new methods
for delaying aging remains an urgent priority.

Autonomic Nervous System Dysfunction, Neurovascular
Interface Degeneration, and Aging: Impacts on HRV

Aging is accompanied by progressive attrition of both
sympathetic and parasympathetic nerve fibers within the
myocardium, resulting in reduced neural density and ev-
ident neurodegenerative remodeling of the cardiac neu-
rovascular interface. Concurrently, the endothelial-neural
signaling deteriorates, impairing vasomotor control and re-
ducing the heart’s autonomic adaptability.

At the cellular level, senescent cardiomyocytes and
vascular cells upregulate axon-repulsive cues, such as
Sema3A, which inhibit nerve regeneration and exacerbate
the loss of cardiac neural density. Therefore, ANS dysfunc-
tion and degeneration of the cardiac neurovascular interface
not only reflect normal aging processes but are also tightly
linked to pathological conditions, including neurodegener-
ative and cardiovascular diseases.

These physiological changes manifest functionally
as attenuated HRYV, decreased parasympathetic activ-
ity (e.g., lower root mean square of successive dif-
ferences (RMSSD)), and imbalances in sympathetic-
parasympathetic modulation (e.g., altered low frequency
(LF)/high frequency (HF) ratio) [33,40,68,69]. Such ab-
normalities not only increase the risk of arrhythmias and
cardiovascular events but are also associated with height-
ened systemic inflammation and endothelial dysfunction
[68,70]. The relationship between aging, ANS dysfunction,
and HRV metrics is summarized in Table 1.

Notably, experimental clearance of senescent cells can
reduce Sema3A expression, promote neural regeneration,
increase cardiac nerve density, and improve HRV metrics,
thereby reestablishing autonomic equilibrium [33,69]. As

such, various HRV parameters (e.g., standard deviation of
NN intervals (SDNN), RMSSD, LF/HF) serve as validated
biomarkers for assessing ANS function and overall cardiac
health.

3. Methods

This narrative review synthesized evidence on how
long-term, moderate-intensity exercise, and, by compari-
son, low- and high-intensity regimens, affect ANS function
in the context of the cardiac neurovascular interface degen-
eration, with particular attention to HRV.

We conducted a systematic search of MEDLINE (via
PubMed), PEDro, and EBSCO to identify open-access pub-
lications (1999-2025) examining the effects of long-term
exercise—particularly moderate intensity—on ANS dys-
function associated with cardiac neurovascular interface de-
generation. Search terms combined MeSH headings and
free-text keywords:

“Long-term exercise” AND “Moderate-intensity”

“Autonomic Nervous System” OR “ANS”

“Cardiac Neurovascular Interface”

“Heart Rate Variability” OR “HRV”

“Exercise Intervention”

After removal of duplicates, 2251 unique records were
screened by title and abstract: MEDLINE (906 articles),
PEDro (87 articles), and EBSCO (1258 articles).

Full-text articles were assessed against predefined cri-
teria:

Inclusion criteria: (1) Cross-sectional, observational,
non-randomized or randomized controlled trials, and re-
views; (2) those investigating exercise intensity and/or du-
ration on ANS dysfunction due to cardiac neurovascular de-
generation; (3) those reporting at least one HRV parameter
(e.g., SDNN, RMSSD, LF/HF ratio).

Exclusion criteria: (1) studies with a sample size of
<16 participants; (2) those with duplicate datasets or over-
lapping cohorts; (3) those with irrelevant outcomes.

4. Long-Term Exercise to Improve ANS
Dysfunction

ANS dysfunction is closely associated with various
health issues, particularly CVD and metabolic syndrome.
According to the study by Kingsley and Figueroa (2016)
[71], HRYV, as a non-invasive assessment method, reflects
modulation of the sympathetic and parasympathetic ner-
vous systems, particularly under exercise load, suggesting
that changes in HRV can reveal the state of the ANS. For

&% IMR Press


https://www.imrpress.com

healthy individuals, resistance training has a relatively mi-
nor effect on HRV; however, in middle-aged individuals
and patients with ANS dysfunction, long-term training im-
proves parasympathetic modulation. Lee ef al. (2022) [72]
found that both resistance training and aerobic exercise ef-
fectively improved HRV in middle-aged women, indicating
that these two training modalities positively impact ANS
activity. Kulshreshtha and Deepak (2013) [73] suggested
that exercise interventions improve ANS regulation in pa-
tients with fibromyalgia syndrome. Moreover, Lee et al.
(2003) [74] found that after 2 weeks of endurance training,
participants showed significant improvements in HRV, par-
ticularly via enhanced parasympathetic regulation.

Recent studies have shown that long-term exercise
significantly improves HRYV, especially in populations with
good cardiovascular health. Amano et al. (2001) [75]
discovered that after 12 weeks of aerobic exercise train-
ing, participants showed significant improvements in HRV,
reflecting increased ANS activity, particularly enhanced
parasympathetic activity. Moreover, Raczak et al. (2006)
[47] found that long-term high-intensity training promotes
parasympathetic dominance, suggesting adaptive changes
in the ANS. In their experiments in mice, Liu et al. (2024)
[76] observed that aerobic exercise intervention suppressed
myocardial cell apoptosis, thereby improving cardiac func-
tion, supporting the positive role of exercise in modulat-
ing the ANS. Bisaccia ef al. (2021) [77] indicated that
exercise alleviated ANS dysfunction associated with coro-
navirus disease 2019 sequelae, further demonstrating the
broad benefits of exercise for the ANS. However, Herzig et
al. (2018) [78] showed that HRV changes do not always di-
rectly reflect ANS activity, particularly under the influence
of cardiac structure and heart rate, which offers a new per-
spective for understanding the impact of exercise on HRV.

Exercise load directly influences HRV. Wittels et al.
(2023) [12] demonstrated that an increase in exercise load
was negatively correlated with heart rate recovery, suggest-
ing that high-load training may lead to excessive ANS fa-
tigue. In contrast, moderate training loads effectively im-
proved HRV and promoted cardiovascular health [79]. As
training progresses, improvements in HRV reflect the en-
hanced adaptability of the ANS. Vieluf et al. (2020) [80]
found that an increase in exercise intensity affected multiple
aspects of the ANS, indicating that high-intensity exercise
may lead to dynamic changes in ANS function.

In summary, long-term exercise training significantly
improves HRV and effectively modulates ANS function,
playing a crucial role in maintaining the health of the car-
diac neurovascular interface. Appropriate exercise load is
a key factor in enhancing HRYV, helping to prevent health
issues caused by ANS dysfunction. Chen et al. (2023) [50]
highlighted that exercise improves endothelial progenitor
cell function in the elderly, positively impacting cardiovas-
cular health and emphasizing the broad benefits of long-
term exercise on overall health.
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5. Impact of Exercise Intervention on the
Molecular Mechanisms of Cardiac
Neurovascular Interface Deterioration

5.1 Aging and Functional Degradation of the Cardiac
Neurovascular Interface

Aging leads to functional degradation of the cardiac
neurovascular interface, which primarily manifests as a de-
crease in nerve density and an increase in the expression
of the neural repellent factor Sema3A. Sema3A influences
nerve axon density by regulating miR-145 expression, po-
tentially leading to instability in cardiac electrical activity
[33]. Studies have shown that aging significantly reduces
nerve density in the left ventricle, while neural innervation
of the right ventricle remains relatively stable between aged
and young mice. With aging, the activity of the sensory
nerves gradually weakens in mice, with nerve density start-
ing to decline at 16 months of age and further decreasing
at 22 months of age [33]. The reduction in nerve density is
not caused by a decrease in capillary density; rather, it may
be associated with capillary dysfunction and changes in the
neural conduits within the vascular system. Moreover, the
expression of Sema3A is primarily regulated by vascular
cells, and in aging cardiac endothelial cells, the expression
of Sema3 A and other neural repellent factors is significantly
elevated [33,56,81].

5.2 Impact of Exercise Intervention on the Cardiac
Neurovascular Interface

Exercise intervention is widely recognized for its pos-
itive effects on cardiac health, and it has been shown to
improve the activity of the cardiac neurovascular inter-
face. Studies have shown that regular moderate-intensity
exercise promotes cardiovascular health and improves the
function of aging endothelial cells by modulating oxida-
tive stress (including superoxide anion [O5~], hydrogen
peroxide [H2O2], hydroxyl radicals [OH™], ozone [Os],
and singlet oxygen [1O,]) and inflammatory factors (such
as tumor necrosis factor-a (TNF-«), interleukin (IL)-15,
interleukin-6, and interleukin-8) [82]. Aerobic exercise
promotes myocardial cell renewal; induces cardiac growth;
and stimulates the proliferation, migration, and differentia-
tion of endothelial cells, thus achieving endothelial regen-
eration and angiogenesis. HIIT regulates the expression of
Sema3A mRNA, potentially reducing the loss of neural in-
nervation during aging and slowing the progression of neu-
ral degeneration (Fig. 1).

5.2.1 The Three Major Energy Systems—Phosphagen
System, Glycolytic System, and Aerobic System

The phosphagen, glycolytic, and aerobic energy sys-
tems collaborate during exercise to meet the energy de-
mands of the muscles. Each system plays a distinct role dur-
ing exercise of different intensities and durations [83,84].
The phosphagen system rapidly provides energy by break-
ing down stored phosphocreatine and ATP, making it suit-
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Fig. 1. Hypothesized mechanism underpinning the effects of exercise intervention on cardiac neurovascular interface deteriora-

tion. The pink arrows represent the upregulation or downregulation of gene expression. IL, interleukin; TNF-«, tumor necrosis factor-o;

NF-xB, & light chain enhancer of activated B cells; Sema3A, semaphorin 3A. This figure was created using MedPeer.

able for short, high-intensity activities, such as sprinting
and weightlifting [85]. Although this energy supply is
quick, its reserves are limited, typically depleting within 10
seconds [86,87]. The glycolytic system generates energy
by anaerobically breaking down carbohydrates into lactate,
providing a large amount of energy over a short period. This
system is ideal for moderate-duration, high-intensity exer-
cise, such as a 400-meter run [88]. Although this system
is an efficient means of providing energy, the accumulation
of lactate can lead to muscle fatigue [83,89,90]. The aer-
obic system generates energy by oxidizing carbohydrates
and fats, making it suitable for prolonged, low-to-moderate
intensity exercise, such as long-distance running and swim-
ming. Although the aerobic system takes longer to activate,
it can continuously provide energy to sustain the demands
of prolonged exercise [87,91].

5.2.2 Impact of Phosphagen System Energy Supply on
Oxidative Stress and Inflammatory Factors

High-intensity exercise predominantly utilizes the en-
ergy supply of the phosphagen system, particularly in HIIE,
which induces acute oxidative stress [92,93]. Although this
stress response typically returns to normal within 24 hours,
it increases the production of reactive oxygen species, po-
tentially leading to oxidative damage. However, this re-
sponse also activates redox-sensitive signaling pathways
that promote adaptive responses [94,95]. Additionally, ex-

ercise triggers the inflammatory response, marked by an
increase in inflammatory cytokines, such as interleukin-6
and tumor necrosis factor-a [96]. This response is gener-
ally localized to skeletal muscles and gradually subsides
within hours after exercise [97]. The regulation of in-
flammation after exercise is closely related to the release
of anti-inflammatory cytokines, particularly the increase in
interleukin-10 [98]. Exercise helps to counteract oxidative
stress by increasing the activity of anti-oxidant enzymes
(such as superoxide dismutase and glutathione peroxidase)
and releasing anti-inflammatory factors from the muscles,
as well as alleviating inflammation by downregulating Toll-
like receptor signaling pathways [99]. HIIT regulates the
expression of Sema3A mRNA, potentially reducing the loss
of neural innervation during aging and slowing the progres-
sion of neurodegeneration [100,101].

5.2.3 Impact of Anaerobic Glycolysis on Oxidative Stress
and Inflammatory Factors

Anaerobic glycolysis plays a crucial role in oxida-
tive stress and the inflammatory response, particularly with
regard to the metabolic reprogramming of immune cells
[102]. The glycolytic process occurs under hypoxic con-
ditions and provides energy for inflammatory cells, such as
M1 macrophages and T helper 1 lymphocytes, enhancing
their pro-inflammatory functions [103—105]. The inhibi-
tion of glycolysis reduces the secretion of pro-inflammatory

&% IMR Press


https://www.medpeer.cn/
https://www.imrpress.com

cytokines, such as tumor necrosis factor-a and interleukin-
153, thereby alleviating the inflammatory response [106—
108]. The metabolic reprogramming of glycolysis is closely
linked to the different stages of the inflammatory response,
influencing cell activation, proliferation, and differentiation
[109,110]. By inhibiting key glycolytic enzymes, such as
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and
hexokinase 2 (HK2), the intensity of the inflammatory re-
sponse can be effectively reduced [103,111].

5.2.4 Impact of Aerobic Exercise on Oxidative Stress and
Inflammatory Factors

Aerobic and anaerobic exercise each have distinct ad-
vantages in improving health. Aerobic exercise signifi-
cantly reduces oxidative stress and inflammatory factors
(such as malondialdehyde, tumor necrosis factor-c, and
interleukin-6), while simultaneously increasing the levels
of anti-oxidant enzymes (such as superoxide dismutase)
and anti-inflammatory factors (such as interleukin-10) [112,
113]. By activating anti-oxidant and anti-inflammatory sig-
naling pathways [such as nuclear factor erythroid 2—related
factor 2 (Nrf2) and Janus kinase 2/signal transducer and
activator of transcription 3 (JAK2/STAT3)], aerobic exer-
cise effectively mitigates oxidative stress and inflamma-
tion, thereby improving overall health [114]. Regular aer-
obic exercise lowers oxidative markers in the blood and
boosts antioxidant factors, with particularly significant ef-
fects observed in the elderly population [115-117].

Anaerobic exercise (such as strength training) also
plays an important role in cardiac health [118,119]. Stud-
ies have found that strength training improves the cardiac
neurovascular control of the heart, with the effects differ-
ing from those of aerobic exercise. In strength training, an
increase in exercise load leads to changes in low-frequency
and high-frequency HRV indices, indicating that the impact
of anaerobic exercise on the ANS is individualized [120].
Anaerobic exercise enhances the adaptability of the cardiac
microvasculature, potentially improving overall health by
optimizing the cardiac blood supply. Research also sug-
gests that strength training regulates miR-126 to inhibit car-
diac fibrosis, thereby improving heart function. Long-term
vigorous aerobic training also influences muscle-enriched
miRNAs, which play a significant role in cardiovascular
adaptation [121].

5.2.5 Exercise Intensity and Individual Differences

The impact of the type and intensity of exercise
on oxidative stress and the inflammatory response varies.
High-intensity exercise is more likely to induce oxidative
stress than moderate-intensity exercise, and it also signif-
icantly increases the levels of inflammatory factors, such
as interleukin-6 [112,113]. Furthermore, an individual’s
training status and health condition can influence these
responses. For example, individuals with obesity typi-
cally exhibit higher oxidative stress responses after exer-
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cise. Therefore, personalized exercise programs are key to
optimizing health benefits. Appropriately selecting the type
and intensity of exercise based on the individual health con-
dition of the patient will help to improve their health out-
comes [92,93].

5.3 Exercise Interventions for ANS Dysfunction and
Neurovascular Degeneration: Clinical Evidence

Accumulating clinical and randomized controlled trial
data have demonstrated that targeted aerobic exercise proto-
cols, whether as moderate-intensity continuous training or
HIIT, can reverse autonomic imbalance and promote struc-
tural integrity of the cardiac neurovascular interface in both
aging populations and patients with cardiovascular or neu-
rodegenerative disease. Moderate-intensity continuous aer-
obic exercise (e.g., 3—5 sessions per week, 30—60 minutes
per session, for 12 weeks or longer) has been shown to
enhance cardiac vagal activity, improve the sympathetic-
parasympathetic balance, reduce cardiovascular risk, and is
suitable for cardiac rehabilitation in patients with cardio-
vascular disease [24,122].

HIIT protocols (e.g., 2-3 sessions per week, 20-30
minutes per session, with intermittent intensities reaching
85-95% of maximum heart rate, for 8—12 weeks) can also
significantly increase HRV, improve ANS function, and ex-
hibit superior time efficiency and cardiovascular adaptabil-
ity [123,124]. However, individual HIIT sessions can tran-
siently depress HRV and elevate sympathetic biomarkers,
necessitating >24 hours of recovery to reestablish baseline
autonomic balance [12,125-127].

Meta-analyses and systematic reviews further confirm
a clear dose-response between exercise “load” (intensity
x duration x frequency) and HRV enhancement, moder-
ated by age, baseline fitness, and comorbidities [121]. In
older adults, individuals with metabolic syndrome, or post-
myocardial infarction patients, individualized moderate-
intensity continuous training or HIIT programs have been
shown to significantly enhance HRV, reduce sympathetic
activity, and improve the function of the cardiac neurovas-
cular interface, thereby contributing to better clinical out-
comes [122—-124,127]. The comparative effects, advan-
tages, and considerations of different exercise interventions
are summarized in Table 2 (Ref. [12,17,24,122—127]).

Effects of Combination Training on the Cardiac
Neurovascular Interface

Overall, both aerobic and anaerobic exercise have ad-
vantages in improving heart health and the cardiac neu-
rovascular interface. Combining aerobic and anaerobic ex-
ercise in a comprehensive training program may be the opti-
mal strategy for improving cardiac neurovascular interface
function. A study has shown that exercise interventions im-
prove myocardial perfusion and left ventricular function,
reducing the negative effects of cardiac remodeling, thus
emphasizing the positive effects of exercise on cardiac hea-
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Table 2. Summary of exercise interventions for ANS regulation and neurovascular restoration.

Intervention type Frequency & duration Physiological effects Target population Advantages Considerations References
Moderate-intensity aero- 3-5 times/week, 30—-60 1 Vagal activity, improved Patients with High safety, good Requires longer [24,122]
bic exercise min/session, >12 weeks sympathetic/parasympathetic ~ cardiovascular disease, sustainability intervention duration for
balance, | CVD risk older adults effects
High-intensity  interval 2-3 times/week, 20-30 1 HRV, 1 ANS function, 1 Healthy adults, Time-efficient, effective Avoid overtraining; [123,124]
training (HIIT) min/session, 85-95% heart rate  cardiovascular adaptability metabolic syndrome outcomes recovery period >24
(HR)max intervals, 8—12 weeks patients, some elderly hours
Extreme or excessive Beyond recommended | HRV, 1 sympathetic activity, Healthy individuals, Strong short-term Prolonged recovery,  [12,17,125,126]
high-intensity exercise frequency/intensity (e.g., short-term ANS suppression athletes stimulation potential cardiovascular
continuous high-intensity) burden
Systematic review &  Comparative analysis across Effects depend on duration, Individuals of varying  Provides evidence-based Requires individualized [123,127]
meta-analysis findings interventions frequency, and intensity age and health status recommendations assessment and tailored
design
Personalized interven- Designed based on individual 1 HRV, | sympathetic activity, =~ CVD patients, elderly, Personalized, high safety = Requires professional ~ [122—124,127]
tion (moderate or HIIT) status improved neurovascular metabolic syndrome guidance and monitoring

interface function patients

CVD, cardiovascular disease; HRV, heart rate variability; ANS, autonomic nervous system.

1 means to increase, and | means to decrease.
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Ith [44]. Through appropriate exercise interventions, car-
diovascular function can be improved, related gene ex-
pression can be regulated, and overall cardiac health can
be enhanced. Exercise of different types and intensi-
ties affects oxidative stress and the inflammatory response
through various mechanisms. In general, aerobic exer-
cise reduces oxidative stress and inflammation, improving
health, while high-intensity exercise may increase these re-
sponses. Therefore, selecting the appropriate type and in-
tensity of exercise and adjusting them based on the individ-
ual health condition of each patient are crucial for maximiz-
ing the health benefits (Fig. 2).

5.4 A Comprehensive and Personalized
Exercise-Prescription System for ANS Dysfunction and
Cardio-Neurovascular Interface Degeneration

This precision-medicine system integrates HRV with
metabolic, inflammatory, psychological, and lifestyle met-
rics to (1) stratify individual risk, (2) prescribe tailored ex-
ercise “doses”, and (3) dynamically adjust interventions,
thereby maximizing autonomic regulation and neurovascu-
lar health while ensuring patient safety.

5.4.1 Baseline Profiling: Multidimensional Assessment of
ANS Function and Health Status

A rigorous initial evaluation establishes each individ-
ual’s physiological, neurovascular, and psychological base-
line. The recommended assessment dimensions, tools, and
indicators are summarized in Table 3.

5.4.2 Risk Stratification and Exercise Tolerance Analysis

Using the baseline data, individuals were categorized
into one of three risk tiers—Ilow, moderate, or high—based
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on ANS function, physiological metrics, and chronic dis-
ease history. This guides exercise intensity recommenda-
tions, which are detailed in Table 4.

5.4.3 Personalized Exercise Prescription (Based on FITTP
Principles)

Following the FITTP principles—Frequency, Inten-
sity, Time, Type, and Progression—a personalized and
evidence-based exercise plan is formulated, as outlined in
Table 5.

5.4.4 Dynamic Feedback and Reassessment Mechanism

To ensure sustainability and safety of the intervention,
a dynamic feedback and periodic reassessment mechanism
is essential. The recommended monitoring contents and ad-
justment schedule are summarized in Table 6.

6. Conclusion

HIIT and moderate-intensity endurance training im-
prove HRYV, regulate oxidative stress, reduce inflammatory
factors, and promote heart adaptation and repair. These
forms of exercise improve autonomic regulation of the
heart, reduce the risk of arrhythmias, and enhance cardiac
function and exercise endurance. Furthermore, the regu-
latory effects of exercise on microRNAs show potential
for promoting cardiac cell growth and regeneration, further
supporting the recovery of cardiac function.

Although aerobic and anaerobic exercises have differ-
ent effects on health, combining both in a comprehensive
training program may be the optimal strategy for improv-
ing cardiac neurovascular interface function. Exercise load,
training intensity, and individual differences play signifi-
cant roles in regulating the ANS and cardiovascular health.
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Table 3. Baseline multidimensional assessment tools for the autonomic nervous system and related health parameters.

Assessment dimension Method/Tool Indicators/Standards

ANS function
Cardiovascular function

HRYV testing (e.g., 24-hour Holter monitor)
Resting heart rate, blood pressure, VO.max
Serum biomarkers: IL-6, TNF-o, MDA
BMI, body fat %, insulin resistance, HbAlc
Questionnaires: physical activity (IPAQ), diet,

SDNN, RMSSD, LF/HF ratio
Cardiopulmonary exercise testing (CPET)

Inflammation/Oxidative stress Closely monitored for high-risk individuals

Body composition & metabolism Used to identify metabolic syndrome

Lifestyle & medical history Basis for individual risk stratification

sleep, medication use
Anxiety/Depression scales (e.g., GAD-7, PHQ-9)

Psychological status Strongly linked to ANS function

IL, interleukin; TNF-«, tumor necrosis factor-a; HRV, heart rate variability; SDNN, standard deviation of NN intervals; RMSSD, root mean
square of successive differences; LF, low frequency; HF, high frequency; MDA, malondialdehyde; GAD-7, generalized anxiety disorder-7;
PHQ-9, Patient Health Questionnaire-9; BMI, body mass index; HbA 1c, hemoglobin Alc.

Table 4. Exercise intensity recommendations based on risk stratification and HRV profiles.

Risk level Characteristics

Recommended exercise intensity

Low risk

Moderate risk

High risk

elevated inflammation markers

No cardiovascular/metabolic disease, normal or
mildly reduced HRV

Presence of metabolic syndrome, reduced HRV
(JRMSSD, 1LF/HF)

Cardiovascular disease, severely abnormal HRV,

Tolerant of moderate to high
intensity
Primarily moderate-intensity
aerobic exercise, optionally with
low-frequency HIIT
Low intensity with medical

monitoring, gradual progression

HRY, heart rate variability; RMSSD, root mean square of successive differences; LF, low frequency; HF,

high frequency; HIIT, high-intensity interval training.

1 means to increase, and | means to decrease.

Table 5. Exercise prescription framework based on the FITTP principle.

Element

Design content

F (Frequency)
I (Intensity)

T (Time)

T (Type)

P (Progression)

3-5 times per week (adjusted according to risk and tolerance)
Moderate intensity (50-70% VO:max) or HIIT (85-95% HRmax)
30—60 minutes per session (20—30 minutes for HIIT sessions)
Primarily aerobic (e.g., walking, cycling, swimming) + resistance training (1-2 times/week)
Adjust intensity/type every 4—6 weeks based on HRV improvements

HRYV, heart rate variability; HIIT, high-intensity interval training.

Table 6. Monitoring and adjustment schedule for exercise and autonomic function.

Frequency

Content

Every 4-6 weeks
Real-time
Adjustment

Repeat HRV assessments, recheck biochemical markers, test exercise capacity
Use wearable devices to monitor heart rate, HRV, fatigue, sleep quality, etc.
Modify exercise intensity and type based on HRV trends to avoid overtraining-induced ANS suppression or HRV decline

HRYV, heart rate variability; ANS, autonomic nervous system.

Therefore, personalized exercise intervention plans tailored
to an individual’s health status and exercise capacity will
maximize the health benefits that can be achieved.

Future research should explore the long-term effects
of exercise interventions on the ANS. Incorporating modern
biotechnology and biomarkers (such as microRNAs) could
provide a deeper understanding of the relationship between
the ANS and cardiac health, offering more effective guid-
ance for clinical treatment.
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