Review

Effects of Long-Term Moderate-Intensity Exercise on Autonomic Nervous System Dysfunction Induced by Cardiac Neurovascular Interface Deterioration

Ruixue Zhao^{1,}, Jiayi Li^{2,3},, Fengbao Du^{4,5}, Ran Gao⁵, Shuai Zhao^{4,6}, Jiameng Wang^{2,3,6},*

Academic Editor: Karol E. Watson

Submitted: 9 May 2025 Revised: 16 July 2025 Accepted: 28 July 2025 Published: 14 October 2025

Abstract

Owing to the aging global population, cardiovascular disease (CVD) has become the leading cause of morbidity and mortality worldwide. The aging process is closely associated with cardiac neurovascular interface deterioration, particularly autonomic nervous system (ANS) dysfunction, which has profound effects on cardiovascular health. Recent studies have suggested that long-term moderate exercise can improve ANS function and alleviate CVD risk. This review evaluates the effects of exercise on the cardiac neurovascular interface and ANS function, with a particular focus on the distinct roles of aerobic and anaerobic exercise on cardiac health. Research has shown that exercise significantly enhances heart rate variability, improves autonomic regulation of the heart, and reduces oxidative stress and inflammation, thereby improving cardiac function and reducing the incidence of CVD. Specifically, high-intensity interval exercise and combination training incorporating both aerobic and anaerobic exercise improve the cardiac neurovascular interface and promote cardiac repair. However, while the benefits of exercise are widely recognized, understanding of the factors such as individual differences, exercise intensity, and exercise type needs to be improved to optimize the effectiveness of exercise interventions. Thus, future research should focus on personalized exercise interventions and the identification of biomarkers, such as microRNAs, to enhance the effectiveness of exercise intervention as a clinical treatment strategy.

Keywords: long-term exercise; autonomic nervous system; cardiac neurovascular interface; heart rate variability; exercise intervention

1. Introduction

According to the World Health Organization, the global population of elderly individuals is projected to exceed 1.2 billion by 2025 [1]. Demographic aging is accelerating worldwide. It is estimated that by 2040, individuals aged 60 and older will constitute 19.2% of the global population, with Europe, North America, and Australia/New Zealand experiencing the most pronounced age-structure transitions [2]. Advancing age is correlated with substantially higher rates of age-related morbidity and mortality, notably from cardiovascular diseases and cancer [1,3]. Moreover, regional trajectories diverge markedly: developed countries already maintain a sizeable proportion of elderly people, while developing countries are experiencing rapid demographic transitions but continue to record lower health-adjusted life expectancy among older cohorts [4–6]. Aging is closely associated with morphological and functional changes in the cardiovascular system, which are strongly correlated with the incidence of cardiovascular disease (CVD) [7]. CVD remains the leading cause of morbidity and mortality globally, with over 18.5 million people dying from CVD annually, accounting for 31% of global deaths [8].

Studies have observed a close association between cardiac neurovascular interface deterioration and autonomic nervous system (ANS) dysfunction, primarily manifesting as reduced heart rate variability (HRV) and abnormal heart rate recovery. The ANS plays a crucial role in regulating cardiovascular function, and ANS dysfunction can lead to a range of CVDs [9–11].

Low-intensity exercise (heart rate <140 bpm) induces minimal perturbation of sympathovagal balance, primarily characterized by parasympathetic dominance. Time-domain HRV indices exhibit only transient reductions and typically return to baseline within minutes, indicating rapid restoration of autonomic homeostasis [12–14]. Moderate-intensity exercise (140 bpm \leq heart rate \leq 150 bpm) effectively enhances HRV, boosts parasympathetic activity, and improves cardiovascular and neuroregulatory function [13,15,16]. HRV recovery to baseline is achieved within a

 $^{^1\}mathrm{Yan'an}$ University, 716000 Yan'an, Shaanxi, China

²Faculty of Physical Education, Yan'an University, 716000 Yan'an, Shaanxi, China

³Sports Rehabilitation Laboratory, Yan'an University, 716000 Yan'an, Shaanxi, China

⁴Department of Physical Education, Hainan University, 570228 Haikou, Hainan, China

⁵International Nursing School of Hainan Medical University, 571199 Haikou, Hainan, China

⁶ Hainan Province Key Laboratory of Sports and Health Promotion, Hainan Medical University, 571199 Haikou, Hainan, China

^{*}Correspondence: 847924366@qq.com (Shuai Zhao); 1490560829@qq.com (Jiameng Wang)

short period, and cardiac vagal modulation shows its greatest increases under these conditions [13,16]. In contrast, high-intensity exercise and high-intensity interval training (HIIT) (heart rate ≥150–160 bpm)—and high-intensity exercise induce pronounced sympathetic activation, marked reductions in HRV, and suppression of parasympathetic activity, resulting in prolonged autonomic recovery [12,13, 15,17–19]. During the post-exercise period, elevated heart rate and plasma norepinephrine persist, and HRV remains suppressed for an extended duration [12,17-19]. Therefore, moderate-intensity exercise emerges as the optimal approach to enhancing ANS function: It activates cardiac vagal pathways, increases HRV, promotes parasympathetic activity, and avoids the excessive sympathetic activation and delayed recovery inherent to high-intensity exercise [13,15,16]. Systematic reviews and numerous experimental studies have shown that moderate-intensity exercise leads to quicker ANS recovery and the most significant improvements in cardiovascular and neural regulation, making it the optimal choice for enhancing ANS function [13,16]. Exercise intensity and duration are key determinants of post-exercise ANS disruption and recovery rate. High-intensity, short-duration exercise tends to slow ANS recovery [12,15,18], while moderate- to low-intensity exercise over an appropriate and sustained period is more beneficial for ANS function and rapid recovery [13–15,17,18]. Strategic periodization of frequency, intensity, and duration can enhance ANS adaptability and improve long-term cardiovascular health.

1.1 Differences in ANS Responses Between Acute and Chronic Exercise

The ANS also responds differently to acute (single-session) versus chronic (long-term) exercise. Acute exercise triggers immediate sympathovagal adjustments, typically manifesting as increased sympathetic excitation and vagal withdrawal [20–23]. In contrast, chronic exercise elicits autonomic plasticity: regular training plays a significant role in enhancing ANS function and reducing cardiovascular risk [21,23].

1.2 Neural Mechanisms of Exercise-Induced Cardiac Autonomic Regulation

During physical activity, cardiac autonomic regulation is achieved through the integrated modulation of sympathetic and parasympathetic outflows to meet the metabolic demands of skeletal muscles [24–26]. This integration arises from four principal neural circuits: central command, the exercise pressor reflex, the arterial baroreceptor reflex, and cardiopulmonary baroreceptors [23,24, 27]. Central command from higher brain centers rapidly triggers sympathetic drive and vagal withdrawal; in particular, hypothalamic orexinergic neurons are rapidly recruited during exercise, serving as a key nexus between motor activity and autonomic cardiovascular regulation [28].

In addition, exercise induces upregulation of dopamine β -hydroxylase and oxytocin signaling pathways within autonomic nuclei, fostering synaptic plasticity that enhances parasympathetic tone and baroreceptor reflex function in aged hypertensive animal models [29].

1.3 Mechanisms Underpinning Exercise-Induced Modulation of Autonomic Pathways

Physical exercise drives adaptive remodeling of both sympathetic (SNS) and parasympathetic (PNS) outflows, thereby optimizing autonomic balance. With escalating workload, SNS and PNS circuits engage in increasingly coordinated responses, reflected in concurrent shifts in heart rate variability, cutaneous blood flow, and electrodermal activity [15].

1.4 Dose-Dependent Effects of Intensity, Duration, and Frequency on Autonomic Recovery

Exercise intensity and duration are the main factors determining the magnitude of autonomic perturbation and the kinetics of post-exercise recovery. High-intensity, short-duration exercise slows down ANS recovery [12,13, 30], while moderate- to low-intensity exercise elicits more tempered sympathetic responses and accelerates recovery [13,17,30–32]. If the frequency, intensity, and duration of training are periodized appropriately, training fosters greater autonomic adaptability and promotes long-term cardiovascular health.

1.5 Autonomic Dysfunction and Neurovascular Interface Degeneration: Aging-Related and Disease-Specific Mechanisms

ANS dysfunction and degeneration of the cardiac neurovascular interface arise both as a function of chronological aging and in response to specific pathologies. With advancing age, cardiac sympathetic and parasympathetic fibers undergo progressive attrition, neurotrophic support wanes, and the neurovascular interface degrades, culminating in heightened arrhythmogenicity and electrical instability—changes underpinned by cellular senescence and oxidative stress pathways [33]. Parallel diseasespecific processes exacerbate these deficits: myocardial infarction and cardiomyopathies provoke localized neurotransmitter imbalances and fibrotic remodeling of intramyocardial nerves; malignant arrhythmias and refractory hypertension exhibit sustained sympathetic overdrive and vagal withdrawal; and diabetic autonomic neuropathycharacterized by loss of small-fiber innervation—increases cardiovascular morbidity [34-37]. Neurodegenerative disorders such as Parkinson's disease further illustrate how central neuronal loss and peripheral autonomic denervation converge to impair cardiovascular reflexes and hemodynamic stability [38].

In terms of interventions, both moderate-intensity aerobic exercise and HIIT have been shown to improve ANS function, restore sympathetic-parasympathetic balance, re-

duce cardiovascular risk, and enhance cardiac structure and function, providing potential benefits for patients with cardiovascular diseases [39,40]. Both modalities mitigate age-and disease-related declines in nerve density and function, improve heart rate variability, and remodel maladaptive neural circuits, thereby reducing arrhythmic risk and augmenting cardiac performance [33,34,39,40].

Exercise promotes cardiovascular health and enhances the heart's adaptability and repair capacity, thereby improving cardiac function and exercise endurance. A study by Iellamo *et al.* (2019) [11] suggested that endurance training can enhance autonomic control and improve cardiopulmonary function. Moderate exercise is especially important for cardiovascular health, particularly for patients with chronic heart failure, and high-intensity interval exercise (HIIE) has been shown to enhance vagal nerve modulation and reduce the incidence of arrhythmias [41]. Furthermore, the impact of exercise on the cardiac microenvironment has attracted substantial research attention. Studies have shown that exercise regulates specific microRNAs to promote myocardial cell growth and regeneration, thereby aiding in cardiac repair and functional recovery [42,43].

The role of exercise in cardiac rehabilitation has been widely validated. Giallauria *et al.* (2013) [44] found that early exercise-based cardiac rehabilitation significantly improved myocardial perfusion and left ventricular function while reducing cardiac remodeling. This intervention not only enhanced exercise capacity, but it also improved autonomic function, reducing the risk of arrhythmias [45,46]. Raczak *et al.* (2006) [47] observed that moderate-intensity endurance training enhanced parasympathetic nervous system activity, while an excessive exercise load increased sympathetic nervous system tone, further emphasizing the positive impact of moderate exercise on the ANS.

Although research has explored the effects of exercise on ANS function, further studies are required to determine whether long-term exercise effectively improves autonomic dysfunction caused by cardiac neurovascular interface deterioration. This research direction not only provides new insights into the prevention and treatment of CVDs, but it also offers potential intervention strategies for improving patients' quality of life [48–50]. Daniłowicz-Szymanowicz et al. (2011) [51] demonstrated that long-term moderate exercise significantly improved ANS function, providing a basis to further explore the mechanisms underpinning these effects.

2. ANS Dysfunction Induced by Cardiac Neurovascular Interface Deterioration

The heart is one of the most vital organs in the human body. It is primarily responsible for delivering oxygen and nutrients throughout the body via the blood circulation, which is necessary to sustain life. However, with aging, the heart gradually deteriorates, and arrhythmias become increasingly common [52,53]. Numerous studies have shown

that aging is accompanied by sustained overactivation of the sympathetic nervous system, which is closely linked to an increase in sympathetic nerve fiber firing rate. This heightened sympathetic activity ultimately leads to a reduction in parasympathetic nervous system activity [45,54]. The vascular system and the ANS form a complex highly branched network, with both systems functionally dependent on each other. The arrangement of blood vessels and nerves is regulated by neurogenic or angiogenic signals, which modulate the alignment of endothelial cells and nerve fibers, thereby regulating blood vessel and neuronal function and influencing axonal growth. Any imbalance in the function of either of these systems can lead to arrhythmias. Research has shown that there is a close relationship between the incidence of CVDs and sympathetic nervous system activity with aging, with excessive sympathetic activity being strongly associated with CVD onset and progression [55].

Recently, a research team from the German Center for Cardiovascular Research (DZHK) was the first to demonstrate the relationship between ANS dysfunction and aging. With advancing age, the junction between the left ventricular blood vessels and the nervous system in elderly individuals showed neurodegeneration, making it difficult for the heart to regulate heart rate and pulse under stress, ultimately leading to impaired rhythm [33]. Using anti-aging drugs, such as dasatinib and quercetin, the researchers were able to reverse this age-related degeneration, restore heart rate patterns, and reduce electrophysiological instability. Despite these promising results, the effects of aging delay still require further investigation. Many researchers are attempting to directly intervene in the physiological processes that underpin aging [33].

Research suggests that the primary methods for delaying aging are dietary and lifestyle adjustments. To date, anti-aging research has primarily focused on physiological mechanisms, such as inhibiting the nutrient-sensing network, clearing senescent cells, reversing stem cell aging, modulating the microbiome, guiding autophagy, and reducing inflammation [56]. Although some anti-aging substances have shown promising anti-aging effects in animal studies, they still face challenges with regard to their clinical application. For example, rapamycin has been shown to extend the lifespan of Rats by nearly 60% through the inhibition of mechanistic target of rapamycin complex 1 (mTORC1), but it has demonstrated side effects in clinical use [56–58]. Metformin is thought to extend the lifespan by activating adenosine monophosphate-activated protein kinase (AMPK), regulating the rats gut microbiota, and affecting chromatin, but it has not been proven to extend the lifespan of individuals without diabetes mellitus, and the findings require further validation [59,60]. Acarbose, spermidine, and non-steroidal anti-inflammatory drugs (such as aspirin and ibuprofen) have also shown lifespan-extending effects in animal experiments, but they exhibit sex differences and side effects, which require further investigation

Table 1. Relationship between aging, ANS dysfunction, and HRV metrics.

Metric	Full name	Primary indicator	Aging/Disease trend
SDNN	Standard deviation of NN intervals	Overall HRV level	↓ Decreased
RMSSD	Root mean square of successive differences	Parasympathetic activity	↓ Decreased
LF/HF Ratio	Low frequency/high frequency ratio	Sympathetic-parasympathetic balance	↑ Increased or imbalanced

HRV, heart rate variability; ANS, autonomic nervous system.

[61–64]. Other approaches, such as systemic circulatory factor replacement and microbiome modulation, also show potential, but a clear mechanistic understanding of their effects is still lacking [65,66].

The aging process leads to cardiac neurovascular interface deterioration by regulating the miR-145/semaphorin 3A (Sema3A) axis and cellular senescence [67]. This mechanism not only affects neural density, but it is also closely associated with cardiac dysfunction. Although some antiaging substances have demonstrated partial anti-aging effects in animal experiments, they still face numerous challenges and controversies with regard to their clinical application. Therefore, identifying and validating new methods for delaying aging remains an urgent priority.

Autonomic Nervous System Dysfunction, Neurovascular Interface Degeneration, and Aging: Impacts on HRV

Aging is accompanied by progressive attrition of both sympathetic and parasympathetic nerve fibers within the myocardium, resulting in reduced neural density and evident neurodegenerative remodeling of the cardiac neurovascular interface. Concurrently, the endothelial-neural signaling deteriorates, impairing vasomotor control and reducing the heart's autonomic adaptability.

At the cellular level, senescent cardiomyocytes and vascular cells upregulate axon-repulsive cues, such as Sema3A, which inhibit nerve regeneration and exacerbate the loss of cardiac neural density. Therefore, ANS dysfunction and degeneration of the cardiac neurovascular interface not only reflect normal aging processes but are also tightly linked to pathological conditions, including neurodegenerative and cardiovascular diseases.

These physiological changes manifest functionally as attenuated HRV, decreased parasympathetic activity (e.g., lower root mean square of successive differences (RMSSD)), and imbalances in sympathetic-parasympathetic modulation (e.g., altered low frequency (LF)/high frequency (HF) ratio) [33,40,68,69]. Such abnormalities not only increase the risk of arrhythmias and cardiovascular events but are also associated with heightened systemic inflammation and endothelial dysfunction [68,70]. The relationship between aging, ANS dysfunction, and HRV metrics is summarized in Table 1.

Notably, experimental clearance of senescent cells can reduce Sema3A expression, promote neural regeneration, increase cardiac nerve density, and improve HRV metrics, thereby reestablishing autonomic equilibrium [33,69]. As such, various HRV parameters (e.g., standard deviation of NN intervals (SDNN), RMSSD, LF/HF) serve as validated biomarkers for assessing ANS function and overall cardiac health.

3. Methods

This narrative review synthesized evidence on how long-term, moderate-intensity exercise, and, by comparison, low- and high-intensity regimens, affect ANS function in the context of the cardiac neurovascular interface degeneration, with particular attention to HRV.

We conducted a systematic search of MEDLINE (*via* PubMed), PEDro, and EBSCO to identify open-access publications (1999–2025) examining the effects of long-term exercise—particularly moderate intensity—on ANS dysfunction associated with cardiac neurovascular interface degeneration. Search terms combined MeSH headings and free-text keywords:

"Long-term exercise" AND "Moderate-intensity"

"Autonomic Nervous System" OR "ANS"

"Cardiac Neurovascular Interface"

"Heart Rate Variability" OR "HRV"

"Exercise Intervention"

After removal of duplicates, 2251 unique records were screened by title and abstract: MEDLINE (906 articles), PEDro (87 articles), and EBSCO (1258 articles).

Full-text articles were assessed against predefined criteria:

Inclusion criteria: (1) Cross-sectional, observational, non-randomized or randomized controlled trials, and reviews; (2) those investigating exercise intensity and/or duration on ANS dysfunction due to cardiac neurovascular degeneration; (3) those reporting at least one HRV parameter (e.g., SDNN, RMSSD, LF/HF ratio).

Exclusion criteria: (1) studies with a sample size of <16 participants; (2) those with duplicate datasets or overlapping cohorts; (3) those with irrelevant outcomes.

4. Long-Term Exercise to Improve ANS Dysfunction

ANS dysfunction is closely associated with various health issues, particularly CVD and metabolic syndrome. According to the study by Kingsley and Figueroa (2016) [71], HRV, as a non-invasive assessment method, reflects modulation of the sympathetic and parasympathetic nervous systems, particularly under exercise load, suggesting that changes in HRV can reveal the state of the ANS. For

healthy individuals, resistance training has a relatively minor effect on HRV; however, in middle-aged individuals and patients with ANS dysfunction, long-term training improves parasympathetic modulation. Lee *et al.* (2022) [72] found that both resistance training and aerobic exercise effectively improved HRV in middle-aged women, indicating that these two training modalities positively impact ANS activity. Kulshreshtha and Deepak (2013) [73] suggested that exercise interventions improve ANS regulation in patients with fibromyalgia syndrome. Moreover, Lee *et al.* (2003) [74] found that after 2 weeks of endurance training, participants showed significant improvements in HRV, particularly via enhanced parasympathetic regulation.

Recent studies have shown that long-term exercise significantly improves HRV, especially in populations with good cardiovascular health. Amano et al. (2001) [75] discovered that after 12 weeks of aerobic exercise training, participants showed significant improvements in HRV, reflecting increased ANS activity, particularly enhanced parasympathetic activity. Moreover, Raczak et al. (2006) [47] found that long-term high-intensity training promotes parasympathetic dominance, suggesting adaptive changes in the ANS. In their experiments in mice, Liu et al. (2024) [76] observed that aerobic exercise intervention suppressed myocardial cell apoptosis, thereby improving cardiac function, supporting the positive role of exercise in modulating the ANS. Bisaccia et al. (2021) [77] indicated that exercise alleviated ANS dysfunction associated with coronavirus disease 2019 sequelae, further demonstrating the broad benefits of exercise for the ANS. However, Herzig et al. (2018) [78] showed that HRV changes do not always directly reflect ANS activity, particularly under the influence of cardiac structure and heart rate, which offers a new perspective for understanding the impact of exercise on HRV.

Exercise load directly influences HRV. Wittels *et al.* (2023) [12] demonstrated that an increase in exercise load was negatively correlated with heart rate recovery, suggesting that high-load training may lead to excessive ANS fatigue. In contrast, moderate training loads effectively improved HRV and promoted cardiovascular health [79]. As training progresses, improvements in HRV reflect the enhanced adaptability of the ANS. Vieluf *et al.* (2020) [80] found that an increase in exercise intensity affected multiple aspects of the ANS, indicating that high-intensity exercise may lead to dynamic changes in ANS function.

In summary, long-term exercise training significantly improves HRV and effectively modulates ANS function, playing a crucial role in maintaining the health of the cardiac neurovascular interface. Appropriate exercise load is a key factor in enhancing HRV, helping to prevent health issues caused by ANS dysfunction. Chen *et al.* (2023) [50] highlighted that exercise improves endothelial progenitor cell function in the elderly, positively impacting cardiovascular health and emphasizing the broad benefits of long-term exercise on overall health.

5. Impact of Exercise Intervention on the Molecular Mechanisms of Cardiac Neurovascular Interface Deterioration

5.1 Aging and Functional Degradation of the Cardiac Neurovascular Interface

Aging leads to functional degradation of the cardiac neurovascular interface, which primarily manifests as a decrease in nerve density and an increase in the expression of the neural repellent factor Sema3A. Sema3A influences nerve axon density by regulating miR-145 expression, potentially leading to instability in cardiac electrical activity [33]. Studies have shown that aging significantly reduces nerve density in the left ventricle, while neural innervation of the right ventricle remains relatively stable between aged and young mice. With aging, the activity of the sensory nerves gradually weakens in mice, with nerve density starting to decline at 16 months of age and further decreasing at 22 months of age [33]. The reduction in nerve density is not caused by a decrease in capillary density; rather, it may be associated with capillary dysfunction and changes in the neural conduits within the vascular system. Moreover, the expression of Sema3A is primarily regulated by vascular cells, and in aging cardiac endothelial cells, the expression of Sema3A and other neural repellent factors is significantly elevated [33,56,81].

5.2 Impact of Exercise Intervention on the Cardiac Neurovascular Interface

Exercise intervention is widely recognized for its positive effects on cardiac health, and it has been shown to improve the activity of the cardiac neurovascular interface. Studies have shown that regular moderate-intensity exercise promotes cardiovascular health and improves the function of aging endothelial cells by modulating oxidative stress (including superoxide anion [O2-], hydrogen peroxide [H₂O₂], hydroxyl radicals [OH⁻], ozone [O₃], and singlet oxygen $[^{1}O_{2}]$) and inflammatory factors (such as tumor necrosis factor- α (TNF- α), interleukin (IL)-1 β , interleukin-6, and interleukin-8) [82]. Aerobic exercise promotes myocardial cell renewal; induces cardiac growth; and stimulates the proliferation, migration, and differentiation of endothelial cells, thus achieving endothelial regeneration and angiogenesis. HIIT regulates the expression of Sema3A mRNA, potentially reducing the loss of neural innervation during aging and slowing the progression of neural degeneration (Fig. 1).

5.2.1 The Three Major Energy Systems—Phosphagen System, Glycolytic System, and Aerobic System

The phosphagen, glycolytic, and aerobic energy systems collaborate during exercise to meet the energy demands of the muscles. Each system plays a distinct role during exercise of different intensities and durations [83,84]. The phosphagen system rapidly provides energy by breaking down stored phosphocreatine and ATP, making it suit-



Fig. 1. Hypothesized mechanism underpinning the effects of exercise intervention on cardiac neurovascular interface deterioration. The pink arrows represent the upregulation or downregulation of gene expression. IL, interleukin; TNF- α , tumor necrosis factor- α ; NF- κ B, κ light chain enhancer of activated B cells; Sema3A, semaphorin 3A. This figure was created using MedPeer.

able for short, high-intensity activities, such as sprinting and weightlifting [85]. Although this energy supply is quick, its reserves are limited, typically depleting within 10 seconds [86,87]. The glycolytic system generates energy by anaerobically breaking down carbohydrates into lactate, providing a large amount of energy over a short period. This system is ideal for moderate-duration, high-intensity exercise, such as a 400-meter run [88]. Although this system is an efficient means of providing energy, the accumulation of lactate can lead to muscle fatigue [83,89,90]. The aerobic system generates energy by oxidizing carbohydrates and fats, making it suitable for prolonged, low-to-moderate intensity exercise, such as long-distance running and swimming. Although the aerobic system takes longer to activate, it can continuously provide energy to sustain the demands of prolonged exercise [87,91].

5.2.2 Impact of Phosphagen System Energy Supply on Oxidative Stress and Inflammatory Factors

High-intensity exercise predominantly utilizes the energy supply of the phosphagen system, particularly in HIIE, which induces acute oxidative stress [92,93]. Although this stress response typically returns to normal within 24 hours, it increases the production of reactive oxygen species, potentially leading to oxidative damage. However, this response also activates redox-sensitive signaling pathways that promote adaptive responses [94,95]. Additionally, ex-

ercise triggers the inflammatory response, marked by an increase in inflammatory cytokines, such as interleukin-6 and tumor necrosis factor- α [96]. This response is generally localized to skeletal muscles and gradually subsides within hours after exercise [97]. The regulation of inflammation after exercise is closely related to the release of anti-inflammatory cytokines, particularly the increase in interleukin-10 [98]. Exercise helps to counteract oxidative stress by increasing the activity of anti-oxidant enzymes (such as superoxide dismutase and glutathione peroxidase) and releasing anti-inflammatory factors from the muscles, as well as alleviating inflammation by downregulating Tolllike receptor signaling pathways [99]. HIIT regulates the expression of Sema3A mRNA, potentially reducing the loss of neural innervation during aging and slowing the progression of neurodegeneration [100,101].

5.2.3 Impact of Anaerobic Glycolysis on Oxidative Stress and Inflammatory Factors

Anaerobic glycolysis plays a crucial role in oxidative stress and the inflammatory response, particularly with regard to the metabolic reprogramming of immune cells [102]. The glycolytic process occurs under hypoxic conditions and provides energy for inflammatory cells, such as M1 macrophages and T helper 1 lymphocytes, enhancing their pro-inflammatory functions [103–105]. The inhibition of glycolysis reduces the secretion of pro-inflammatory

cytokines, such as tumor necrosis factor- α and interleukin- 1β , thereby alleviating the inflammatory response [106–108]. The metabolic reprogramming of glycolysis is closely linked to the different stages of the inflammatory response, influencing cell activation, proliferation, and differentiation [109,110]. By inhibiting key glycolytic enzymes, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and hexokinase 2 (HK2), the intensity of the inflammatory response can be effectively reduced [103,111].

5.2.4 Impact of Aerobic Exercise on Oxidative Stress and Inflammatory Factors

Aerobic and anaerobic exercise each have distinct advantages in improving health. Aerobic exercise significantly reduces oxidative stress and inflammatory factors (such as malondialdehyde, tumor necrosis factor- α , and interleukin-6), while simultaneously increasing the levels of anti-oxidant enzymes (such as superoxide dismutase) and anti-inflammatory factors (such as interleukin-10) [112, 113]. By activating anti-oxidant and anti-inflammatory signaling pathways [such as nuclear factor erythroid 2-related factor 2 (Nrf2) and Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3)], aerobic exercise effectively mitigates oxidative stress and inflammation, thereby improving overall health [114]. Regular aerobic exercise lowers oxidative markers in the blood and boosts antioxidant factors, with particularly significant effects observed in the elderly population [115–117].

Anaerobic exercise (such as strength training) also plays an important role in cardiac health [118,119]. Studies have found that strength training improves the cardiac neurovascular control of the heart, with the effects differing from those of aerobic exercise. In strength training, an increase in exercise load leads to changes in low-frequency and high-frequency HRV indices, indicating that the impact of anaerobic exercise on the ANS is individualized [120]. Anaerobic exercise enhances the adaptability of the cardiac microvasculature, potentially improving overall health by optimizing the cardiac blood supply. Research also suggests that strength training regulates miR-126 to inhibit cardiac fibrosis, thereby improving heart function. Long-term vigorous aerobic training also influences muscle-enriched miRNAs, which play a significant role in cardiovascular adaptation [121].

5.2.5 Exercise Intensity and Individual Differences

The impact of the type and intensity of exercise on oxidative stress and the inflammatory response varies. High-intensity exercise is more likely to induce oxidative stress than moderate-intensity exercise, and it also significantly increases the levels of inflammatory factors, such as interleukin-6 [112,113]. Furthermore, an individual's training status and health condition can influence these responses. For example, individuals with obesity typically exhibit higher oxidative stress responses after exer-

cise. Therefore, personalized exercise programs are key to optimizing health benefits. Appropriately selecting the type and intensity of exercise based on the individual health condition of the patient will help to improve their health outcomes [92,93].

5.3 Exercise Interventions for ANS Dysfunction and Neurovascular Degeneration: Clinical Evidence

Accumulating clinical and randomized controlled trial data have demonstrated that targeted aerobic exercise protocols, whether as moderate-intensity continuous training or HIIT, can reverse autonomic imbalance and promote structural integrity of the cardiac neurovascular interface in both aging populations and patients with cardiovascular or neurodegenerative disease. Moderate-intensity continuous aerobic exercise (e.g., 3–5 sessions per week, 30–60 minutes per session, for 12 weeks or longer) has been shown to enhance cardiac vagal activity, improve the sympathetic-parasympathetic balance, reduce cardiovascular risk, and is suitable for cardiac rehabilitation in patients with cardiovascular disease [24,122].

HIIT protocols (e.g., 2–3 sessions per week, 20–30 minutes per session, with intermittent intensities reaching 85–95% of maximum heart rate, for 8–12 weeks) can also significantly increase HRV, improve ANS function, and exhibit superior time efficiency and cardiovascular adaptability [123,124]. However, individual HIIT sessions can transiently depress HRV and elevate sympathetic biomarkers, necessitating ≥24 hours of recovery to reestablish baseline autonomic balance [12,125–127].

Meta-analyses and systematic reviews further confirm a clear dose–response between exercise "load" (intensity × duration × frequency) and HRV enhancement, moderated by age, baseline fitness, and comorbidities [121]. In older adults, individuals with metabolic syndrome, or post-myocardial infarction patients, individualized moderate-intensity continuous training or HIIT programs have been shown to significantly enhance HRV, reduce sympathetic activity, and improve the function of the cardiac neurovascular interface, thereby contributing to better clinical outcomes [122–124,127]. The comparative effects, advantages, and considerations of different exercise interventions are summarized in Table 2 (Ref. [12,17,24,122–127]).

Effects of Combination Training on the Cardiac Neurovascular Interface

Overall, both aerobic and anaerobic exercise have advantages in improving heart health and the cardiac neurovascular interface. Combining aerobic and anaerobic exercise in a comprehensive training program may be the optimal strategy for improving cardiac neurovascular interface function. A study has shown that exercise interventions improve myocardial perfusion and left ventricular function, reducing the negative effects of cardiac remodeling, thus emphasizing the positive effects of exercise on cardiac hea-

Table 2. Summary of exercise interventions for ANS regulation and neurovascular restoration.

Intervention type	Frequency & duration	Physiological effects	Target population	Advantages	Considerations	References
Moderate-intensity aero-	3-5 times/week, 30-60	↑ Vagal activity, improved	Patients with	High safety, good	Requires longer	[24,122]
bic exercise	min/session, ≥12 weeks	sympathetic/parasympathetic	cardiovascular disease,	sustainability	intervention duration for	
		balance, ↓ CVD risk	older adults		effects	
High-intensity interval	2-3 times/week, 20-30	\uparrow HRV, \uparrow ANS function, \uparrow	Healthy adults,	Time-efficient, effective	Avoid overtraining;	[123,124]
training (HIIT)	min/session, 85-95% heart rate	cardiovascular adaptability	metabolic syndrome	outcomes	recovery period ≥24	
	(HR)max intervals, 8-12 weeks		patients, some elderly		hours	
Extreme or excessive	Beyond recommended	↓ HRV, ↑ sympathetic activity,	Healthy individuals,	Strong short-term	Prolonged recovery,	[12,17,125,126]
high-intensity exercise	frequency/intensity (e.g.,	short-term ANS suppression	athletes	stimulation	potential cardiovascular	
	continuous high-intensity)				burden	
Systematic review &	Comparative analysis across	Effects depend on duration,	Individuals of varying	Provides evidence-based	Requires individualized	[123,127]
meta-analysis findings	interventions	frequency, and intensity	age and health status	recommendations	assessment and tailored	
					design	
Personalized interven-	Designed based on individual	↑ HRV, ↓ sympathetic activity,	CVD patients, elderly,	Personalized, high safety	Requires professional	[122-124,127]
tion (moderate or HIIT)	status	improved neurovascular	metabolic syndrome		guidance and monitoring	
		interface function	patients			

CVD, cardiovascular disease; HRV, heart rate variability; ANS, autonomic nervous system.

 $[\]uparrow$ means to increase, and \downarrow means to decrease.

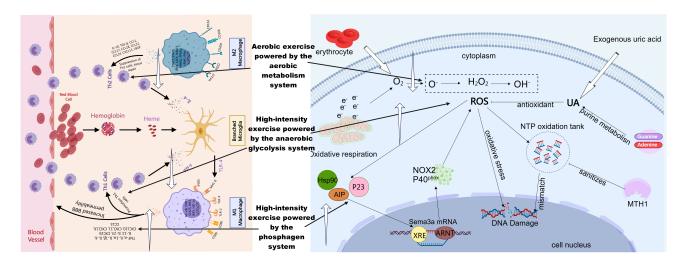


Fig. 2. Hypothesis diagram of the effects of the three energy systems on oxidative stress and inflammatory factors. The upward white arrows represent promotion, while the downward ones represent inhibition. ROS, reactive oxygen species; AIP, aryl hydrocarbon receptor-interacting protein; ARNT, aryl hydrocarbon receptor nuclear translocator; MTH1, MutT homolog 1, also known as NUDT1; UA, uric acid; Hsp90, heat shock protein 90; NOX2, NADPH oxidase 2; XRE, xenobiotic response element; NTP, nucleoside triphosphate; Sema3A, semaphorin 3A. This figure was created using MedPeer.

Ith [44]. Through appropriate exercise interventions, cardiovascular function can be improved, related gene expression can be regulated, and overall cardiac health can be enhanced. Exercise of different types and intensities affects oxidative stress and the inflammatory response through various mechanisms. In general, aerobic exercise reduces oxidative stress and inflammation, improving health, while high-intensity exercise may increase these responses. Therefore, selecting the appropriate type and intensity of exercise and adjusting them based on the individual health condition of each patient are crucial for maximizing the health benefits (Fig. 2).

5.4 A Comprehensive and Personalized Exercise-Prescription System for ANS Dysfunction and Cardio-Neurovascular Interface Degeneration

This precision-medicine system integrates HRV with metabolic, inflammatory, psychological, and lifestyle metrics to (1) stratify individual risk, (2) prescribe tailored exercise "doses", and (3) dynamically adjust interventions, thereby maximizing autonomic regulation and neurovascular health while ensuring patient safety.

5.4.1 Baseline Profiling: Multidimensional Assessment of ANS Function and Health Status

A rigorous initial evaluation establishes each individual's physiological, neurovascular, and psychological baseline. The recommended assessment dimensions, tools, and indicators are summarized in Table 3.

5.4.2 Risk Stratification and Exercise Tolerance Analysis

Using the baseline data, individuals were categorized into one of three risk tiers—low, moderate, or high—based

on ANS function, physiological metrics, and chronic disease history. This guides exercise intensity recommendations, which are detailed in Table 4.

5.4.3 Personalized Exercise Prescription (Based on FITTP Principles)

Following the FITTP principles—Frequency, Intensity, Time, Type, and Progression—a personalized and evidence-based exercise plan is formulated, as outlined in Table 5.

5.4.4 Dynamic Feedback and Reassessment Mechanism

To ensure sustainability and safety of the intervention, a dynamic feedback and periodic reassessment mechanism is essential. The recommended monitoring contents and adjustment schedule are summarized in Table 6.

6. Conclusion

HIIT and moderate-intensity endurance training improve HRV, regulate oxidative stress, reduce inflammatory factors, and promote heart adaptation and repair. These forms of exercise improve autonomic regulation of the heart, reduce the risk of arrhythmias, and enhance cardiac function and exercise endurance. Furthermore, the regulatory effects of exercise on microRNAs show potential for promoting cardiac cell growth and regeneration, further supporting the recovery of cardiac function.

Although aerobic and anaerobic exercises have different effects on health, combining both in a comprehensive training program may be the optimal strategy for improving cardiac neurovascular interface function. Exercise load, training intensity, and individual differences play significant roles in regulating the ANS and cardiovascular health.

Table 3. Baseline multidimensional assessment tools for the autonomic nervous system and related health parameters.

		•
Assessment dimension	Method/Tool	Indicators/Standards
ANS function	HRV testing (e.g., 24-hour Holter monitor)	SDNN, RMSSD, LF/HF ratio
Cardiovascular function	Resting heart rate, blood pressure, VO2max	Cardiopulmonary exercise testing (CPET)
Inflammation/Oxidative stress	Serum biomarkers: IL-6, TNF- α , MDA	Closely monitored for high-risk individuals
Body composition & metabolism	BMI, body fat %, insulin resistance, HbA1c	Used to identify metabolic syndrome
Lifestyle & medical history	Questionnaires: physical activity (IPAQ), diet, sleep, medication use	Basis for individual risk stratification
Psychological status	Anxiety/Depression scales (e.g., GAD-7, PHQ-9)	Strongly linked to ANS function

IL, interleukin; TNF- α , tumor necrosis factor- α ; HRV, heart rate variability; SDNN, standard deviation of NN intervals; RMSSD, root mean square of successive differences; LF, low frequency; HF, high frequency; MDA, malondialdehyde; GAD-7, generalized anxiety disorder-7; PHQ-9, Patient Health Questionnaire-9; BMI, body mass index; HbA1c, hemoglobin A1c.

Table 4. Exercise intensity recommendations based on risk stratification and HRV profiles.

Risk level	Characteristics	Recommended exercise intensity
Low risk	No cardiovascular/metabolic disease, normal or	Tolerant of moderate to high
	mildly reduced HRV	intensity
Moderate risk	Presence of metabolic syndrome, reduced HRV	Primarily moderate-intensity
	(↓RMSSD, ↑LF/HF)	aerobic exercise, optionally with
		low-frequency HIIT
High risk	Cardiovascular disease, severely abnormal HRV,	Low intensity with medical
	elevated inflammation markers	monitoring, gradual progression

HRV, heart rate variability; RMSSD, root mean square of successive differences; LF, low frequency; HF, high frequency; HIIT, high-intensity interval training.

Table 5. Exercise prescription framework based on the FITTP principle.

Element	Design content
F (Frequency)	3–5 times per week (adjusted according to risk and tolerance)
I (Intensity)	Moderate intensity (50-70% VO ₂ max) or HIIT (85-95% HRmax)
T (Time)	30-60 minutes per session (20-30 minutes for HIIT sessions)
T (Type)	Primarily aerobic (e.g., walking, cycling, swimming) + resistance training (1–2 times/week)
P (Progression)	Adjust intensity/type every 4-6 weeks based on HRV improvements

HRV, heart rate variability; HIIT, high-intensity interval training.

Table 6. Monitoring and adjustment schedule for exercise and autonomic function.

Frequency	Content	
Every 4–6 weeks	Repeat HRV assessments, recheck biochemical markers, test exercise capacity	
Real-time	Use wearable devices to monitor heart rate, HRV, fatigue, sleep quality, etc.	
Adjustment	Modify exercise intensity and type based on HRV trends to avoid overtraining-induced ANS suppression or HRV decline	
HRV, heart rate variability; ANS, autonomic nervous system.		

Therefore, personalized exercise intervention plans tailored to an individual's health status and exercise capacity will maximize the health benefits that can be achieved.

Future research should explore the long-term effects of exercise interventions on the ANS. Incorporating modern biotechnology and biomarkers (such as microRNAs) could provide a deeper understanding of the relationship between the ANS and cardiac health, offering more effective guidance for clinical treatment.

Author Contributions

Study design—RZ, JL; Literature Review—RZ, FD; Research Demonstration—JL, SZ; Study supervision—RG, JW; Manuscript writing: Critical revisions for important intellectual content—SZ, JW. All authors contributed to the conception and editorial changes in the manuscript. All authors read and approved the final manuscript. All authors have participated sufficiently in the work and agreed to be accountable for all aspects of the work.

[↑] means to increase, and ↓ means to decrease.

Ethics Approval and Consent to Participate

Not applicable.

Acknowledgment

The authors would like to thank TopEdit (www.topeditsci.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This article was supported by the 2024 Research Project of Yan'an University "The Influence of Different dance Interventions on the autonomic Nervous System of Depressed Patients" Project (YDRY024), Results of the 2024 Planned Research Topics of Hainan Province Philosophy and Social Sciences (Project Number: HNSK(YB)23-52), the 2022 Hainan Province Philosophy and Social Science Planning project (HNSK(QN)22-84) and the Yan'an University Doctoral Research Fund Special Expenditure Project (YAU202407514).

Conflict of Interest

The authors declare no conflict of interest.

References

- [1] de Lucia C, Piedepalumbo M, Paolisso G, Koch WJ. Sympathetic nervous system in age-related cardiovascular dysfunction: Pathophysiology and therapeutic perspective. The International Journal of Biochemistry & Cell Biology. 2019; 108: 29–33. https://doi.org/10.1016/j.biocel.2019.01.004.
- [2] Li L, Shan T, Zhang D, Ma F. Nowcasting and forecasting global aging and cancer burden: analysis of data from the GLOBOCAN and Global Burden of Disease Study. Journal of the National Cancer Center. 2024; 4: 223–232. https://doi.org/10.1016/j.jncc 2024.05.002.
- [3] Ju W, Zheng R, Wang S, Zhang S, Zeng H, Chen R, *et al.* The occurence of cancer in ageing populations at global and regional levels, 1990 to 2019. Age and Ageing. 2023; 52: afad043. https://doi.org/10.1093/ageing/afad043.
- [4] Kowal P, Chatterji S, Naidoo N, Biritwum R, Fan W, Lopez Ridaura R, *et al.* Data resource profile: The World Health Organization Study on global AGEing and adult health (SAGE). International Journal of Epidemiology. 2012; 41: 1639–1649. https://doi.org/10.1093/ije/dys210.
- [5] Zhou Y, Sun Y, Pan Y, Dai Y, Xiao Y, Yu Y. Prevalence of successful aging in older adults: A systematic review and metaanalysis. Archives of Gerontology and Geriatrics. 2025; 128: 105604. https://doi.org/10.1016/j.archger.2024.105604.
- [6] Lee J, Phillips D, Wilkens J, Gateway to Global Aging Data Team. Gateway to Global Aging Data: Resources for Cross-National Comparisons of Family, Social Environment, and Healthy Aging. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences. 2021; 76: S5–S16. https://doi.org/10.1093/geronb/gbab050.
- [7] Wu H, Wang Y, Zhang H, Yin X, Wang L, Wang L, et al. An investigation into the health status of the elderly population in China and the obstacles to achieving healthy aging. Scientific Reports. 2024; 14: 31123. https://doi.org/10.1038/s41598-024-82443-2.
- [8] Machi JF, Dias DDS, Freitas SC, de Moraes OA, da Silva MB, Cruz PL, et al. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation,

- and oxidative stress. Clinical Interventions in Aging. 2016; 11: 341–350. https://doi.org/10.2147/CIA.S88441.
- [9] Semeraro MD, Beltrami AP, Kharrat F, Almer G, Sedej S, Renner W, et al. The impact of moderate endurance exercise on cardiac telomeres and cardiovascular remodeling in obese rats. Frontiers in Cardiovascular Medicine. 2023; 9: 1080077. https://doi.org/10.3389/fcvm.2022.1080077.
- [10] Groarke JD, Tanguturi VK, Hainer J, Klein J, Moslehi JJ, Ng A, et al. Abnormal exercise response in long-term survivors of hodgkin lymphoma treated with thoracic irradiation: evidence of cardiac autonomic dysfunction and impact on outcomes. Journal of the American College of Cardiology. 2015; 65: 573–583. ht tps://doi.org/10.1016/j.jacc.2014.11.035.
- [11] Iellamo F, Lucini D, Volterrani M, Casasco M, Salvati A, Gianfelici A, *et al.* Autonomic nervous system responses to strength training in top-level weight lifters. Physiological Reports. 2019; 7: e14233. https://doi.org/10.14814/phy2.14233.
- [12] Wittels SH, Renaghan E, Wishon MJ, Wittels HL, Chong S, Wittels ED, *et al.* Recovery of the autonomic nervous system following football training among division I collegiate football athletes: The influence of intensity and time. Heliyon. 2023; 9: e18125. https://doi.org/10.1016/j.heliyon.2023.e18125.
- [13] Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: intensity and duration effects. Medicine and Science in Sports and Exercise. 2007; 39: 1366–1373. https:// doi.org/10.1249/mss.0b013e318060f17d.
- [14] Chen X, Yao R, Yin G, Li J. Consecutive ultra-short-term heart rate variability to track dynamic changes in autonomic nervous system during and after exercise. Physiological Measurement. 2017; 38: 1384–1395. https://doi.org/10.1088/1361-6579/aa 52b3.
- [15] Vieluf S, Hasija T, Jakobsmeyer R, Schreier PJ, Reinsberger C. Exercise-Induced Changes of Multimodal Interactions Within the Autonomic Nervous Network. Frontiers in Physiology. 2019; 10: 240. https://doi.org/10.3389/fphys.2019.00240.
- [16] Damoun N, Taiek N, Hangouche A, Amekran Y. Effects of aerobic training on heart rate variability in healthy adults: a systematic review. Gazzetta Medica Italiana Archivio per le Scienze Mediche. 2023; 182: 432–443. https://doi.org/10. 23736/s0393-3660.23.04952-5.
- [17] Kliszczewicz B, Williamson C, Bechke E, McKenzie M, Hoffstetter W. Autonomic response to a short and long bout of high-intensity functional training. Journal of Sports Sciences. 2018; 36: 1872–1879. https://doi.org/10.1080/02640414.2018. 1423857.
- [18] Vallverdú M, Ruiz-Muñoz A, Perera-Lluna A, Caminal P, Roca E, Irurtia A, et al. Assessment of Heart Rate Variability during an Endurance Mountain Trail Race by Multi-Scale Entropy Analysis. Entropy. 2017; 19: 658. https://doi.org/10.3390/E19120658.
- [19] Park HY, Jung WS, Kim SW, Lim K. Effects of Interval Training Under Hypoxia on the Autonomic Nervous System and Arterial and Hemorheological Function in Healthy Women. International Journal of Women's Health. 2022; 14: 79–90. https://doi.org/10. 2147/IJWH.S344233.
- [20] Kliszczewicz BM, Esco MR, Quindry JC, Blessing DL, Oliver GD, Taylor KJ, et al. Autonomic Responses to an Acute Bout of High-Intensity Body Weight Resistance Exercise vs. Treadmill Running. Journal of Strength and Conditioning Research. 2016; 30: 1050–1058. https://doi.org/10.1519/JSC.00000000000001173.
- [21] Storniolo JL, Correale L, Buzzachera CF, Peyré-Tartaruga LA. Editorial: New perspectives and insights on heart rate variability in exercise and sports. Frontiers in Sports and Active Living. 2025; 7: 1574087. https://doi.org/10.3389/fspor.2025.1574087.
- [22] Van Oosterwijck J, Marusic U, De Wandele I, Meeus M, Paul L, Lambrecht L, *et al.* Reduced Parasympathetic Reactivation

- during Recovery from Exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Journal of Clinical Medicine. 2021; 10: 4527. https://doi.org/10.3390/jcm10194527.
- [23] Iellamo F. Acute responses and chronic adaptations to exercise in humans: a look from the autonomic nervous system window. The Journal of Sports Medicine and Physical Fitness. 2024; 64: 137–150. https://doi.org/10.23736/S0022-4707.23.15353-9.
- [24] Fisher JP, Young CN, Fadel PJ. Autonomic adjustments to exercise in humans. Comprehensive Physiology. 2015; 5: 475–512. https://doi.org/10.1002/cphy.c140022.
- [25] White DW, Raven PB. Autonomic neural control of heart rate during dynamic exercise: revisited. The Journal of Physiology. 2014; 592: 2491–2500. https://doi.org/10.1113/jphysiol.2014. 271858.
- [26] Robinson BF, Epstein SE, Beiser GD, Braunwald E. Control of heart rate by the autonomic nervous system. Studies in man on the interrelation between baroreceptor mechanisms and exercise. Circulation Research. 1966; 19: 400–411. https://doi.org/ 10.1161/01.res.19.2.400.
- [27] Wan HY, Bunsawat K, Amann M. Autonomic cardiovascular control during exercise. American Journal of Physiology. Heart and Circulatory Physiology. 2023; 325: H675–H686. https://doi.org/10.1152/ajpheart.00303.2023.
- [28] Narai E, Yoshimura Y, Honaga T, Mizoguchi H, Yamanaka A, Hiyama TY, et al. Orexinergic neurons contribute to autonomic cardiovascular regulation for locomotor exercise. The Journal of Physiology. 2024; 10.1113/JP285791. https://doi.org/10.1113/ JP285791.
- [29] Dellacqua LO, Gomes PM, Batista JS, Michelini LC, Antunes VR. Exercise-induced neuroplasticity in autonomic nuclei restores the cardiac vagal tone and baroreflex dysfunction in aged hypertensive rats. Journal of Applied Physiology (Bethesda, Md.: 1985). 2024; 136: 189–198. https://doi.org/10.1152/japplphysiol.00433.2023.
- [30] Martinmäki K, Kaikkonen P, Rusko H. Immediate And Long-term Recovery Of Vagal Activation After Moderate-intensity Running Exercises In Men: 2744 Board #59 May 29, 2. Medicine & Science in Sports & Exercise. 2015; 47: 742. https://doi.org/10.1249/01.mss.0000478758.21348.6e.
- [31] Shi K, Lei H, Chen L, Wang X, Li M, Haihambo N, et al. Distinct Mechanisms of Multiple Alpha-Band Activities in Frontal Regions Following an 8-Week Medium- (Yoga) and High-Intensity (Pamela) Exercise Intervention. CNS Neuroscience & Therapeutics. 2025; 31: e70405. https://doi.org/10.1111/cns.70405.
- [32] Sylviana N, Goenawan H, Fitrianti H, Ramadhan H. The role of exercise intensity and duration on cardiac angiogenesis. Comparative Exercise Physiology. 2025. https://doi.org/10.1163/ 17552559-00001075.
- [33] Wagner JUG, Tombor LS, Malacarne PF, Kettenhausen LM, Panthel J, Kujundzic H, et al. Aging impairs the neurovascular interface in the heart. Science (New York, N.Y.). 2023; 381: 897–906. https://doi.org/10.1126/science.ade4961.
- [34] Jiang Y, Yabluchanskiy A, Deng J, Amil FA, Po SS, Dasari TW. The role of age-associated autonomic dysfunction in inflammation and endothelial dysfunction. GeroScience. 2022; 44: 2655– 2670. https://doi.org/10.1007/s11357-022-00616-1.
- [35] Fajemiroye JO, da Cunha LC, Saavedra-Rodríguez R, Rodrígues KL, Naves LM, Mourão AA, et al. Aging-Induced Biological Changes and Cardiovascular Diseases. BioMed Research International. 2018; 2018: 7156435. https://doi.org/10.1155/2018/7156435.
- [36] Wagner J, Tombor L, Malacarne P, Manickam N, Abplanalp W, John D, *et al.* Abstract 12226: Aging Impairs the Neuro-Vascular Interface in the Heart. Circulation. 2023; 148. https://doi.org/10.1161/circ.148.suppl 1.12226.
- [37] Sangeetha RP, Chakrabarti D, Sriganesh K, Mahendranath M,

- Sathyaprabha TN, Srinivas D. Prevalence and predictors of preoperative cardiac autonomic dysfunction among elective neurosurgical patients: A prospective observational study. Indian Journal of Anaesthesia. 2024; 68: 380–386. https://doi.org/10. 4103/ija.ija 722 23.
- [38] Chadda KR, Ajijola OA, Vaseghi M, Shivkumar K, Huang CLH, Jeevaratnam K. Ageing, the autonomic nervous system and arrhythmia: From brain to heart. Ageing Research Reviews. 2018; 48: 40–50. https://doi.org/10.1016/j.arr.2018.09.005.
- [39] Bhatia K, Ahmad S, Kindelin A, Ducruet AF. Complement C3a receptor-mediated vascular dysfunction: a complex interplay between aging and neurodegeneration. The Journal of Clinical Investigation. 2021; 131: e144348. https://doi.org/10.1172/JC 1144348.
- [40] Khemani P, Mehdirad AA. Cardiovascular Disorders Mediated by Autonomic Nervous System Dysfunction. Cardiology in Review. 2020; 28: 65–72. https://doi.org/10.1097/CRD.0000000000000280.
- [41] Guiraud T, Labrunee M, Gaucher-Cazalis K, Despas F, Meyer P, Bosquet L, et al. High-intensity interval exercise improves vagal tone and decreases arrhythmias in chronic heart failure. Medicine and Science in Sports and Exercise. 2013; 45: 1861–1867. https://doi.org/10.1249/MSS.0b013e3182967559.
- [42] Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metabolism. 2015; 21: 584–595. https://doi.org/10.1016/j.cmet.2015.02.014.
- [43] Fu G, Wang Z, Hu S. Exercise improves cardiac fibrosis by stimulating the release of endothelial progenitor cell-derived exosomes and upregulating miR-126 expression. Frontiers in Cardiovascular Medicine. 2024; 11: 1323329. https://doi.org/10.3389/fcvm.2024.1323329.
- [44] Giallauria F, Acampa W, Ricci F, Vitelli A, Torella G, Lucci R, et al. Exercise training early after acute myocardial infarction reduces stress-induced hypoperfusion and improves left ventricular function. European Journal of Nuclear Medicine and Molecular Imaging. 2013; 40: 315–324. https://doi.org/10.1007/s00259-012-2302-x.
- [45] Andrade DC, Arce-Alvarez A, Toledo C, Díaz HS, Lucero C, Schultz HD, et al. Exercise training improves cardiac autonomic control, cardiac function, and arrhythmogenesis in rats with preserved-ejection fraction heart failure. Journal of Applied Physiology (Bethesda, Md.: 1985). 2017; 123: 567–577. https://doi.org/10.1152/japplphysiol.00189.2017.
- [46] Rio P, Pereira-Da-Silva T, Abreu A, Filipe C, Soares R, Portugal G, et al. Modulating effect of cardiac rehabilitation on autonomic nervous system function in patients with coronary artery disease. Acta Cardiologica. 2016; 71: 717–723. https://doi.org/10.2143/AC.71.6.3178191.
- [47] Raczak G, Daniłowicz-Szymanowicz L, Kobuszewska-Chwirot M, Ratkowski W, Figura-Chmielewska M, Szwoch M. Long-term exercise training improves autonomic nervous system profile in professional runners. Kardiologia Polska. 2006; 64: 135–135–140; discussion 141–142.
- [48] Jamieson A, Al Saikhan L, Alghamdi L, Hamill Howes L, Purcell H, Hillman T, et al. Mechanisms underlying exercise intolerance in long COVID: An accumulation of multisystem dysfunction. Physiological Reports. 2024; 12: e15940. https://doi.org/10.14814/phy2.15940.
- [49] Pichon AP, de Bisschop C, Roulaud M, Denjean A, Papelier Y. Spectral analysis of heart rate variability during exercise in trained subjects. Medicine and Science in Sports and Exercise. 2004; 36: 1702–1708. https://doi.org/10.1249/01.mss. 0000142403.93205.35.
- [50] Chen X, Xie K, Sun X, Zhang C, He H. The Mechanism of miR-21-5p/TSP-1-Mediating Exercise on the Function of En-

- dothelial Progenitor Cells in Aged Rats. International Journal of Environmental Research and Public Health. 2023; 20: 1255. https://doi.org/10.3390/ijerph20021255.
- [51] Daniłowicz-Szymanowicz L, Figura-Chmielewska M, Raczak A, Szwoch M, Ratkowski W. The assessment of influence of long-term exercise training on autonomic nervous system activity in young athletes preparing for competitions. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego. 2011; 30: 19–25.
- [52] Ultimo S, Zauli G, Martelli AM, Vitale M, McCubrey JA, Capitani S, et al. Cardiovascular disease-related miRNAs expression: potential role as biomarkers and effects of training exercise. Oncotarget. 2018; 9: 17238–17254. https://doi.org/10.18632/oncotarget.24428.
- [53] Bei Y, Wang H, Liu Y, Su Z, Li X, Zhu Y, et al. Exercise-Induced miR-210 Promotes Cardiomyocyte Proliferation and Survival and Mediates Exercise-Induced Cardiac Protection against Ischemia/Reperfusion Injury. Research (Washington, D.C.). 2024; 7: 0327. https://doi.org/10.34133/research.0327.
- [54] Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017; 7: 664–676. https://doi.org/10.7150/thno.15162.
- [55] Lucini D, Giovanelli L, Malacarne M, Bernardelli G, Ardigò A, Gatzemeier W, et al. Progressive Impairment of Cardiac Autonomic Regulation as the Number of Metabolic Syndrome Components Increases. Journal of Obesity & Metabolic Syndrome. 2024; 33: 229–239. https://doi.org/10.7570/jomes23068.
- [56] Peng R, Shi J, Jiang M, Qian D, Yan Y, Bai H, et al. Electroacupuncture Improves Cardiac Function via Inhibiting Sympathetic Remodeling Mediated by Promoting Macrophage M2 Polarization in Myocardial Infarction Mice. Mediators of Inflammation. 2024; 2024: 8237681. https://doi.org/10.1155/2024/8237681.
- [57] Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017; 169: 361–371. https://doi.org/10.1016/j.cell.2017.03.035.
- [58] Arriola Apelo SI, Lamming DW. Rapamycin: An InhibiTOR of Aging Emerges From the Soil of Easter Island. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 2016; 71: 841–849. https://doi.org/10.1093/gerona/glw 090.
- [59] Moskalev A, Chernyagina E, Tsvetkov V, Fedintsev A, Shaposhnikov M, Krut'ko V, et al. Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell. 2016; 15: 407–415. https://doi.org/10.1111/acel.12463.
- [60] Currie CJ, Poole CD, Gale EAM. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009; 52: 1766–1777. https://doi.org/10.1007/s00125-009-1440-6.
- [61] Garratt M, Bower B, Garcia GG, Miller RA. Sex differences in lifespan extension with acarbose and $17-\alpha$ estradiol: gonadal hormones underlie male-specific improvements in glucose tolerance and mTORC2 signaling. Aging Cell. 2017; 16: 1256–1266. https://doi.org/10.1111/acel.12656.
- [62] Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science (New York, N.Y.). 2018; 359: eaan2788. https://doi.org/10.1126/science.aan2788.
- [63] Conze DB, Crespo-Barreto J, Kruger CL. Safety assessment of nicotinamide riboside, a form of vitamin B₃. Human & Experimental Toxicology. 2016; 35: 1149–1160. https://doi.org/10. 1177/0960327115626254.
- [64] Rothwell PM, Wilson M, Price JF, Belch JFF, Meade TW, Mehta Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet

- (London, England). 2012; 379: 1591–1601. https://doi.org/10.1016/S0140-6736(12)60209-8.
- [65] O'Toole PW, Jeffery IB. Gut microbiota and aging. Science (New York, N.Y.). 2015; 350: 1214–1215. https://doi.org/10. 1126/science.aac8469.
- [66] Dalirfardouei R, Karimi G, Jamialahmadi K. Molecular mechanisms and biomedical applications of glucosamine as a potential multifunctional therapeutic agent. Life Sciences. 2016; 152: 21–29. https://doi.org/10.1016/j.lfs.2016.03.028.
- [67] Xia C, Jiang T, Wang Y, Chen X, Hu Y, Gao Y. The p53/miR-145a Axis Promotes Cellular Senescence and Inhibits Osteogenic Differentiation by Targeting Cbfb in Mesenchymal Stem Cells. Frontiers in Endocrinology. 2021; 11: 609186. https://doi.org/10.3389/fendo.2020.609186.
- [68] Lymperopoulos A, Cora N, Maning J, Brill AR, Sizova A. Signaling and function of cardiac autonomic nervous system receptors: Insights from the GPCR signalling universe. The FEBS Journal. 2021; 288: 2645–2659. https://doi.org/10.1111/febs.15771.
- [69] Chatterjee NA, Singh JP. Autonomic modulation and cardiac arrhythmias: old insights and novel strategies. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology. 2021; 23: 1708–1721. https://doi.org/10.1093/europace/euab118.
- [70] Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Frontiers in Physiology. 2023; 14: 1060666. https://doi.org/10.3389/fphys.2023.1060666.
- [71] Kingsley JD, Figueroa A. Acute and training effects of resistance exercise on heart rate variability. Clinical Physiology and Functional Imaging. 2016; 36: 179–187. https://doi.org/10.1111/cpf. 12223
- [72] Lee CK, Lee JH, Ha MS. Comparison of the Effects of Aerobic versus Resistance Exercise on the Autonomic Nervous System in Middle-Aged Women: A Randomized Controlled Study. International Journal of Environmental Research and Public Health. 2022; 19: 9156. https://doi.org/10.3390/ijerph 19159156.
- [73] Kulshreshtha P, Deepak KK. Autonomic nervous system profile in fibromyalgia patients and its modulation by exercise: a mini review. Clinical Physiology and Functional Imaging. 2013; 33: 83–91. https://doi.org/10.1111/cpf.12000.
- [74] Lee CM, Wood RH, Welsch MA. Influence of short-term endurance exercise training on heart rate variability. Medicine and Science in Sports and Exercise. 2003; 35: 961–969. https://doi.org/10.1249/01.MSS.0000069410.56710.DA.
- [75] Amano M, Kanda T, Ue H, Moritani T. Exercise training and autonomic nervous system activity in obese individuals. Medicine and Science in Sports and Exercise. 2001; 33: 1287–1291. https://doi.org/10.1097/00005768-200108000-00007.
- [76] Liu N, Zhen Z, Xiong X, Xue Y. Aerobic exercise protects MI heart through miR-133a-3p downregulation of connective tissue growth factor. PloS One. 2024; 19: e0296430. https://doi.org/10.1371/journal.pone.0296430.
- [77] Bisaccia G, Ricci F, Recce V, Serio A, Iannetti G, Chahal AA, et al. Post-Acute Sequelae of COVID-19 and Cardiovascular Autonomic Dysfunction: What Do We Know? Journal of Cardiovascular Development and Disease. 2021; 8: 156. https://doi.org/10.3390/jcdd8110156.
- [78] Herzig D, Asatryan B, Brugger N, Eser P, Wilhelm M. The Association Between Endurance Training and Heart Rate Variability: The Confounding Role of Heart Rate. Frontiers in Physiology. 2018; 9: 756. https://doi.org/10.3389/fphys.2018.00756.
- [79] Wittels SH, Renaghan E, Wishon MJ, Wittels HL, Chong S,

- Wittels ED, *et al.* A Novel Metric "Exercise Cardiac Load" Proposed to Track and Predict the Deterioration of the Autonomic Nervous System in Division I Football Athletes. Journal of Functional Morphology and Kinesiology. 2023; 8: 143. https://doi.org/10.3390/jfmk8040143.
- [80] Vieluf S, Scheer V, Hasija T, Schreier PJ, Reinsberger C. Multimodal approach towards understanding the changes in the autonomic nervous system induced by an ultramarathon. Research in Sports Medicine. 2020; 28: 231–240. https://doi.org/10.1080/15438627.2019.1665522.
- [81] Ochsenbein AM, Karaman S, Proulx ST, Berchtold M, Jurisic G, Stoeckli ET, et al. Endothelial cell-derived semaphorin 3A inhibits filopodia formation by blood vascular tip cells. Development (Cambridge, England). 2016; 143: 589–594. https://doi.org/10.1242/dev.127670.
- [82] Grässler B, Thielmann B, Böckelmann I, Hökelmann A. Effects of Different Training Interventions on Heart Rate Variability and Cardiovascular Health and Risk Factors in Young and Middle-Aged Adults: A Systematic Review. Frontiers in Physiology. 2021; 12: 657274. https://doi.org/10.3389/fphys.2021.657274.
- [83] Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Medicine (Auckland, N.Z.). 2001; 31: 725–741. https://doi.org/10.2165/00007256-200131100-00003.
- [84] Ellis C, Burns D. All about oxygen: using near-infrared spectroscopy to understand bioenergetics. Advances in Physiology Education. 2022; 46: 685–692. https://doi.org/10.1152/advan.00106.2022.
- [85] Hargreaves M, Spriet LL. Exercise Metabolism: Fuels for the Fire. Cold Spring Harbor Perspectives in Medicine. 2018; 8: a029744. https://doi.org/10.1101/cshperspect.a029744.
- [86] Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nature Metabolism. 2020; 2: 817–828. https://doi.org/10.1038/s42255-020-0251-4.
- [87] Artioli GG, Bertuzzi RC, Roschel H, Mendes SH, Lancha AH, Jr, Franchini E. Determining the contribution of the energy systems during exercise. Journal of Visualized Experiments: JoVE. 2012; 3413. https://doi.org/10.3791/3413.
- [88] Sylow L, Kleinert M, Richter EA, Jensen TE. Exercisestimulated glucose uptake - regulation and implications for glycaemic control. Nature Reviews. Endocrinology. 2017; 13: 133– 148. https://doi.org/10.1038/nrendo.2016.162.
- [89] Bruzas V, Venckunas T, Kamandulis S, Snieckus A, Mockus P, Stasiulis A. Metabolic and physiological demands of 3×3-minround boxing fights in highly trained amateur boxers. The Journal of Sports Medicine and Physical Fitness. 2023; 63: 623–629. https://doi.org/10.23736/S0022-4707.22.13661-3.
- [90] Archacki D, Zieliński J, Pospieszna B, Włodarczyk M, Kusy K. The contribution of energy systems during 15-second sprint exercise in athletes of different sports specializations. PeerJ. 2024; 12: e17863. https://doi.org/10.7717/peerj.17863.
- [91] Ikeda S, Muratomi K, Furuhashi Y, Maemura H. Effects of sex differences on energy providing capacities during short duration high-intensity exercise: focusing on changes in exercise duration. The Journal of Sports Medicine and Physical Fitness. 2025; 65: 347–353. https://doi.org/10.23736/S0022-4707.24. 16426-2.
- [92] Wadley AJ, Chen YW, Lip GYH, Fisher JP, Aldred S. Low volume-high intensity interval exercise elicits antioxidant and anti-inflammatory effects in humans. Journal of Sports Sciences. 2016; 34: 1–9. https://doi.org/10.1080/02640414.2015. 1035666.
- [93] McFadden BA, Vincenty CS, Chandler AJ, Cintineo HP, Lints BS, Mastrofini GF, et al. Effects of fucoidan supplementation on inflammatory and immune response after high-intensity exercise. Journal of the International Society of Sports Nu-

- trition. 2023; 20: 2224751. https://doi.org/10.1080/15502783. 2023.2224751.
- [94] Azizbeigi K, Azarbayjani MA, Atashak S, Stannard SR. Effect of moderate and high resistance training intensity on indices of inflammatory and oxidative stress. Research in Sports Medicine (Print). 2015; 23: 73–87. https://doi.org/10.1080/15438627. 2014.975807.
- [95] Bessa AL, Oliveira VN, Agostini GG, Oliveira RJS, Oliveira ACS, White GE, et al. Exercise Intensity and Recovery: Biomarkers of Injury, Inflammation, and Oxidative Stress. Journal of Strength and Conditioning Research. 2016; 30: 311–319. https://doi.org/10.1519/JSC.0b013e31828f1ee9.
- [96] Suzuki K, Tominaga T, Ruhee RT, Ma S. Characterization and Modulation of Systemic Inflammatory Response to Exhaustive Exercise in Relation to Oxidative Stress. Antioxidants (Basel, Switzerland). 2020; 9: 401. https://doi.org/10.3390/anti ox9050401.
- [97] Brown M, McClean CM, Davison GW, Brown JCW, Murphy MH. The acute effects of walking exercise intensity on systemic cytokines and oxidative stress. European Journal of Applied Physiology. 2018; 118: 2111–2120. https://doi.org/10.1007/s00421-018-3930-z.
- [98] Cox AJ, Speer H, Radcliffe CR, Masocha K, Ramsey R, West NP, et al. Immunomodulatory effects of fucoidan in recreationally active adult males undertaking 3-weeks of intensified training. Journal of Sports Sciences. 2023; 41: 1875–1882. https: //doi.org/10.1080/02640414.2024.2305007.
- [99] Webb R, Hughes MG, Thomas AW, Morris K. The Ability of Exercise-Associated Oxidative Stress to Trigger Redox-Sensitive Signalling Responses. Antioxidants (Basel, Switzerland). 2017; 6: 63. https://doi.org/10.3390/antiox6030063.
- [100] Li J, Li Y, Atakan MM, Kuang J, Hu Y, Bishop DJ, et al. The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia. Antioxidants (Basel, Switzerland). 2020; 9: 656. https://doi.org/10.3390/antiox9080656.
- [101] Taherkhani S, Suzuki K, Castell L. A Short Overview of Changes in Inflammatory Cytokines and Oxidative Stress in Response to Physical Activity and Antioxidant Supplementation. Antioxidants (Basel, Switzerland). 2020; 9: 886. https: //doi.org/10.3390/antiox9090886.
- [102] Zhong WJ, Yang HH, Guan XX, Xiong JB, Sun CC, Zhang CY, et al. Inhibition of glycolysis alleviates lipopolysaccharideinduced acute lung injury in a mouse model. Journal of Cellular Physiology. 2019; 234: 4641–4654. https://doi.org/10.1002/jcp. 27261.
- [103] Liao ST, Han C, Xu DQ, Fu XW, Wang JS, Kong LY. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nature Communications. 2019; 10: 5091. https://doi.org/10.1038/s41467-019-13078-5.
- [104] Zhao L, Cui C, Liu Q, Sun J, He K, Adam AA, et al. Combined exposure to hypoxia and ammonia aggravated biological effects on glucose metabolism, oxidative stress, inflammation and apoptosis in largemouth bass (Micropterus salmoides). Aquatic Toxicology (Amsterdam, Netherlands). 2020; 224: 105514. https://doi.org/10.1016/j.aquatox.2020.105514.
- [105] Soto-Heredero G, Gómez de Las Heras MM, Gabandé-Rodríguez E, Oller J, Mittelbrunn M. Glycolysis - a key player in the inflammatory response. The FEBS Journal. 2020; 287: 3350–3369. https://doi.org/10.1111/febs.15327.
- [106] Kornberg MD. The immunologic Warburg effect: Evidence and therapeutic opportunities in autoimmunity. Wiley Interdisciplinary Reviews. Systems Biology and Medicine. 2020; 12: e1486. https://doi.org/10.1002/wsbm.1486.
- [107] Li Y, Jia A, Wang Y, Dong L, Wang Y, He Y, et al. Immune effects of glycolysis or oxidative phosphorylation metabolic path-

- way in protecting against bacterial infection. Journal of Cellular Physiology. 2019; 234: 20298–20309. https://doi.org/10.1002/jcp.28630.
- [108] Pan L, Hu L, Zhang L, Xu H, Chen Y, Bian Q, et al. Deoxyele-phantopin decreases the release of inflammatory cytokines in macrophage associated with attenuation of aerobic glycolysis via modulation of PKM2. International Immunopharmacology. 2020; 79: 106048. https://doi.org/10.1016/j.intimp.2019. 106048.
- [109] Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q, et al. Regulations of Glycolytic Activities on Macrophages Functions in Tumor and Infectious Inflammation. Frontiers in Cellular and Infection Microbiology. 2020; 10: 287. https://doi.org/10.3389/fcimb.2020.00287.
- [110] Balogh E, Veale DJ, McGarry T, Orr C, Szekanecz Z, Ng CT, et al. Oxidative stress impairs energy metabolism in primary cells and synovial tissue of patients with rheumatoid arthritis. Arthritis Research & Therapy. 2018; 20: 95. https://doi.org/10.1186/s13075-018-1592-1.
- [111] Tang CY, Mauro C. Similarities in the Metabolic Reprogramming of Immune System and Endothelium. Frontiers in Immunology. 2017; 8: 837. https://doi.org/10.3389/fimmu.2017.00837.
- [112] Farinha JB, Steckling FM, Stefanello ST, Cardoso MS, Nunes LS, Barcelos RP, *et al.* Response of oxidative stress and inflammatory biomarkers to a 12-week aerobic exercise training in women with metabolic syndrome. Sports Medicine Open. 2015; 1: 19. https://doi.org/10.1186/s40798-015-0011-2.
- [113] Wang X, Wang Z, Tang D. Aerobic Exercise Alleviates Inflammation, Oxidative Stress, and Apoptosis in Mice with Chronic Obstructive Pulmonary Disease. International Journal of Chronic Obstructive Pulmonary Disease. 2021; 16: 1369– 1379. https://doi.org/10.2147/COPD.S309041.
- [114] Park KS, Nickerson BS. Aerobic exercise is an independent determinant of levels of inflammation and oxidative stress in middle-aged obese females. Journal of Exercise Rehabilitation. 2022; 18: 43–49. https://doi.org/10.12965/jer.2142724.352.
- [115] Cho SY, Chung YS, Yoon HK, Roh HT. Impact of Exercise Intensity on Systemic Oxidative Stress, Inflammatory Responses, and Sirtuin Levels in Healthy Male Volunteers. International Journal of Environmental Research and Public Health. 2022; 19: 11292. https://doi.org/10.3390/ijerph191811292.
- [116] So B, Park J, Jang J, Lim W, Imdad S, Kang C. Effect of Aerobic Exercise on Oxidative Stress and Inflammatory Response During Particulate Matter Exposure in Mouse Lungs. Frontiers in Physiology. 2022; 12: 773539. https://doi.org/10.3389/fphys. 2021.773539.
- [117] Zhou Z, Chen C, Teo EC, Zhang Y, Huang J, Xu Y, et al. Intracellular Oxidative Stress Induced by Physical Exercise in Adults: Systematic Review and Meta-Analysis. Antioxidants

- (Basel, Switzerland). 2022; 11: 1751. https://doi.org/10.3390/antiox11091751.
- [118] Thirupathi A, Wang M, Lin JK, Fekete G, István B, Baker JS, et al. Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. BioMed Research International. 2021; 2021: 1947928. https://doi.org/10.1155/2021/1947928.
- [119] Krause M, Rodrigues-Krause J, O'Hagan C, Medlow P, Davison G, Susta D, *et al*. The effects of aerobic exercise training at two different intensities in obesity and type 2 diabetes: implications for oxidative stress, low-grade inflammation and nitric oxide production. European Journal of Applied Physiology. 2014; 114: 251–260. https://doi.org/10.1007/s00421-013-2769-6.
- [120] Cho SY, Roh HT. Impact of Particulate Matter Exposure and Aerobic Exercise on Circulating Biomarkers of Oxidative Stress, Antioxidant Status, and Inflammation in Young and Aged Mice. Life (Basel). 2023; 13: 1952. https://doi.org/10.3390/life 13101952.
- [121] Sun M, Zhao X, Li X, Wang C, Lin L, Wang K, et al. Aerobic Exercise Ameliorates Liver Injury in Db/Db Mice by Attenuating Oxidative Stress, Apoptosis and Inflammation Through the Nrf2 and JAK2/STAT3 Signalling Pathways. Journal of Inflammation Research. 2023; 16: 4805–4819. https://doi.org/10.2147/JIR.S426581.
- [122] Besnier F, Labrunée M, Pathak A, Pavy-Le Traon A, Galès C, Sénard JM, et al. Exercise training-induced modification in autonomic nervous system: An update for cardiac patients. Annals of Physical and Rehabilitation Medicine. 2017; 60: 27–35. https://doi.org/10.1016/j.rehab.2016.07.002.
- [123] Coretti M, Donatello NN, Bianco G, Cidral-Filho FJ. An integrative review of the effects of high-intensity interval training on the autonomic nervous system. Sports Medicine and Health Science. 2024; 7: 77–84. https://doi.org/10.1016/j.smhs.2024.08.002.
- [124] Bhati P, Moiz J. High-intensity interval training and cardiac autonomic modulation. Saudi Journal of Sports Medicine. 2017; 17: 129–134. https://doi.org/10.4103/SJSM.SJSM_2_17.
- [125] Zhang W, Bi S, Luo L. The impact of long-term exercise intervention on heart rate variability indices: a systematic metaanalysis. Frontiers in Cardiovascular Medicine. https://doi.org/ 10.3389/fcvm.2025.1364905.
- [126] Papadakis Z, Forsse JS, Peterson MN. Effects of High-Intensity Interval Exercise and Acute Partial Sleep Deprivation on Cardiac Autonomic Modulation. Research Quarterly for Exercise and Sport. 2021; 92: 824–842. https://doi.org/10.1080/ 02701367.2020.1788206.
- [127] Chiang JK, Lin YC, Hung TY, Kao HH, Kao YH. The Impact on Autonomic Nervous System Activity during and Following Exercise in Adults: A Meta-Regression Study and Trial Sequential Analysis. Medicina (Kaunas, Lithuania). 2024; 60: 1223. https://doi.org/10.3390/medicina60081223.

