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Ischemic heart disease (IHD) remains a leading cause
of morbidity and mortality worldwide. Despite major ad-
vances in revascularization and pharmacotherapy, numer-
ous patients are left with residual disease or symptoms [ 1,2].
Coronary angiogenesis and microvascular function are crit-
ical determinants of myocardial perfusion yet they remain
insufficiently investigated. In recent years, antidiabetic
drugs, including sodium-glucose cotransporter (SGLT) in-
hibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, and
glucagon-like peptide-1 (GLP-1) receptor agonists, have
demonstrated cardiovascular benefits that extend beyond
glycemic control. While their benefit in heart failure and
cardiovascular outcomes are well established [3—7], their
direct vascular and angiogenic effects are less defined. Pre-
clinical and translational evidence suggests these agents in-
fluence endothelial function, collateral vessel formation,
and maladaptive remodeling. The evidence underscores the
need for future clinical investigations to clarify their vascu-
lar effects and define the ideal patient that will most benefit
from them.

The myocardium adapts to ischemia through angio-
genesis, collateral vessel formation, and microvascular va-
soreactivity, all of which determine perfusion. Therapeu-
tic angiogenesis (TA) has emerged as a potential solution;
however, it has not been adopted clinically, due to issues
with patient selection, trial design, and reproducibility of
biologic effects [8—11]. Angiogenesis is manifested by en-
dothelial proliferation, migration, and survival, stabiliza-
tion and maturation of nascent vessels, and complex inter-
actions between growth factors, extracellular matrix, and
inflammatory mediators [12]. On the other hand, maladap-
tive angiogenesis, characterized by disorganized or inad-
equate vessel formation, fails to restore perfusion or may
worsen myocardial injury. More sophisticated strategies,
including combined protein and stem cell delivery or en-
gineered extracellular vesicles, are under investigation [9].
Collectively, these interventions emphasize that restoring
coronary microvascular environment requires an integrated
and multifaceted approach rather than delivery of a single
factor. Against this backdrop, the vascular effects of novel
antidiabetic drugs warrant close consideration.
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Large cardiovascular outcome trials (CVOTs), such as
SELECT or EMPA-REG OUTCOME [4,7], demonstrated
reduced major cardiovascular events in patients with dia-
betes or obesity. Growing evidence suggests these bene-
fits extend beyond their glycemic control and involve di-
rect effects on vascular biology. For example, in a swine
model of chronic myocardial ischemia, the SGLT2 in-
hibitor canagliflozin improved perfusion, attenuated fibro-
sis, and enhanced ventricular function, even without overt
angiogenesis [13]. Complementary work in rodent models
showed canagliflozin improved absolute myocardial blood
flow through enhanced microvascular vasodilation, high-
lighting its ability to restore microvascular reactivity inde-
pendent of angiogenesis [14]. In swine with diet-induced
metabolic syndrome, canagliflozin demonstrated increased
capillary density in ischemic myocardium, demonstrating
angiogenic potential under metabolic stress [15]. Impor-
tantly, human studies have shown that SGLT2 inhibition
enhances coronary microcirculation, endothelial homeosta-
sis, and contractile performance [16,17]. Similarly, GLP-1
receptor agonists and DPP-4 inhibitors appear to modulate
vascular biology. In our swine model of IHD, semaglutide
improved perfusion and ventricular function, with reduced
fibrosis and enhanced endothelial signaling [18]. These
findings highlight the multifaceted mechanisms by which
GLP-1 agonists may protect the ischemic myocardium.
Linagliptin, a DPP-4 inhibitor, reduced fibrosis and apopto-
sis while improving overall cardiac performance, illustrat-
ing its favorable vascular effects [19]. Human data remains
limited but shows promise. A pilot trial of liraglutide in 24
patients with type 2 diabetes, although underpowered, sug-
gested increased coronary microvascular function [20]. An-
other recent study showed dulaglutide enhanced endothe-
lial function and indices of arterial stiffness [21]. Collec-
tively, these findings suggest SGLT2 inhibitors, GLP-1 re-
ceptor agonists, and DPP-4 inhibitors exert cardiovascular
benefits in part by modulating microvascular reactivity, en-
dothelial homeostasis, and angiogenesis. Their utility ap-
pears most relevant in patients with diffuse coronary disease
or microvascular angina, where impaired angiogenesis and
vascular reactivity sustain ischemic burden. Additionally,
patients with diabetes or metabolic syndrome, who often
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exhibit marked impairment in endothelial function and vas-
cular reactivity, may especially benefit from these therapies
[22].

Combination therapy with traditional antidiabetic
medications, such as metformin, may augment these ef-
fects. In our swine model of THD, metformin alone im-
proved cardiac function by improving perfusion and reduc-
ing apoptosis, independent of glycemic control [23]. These
findings align with historical evidence linking metformin to
improved cardiovascular outcomes, and more recent stud-
ies demonstrating enhanced microvascular and endothelial
function [24-28]. Notably, most participants in CVOTs of
SGLT2 inhibitors and GLP-1 agonists were receiving met-
formin (67-82%), suggesting it may contribute to the car-
diovascular benefits of these newer drugs [29]. Therefore,
delineating how these mechanistic pathways interact across
various drug classes will be critical to guide their role in
[HD.

The vascular and angiogenic effects of these drugs
raise an important question: in which patients will cardio-
vascular benefits be most meaningful? To date, CVOTs
have focused on heart failure and atherosclerotic events,
but patients with diffuse coronary disease or microvascu-
lar angina, conditions where ischemia persists without dis-
crete lesions amenable to revascularization, may represent
a particularly important target population. Future trials
should move beyond broad outcomes to incorporate mech-
anistic endpoints, including myocardial perfusion imag-
ing, endothelial function testing, and circulating angiogenic
biomarkers. Crucial endpoints can be assessed using in-
vasive techniques, such as quantitative coronary angiogra-
phy with infusion of vasoactive agents to directly measure
endothelial function, intravascular ultrasound to character-
ize lumen morphology following vasoactive challenges, or
fractional flow reserve [30,31]. Additional secondary end-
points may also be captured through non-invasive tech-
niques, including positron emission tomography and single-
photon emission computed tomography (PET/SPECT), car-
diac magnetic resonance, or non-invasive assessment of
myocardial function [32]. Extended follow up will be es-
sential to monitor the durability of collateral formation and
endothelial function, as well as to evaluate for possible ad-
verse effects, such as maladaptive angiogenesis. By inte-
grating a range of these mechanistic endpoints, future tri-
als can more precisely define how these antidiabetic drugs
influence coronary vascular biology and myocardial perfu-
sion, ultimately guiding their use in IHD. SGLT?2 inhibitors,
GLP-1 receptor agonists, and DPP-4 inhibitors represent a
new frontier in vascular therapeutics. Defining the clinical
conditions for their application will be essential to realizing
their full potential.
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