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Abstract

Electrocardiographic imaging (ECGi) is an innovative noninvasive mapping technique. Indeed, ECGi enables the identification of the
earliest points of cardiac activation in both atrial and ventricular focal arrhythmias, as well as rotors and high-frequency domains that
could act as potential drivers of atrial fibrillation. Currently, ECGi is most widely used in themanagement of ventricular tachycardia (VT).
Meanwhile, in cases of macro-reentrant arrhythmias, ECGi assists in outlining the re-entry circuit and identifying the myocardial exit site.
Additionally, current research is focusing on detecting myocardial scars and critical isthmuses. This information is particularly valuable
for planning stereotactic arrhythmia radioablation procedures for VT in patients where invasive electroanatomic maps are unavailable,
and a fully noninvasive approach is preferred. The present review aims to examine commercially available options for noninvasive ECG
mapping (Amycard, CardioInsight, VIVO, Acorys, and vMAP), highlighting key features and limitations.
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1. Introduction
Since the first electrocardiographic recording of hu-

man cardiac activity, significant advancements have been
made in electrocardiogram (ECG) interpretation. However,
the underlying principles and technology of the ECG have
remained largely unchanged. In recent decades, alongside
the traditional ECG used in clinical practice, a growing area
of research has focused on solving the so called “inverse
problem” of electrocardiography and, subsequently, intro-
ducing noninvasive mapping of cardiac electrical activity
[1]. Noninvasive ECG mapping is in fact an attractive op-
tion to identify the site of origin of arrhythmias, especially
in case of frail patients, in whom a full noninvasive diagnos-
tic and therapeutic protocol may be preferable [2,3]. Nonin-
vasive ECG mapping can be used to identify the origin site
of ventricular premature depolarizations (VPDs) and focal
tachycardias, and, in macro-reentrant arrhythmias, can de-
lineate the reentry circuit and pinpoint the myocardial exit
site of the tachycardia.

Aim of the present review is to describe the clinical
scenarios in which noninvasive ECG mapping has been
tested and the characteristics of commercially available sys-
tems.

2. Noninvasive Cardiac Electrical Activity
Mapping, the Inverse Problem of
Electrocardiography

The core challenge of electrocardiographic imaging
(ECGi) lies in solving the inverse problem of electrocar-

diography and, eventually, enabling reliable body surface
mapping (BSM) (Fig. 1). Although a comprehensive dis-
cussion of this topic is beyond the scope of this review, un-
derstanding some basic concepts is essential to appreciate
the limitations of current BSM systems.

The inverse problem of electrocardiography can be de-
fined as the reconstruction of the heart’s electrical activity
based on the processing of electrical signals recorded from
the body surface. In a sense, the clinical interpretation of
the ECG represents a pragmatic, human approach to solv-
ing this problem. Mathematically, this process presents two
key challenges: it is non-unique, as different cardiac config-
urations could theoretically produce the same body surface
signals; and it is ‘ill-posed’, meaning that small changes
in the initial conditions (e.g., due to noise) can lead to sig-
nificant variations in the solution. Therefore, resolving the
inverse problem of electrocardiography involves defining
mathematical constraints that enable a unique, physiologi-
cally plausible solution [4].

2.1 Cardiac Models
At the core of constructing an ECGi workflow is the

modeling of the heart’s electrical activity. In brief, solving
the inverse problem requires the development of a forward
mathematical model. Two main approaches can be adopted
for this purpose [5]. The first is the extracellular potential-
based model, which considers the potential at the cardiac
surface (epicardium or both epicardium and endocardium)
as the electrical source. This approach has several advan-
tages: the surface potential is directly measurable, provid-
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Fig. 1. Timeline of the principal development in ECGi history. ECGi, electrocardiographic imaging.

ing immediate access to potential and electrogram data, and
activation maps can be easily reconstructed. However, it
lacks direct information on the transmural propagation of
the electrical impulse [6].

The second approach is the myocardial activation time
model (such as the equivalent double-layer model), which
directly describes local activation timing without requiring
potential reconstruction. An advantage of this model is that
it can represent transmural propagation of the electrical im-
pulse. Earlier versions lacked information on the repolar-
ization phases [6], but this limit has now been solved [7].

The signals recorded at the body surface are influ-
enced not only by the heart’s electrical activity but also by
the conductive properties of surrounding tissues. As a re-
sult, ECGi models must also account for the heterogeneous,
patient-specific torso conductor, incorporating its varying
properties and geometries to accurately reconstruct the car-
diac electrical activity [8].

2.2 Validation Studies

All cardiac models require validation to confirm re-
liability and clinical validity. This involves evaluating the
technical rigor of the ECGi model and its validity in various
clinical scenarios. Technical validation includes simulation
and experimental setups. Simulation studies use analyti-
cal or numerical approaches: analytical methods, though
constrained by simple geometry, reveal the importance of
source position and relative insensitivity to thorax conduc-
tivity [9,10]; numerical models are less constrained by ge-
ometry and allow the investigation of each element of the
model separately, investigating how they singularly affect
the solution [11,12]. Experimental setups usually feature a
torso tank with a suspended ex vivo animal heart, recording
electrical activity from the heart and tank surface, enabling
accurate quantitative assessments [13]. Animal models are
also used, but lack of precise geometrical information im-
pair quantitative analysis [14,15]: however, a recent ex-
periment using a computed tomography (CT) scan in anes-
thetized dogs, showed a 10 mm spatial resolution in iden-
tifying pacing beat origin [16]. On the other side, clinical
validation assesses ECGi accuracy by comparing it with in-

vasive recordings, testing the model’s ability to locate elec-
trical impulse origins and analyze depolarization sequences
using mapping electrodes [17].

In any case, the comparison between ECGi and in-
vasive mapping systems requires precise anatomical align-
ments between maps. Even small errors may have a signif-
icant impact on the results: the alignment process is chal-
lenging, and should be based on clear and fixed anatomical
landmarks as the aortic root, the common pulmonary artery
and cava veins [18].

3. Noninvasive Cardiac Electrical Activity
Mapping, Current Clinical Applications and
Areas of Research

Currently, ECGi is primarily used in cardiac electro-
physiology to study and manage arrhythmias. In atrial ar-
rhythmias, particularly in atrial fibrillation (AF) [19,20],
ECGi holds the potential to identify focal sources, analyze
arrhythmogenic substrates, and localize rotors and drivers
linked to successful ablation sites. However, due to the ex-
tensive nature of the ablation sets, validation studies in this
context are challenging. Few studies [21,22] have inves-
tigated ECGi in Wolff-Parkinson-White (WPW) syndrome
for accessory pathway localization and preprocedural risk-
benefit assessment, but the main indication is to localize the
focal origin of premature ventricular depolarizations (VPD)
and ventricular tachycardia (VT). Though results are still
suboptimal, ECGi is also being explored for substrate map-
ping to identify myocardial scars, and, in case of macro-
reentrant ventricular arrhythmias, to highlight reentry cir-
cuits and critical isthmuses [23] (currently investigated in
the ECGI-VT study NCT03713866). While invasive elec-
troanatomical 3D mapping remains the gold standard in
these scenarios, ECGi may aid in cases of fast, poorly tol-
erated or unmappable VTs.

Stereotactic Radiation Ablation of Ventricular Tachycardia

Catheter ablation is an effective treatment for VT and
is increasingly recommended [24]. Its success depends on
the underlying cardiac condition, achieving the best out-
comes for monomorphic VTs of ischemic etiology. Tra-
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ditional electroanatomical 3D mapping of the VT circuit
requires reproducible induction and hemodynamic toler-
ance, possible in only few patients. In addition, even when
mapped, ablationmay be incomplete if the substrate is intra-
mural, epicardial, or near vital structures. For these reasons,
when catheter ablation is unfeasible or ineffective, stereo-
tactic arrhythmia radioablation (STAR) has become a real-
istic option. STAR delivers high-dose radiation (typically
25 Gy in a single session), completely un-invasively, to
the arrhythmogenic substrate inaccessible by catheter [2,3].
Precise pre-procedural planning is essential using prior ab-
lation data, ECGi, or both, followed by respiratory-gated
CT imaging to define the final target volume.

The ENCORE-VT [2,3] demonstrated STAR’s safety
and efficacy, obtaining VT/VPD reduction in 94% of the
19 patients treated. In this study the noncommercially
available CADIS-ECGI system [1,25,26] developed by the
group of Rudy et al. was used. This ECGi uses 224–250
body surface electrodes paired with an anatomical CT scan
to reconstruct the epicardial surface of both the atrial and
ventricular chambers and create voltage, activation, and re-
polarization maps.

Driven by the first, positive, clinical experiences a first
joined European Heart Rhythm Association/Heart Rhythm
Society Consensus document on STAR workflow has been
released [27] and a European multidisciplinary consortium,
the STOPSTORM [28] has gathered forces in the attempt to
standardize procedural workflow, follow-up reporting, and
description of complications.

To date, STAR represents a reasonable option in at
least three clinical conditons: (1) critically ill patients, with
a VT burden that significantly affects quality of life, pre-
senting high predicted invasive ablation complication rate
or low sedation protocol tolerance; (2) patients in which the
critical VT isthmus or focal origin is not reachable due to
anatomical or technical limitations (e.g., epicardial adhe-
sions from previous surgery, presence of a left ventricular
assist device) or “inaccessible” left ventricle (presence of
left ventricular thrombosis; mitral and aortic mechanical
valves); (3) cases in which invasive catheter ablation has
failed (e.g. target deep within the myocardium or protected
by fat or fibrous tissue).

In these scenarios, noninvasive ECGi mapping can
be crucial [29]. In particular, deep myocardial VTs, in
which the earliest activation area with traditional invasive
mapping may appear wider and less contingent, are excel-
lent candidates for STAR. In any case, ECGi’s accuracy is
deemed to be adequate for STAR due to its broader lesion
coverage, incorporating safety margins (typically at least
5 mm) [30,31]. Moreover, the information deriving from
noninvasivemapping can bemergedwith clinical and imag-
ing details on anatomy and fibrosis and, recently, a tool
(HeaRTmaP) has been developed to integrate this informa-
tion into a radiation planning system [32].

Though literature supports ECGi in STAR planning
[33–37] its use across STOPSTORM centers was limited

up to 2022 [28]. Notably, while the STOPSTORM consor-
tium has reported benchmarks in structure [38] for contour-
ing and radiotherapy planning [39], specific guidance on
target definition workflows is still lacking.

Limitations related to the standardized use of ECGi
include small validation series, initial focus on idiopathic
VTs, and difficulty managing multiple morphologies. Im-
provements are needed in algorithms for activation se-
quence mapping, distinguishing epicardial from endocar-
dial arrhythmias and identifying diastolic potentials.

4. Commercially Available ECGi Systems
Currently, five ECGi systems are commercially avail-

able. Table 1 (Ref. [40]) summarizes their main fea-
tures. The landmark work by Rudy led to the creation of
the first commercially available system, CardioInsight™
(Medtronic), approved in Europe in 2012 and in USA in
2014 [26]. In the following decade, other four systems were
introduced. Two—Amycard and Acorys—share the same
extracellular potential model, requiring many torso elec-
trodes for noninvasive reconstruction. Amycard is the only
system offering both epicardial and endocardial reconstruc-
tions based on an activation/recovery times model; Car-
dioInsight and Acorys provide only epicardial maps. The
remaining systems use different approaches: VIVO applies
an equivalent double layer model based on activation time
and vMAP employs artificial intelligence (AI) with a for-
ward solution. Both VIVO and vMAP rely on a standard
12-lead ECG. Notably, only Amycard and vMAP do not
require 3D imaging in their workflows.

4.1 CardioInsight
CardioInsight (Medtronic, Minneapolis, MN, USA)

mapping system reconstructs and maps epicardial poten-
tials exclusively, using the method of fundamental solu-
tions to address the inverse problem of electrocardiography
[41]. Both atrial and ventricular chambers can be mapped
using separate protocols. The system utilizes a 3-part vest
(CardioInsightMapping Vest) with 252 unipolar electrodes,
placed on the patient’s torso to record cardiac electrical ac-
tivity. A 3D reconstruction is performed via a CT scan, seg-
menting cardiac structures at a spatial resolution of 6.8 mm.
The software reconstructs electrograms, potential, and volt-
age maps across ~1400 nodes (Fig. 2). Activation and prop-
agation maps are generated using the maximum negative
deflection method (-dV/dT), and direction, phase, and com-
posite maps are also available to illustrate impulse prop-
agation, display rotors and focal activity. CardioInsight
has been validated for localizing VPD and guiding abla-
tion. A randomized controlled trial demonstrated that Car-
dioInsight outperformed standard 12-lead ECG interpreta-
tion with 95.2% accuracy confirmed by invasive mapping
[29]. A case series of patients with VPDs from the outflow
tract showed 96% accuracy in identifying the chamber of
origin [42]. However, another study comparing epicardial
breakthrough and activation maps from CardioInsight with
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Table 1. Comparison of the features of the commercially available noninvasive ECG mapping systems.
Cardio-Insight Amycard Acorys VIVO vMAP

ECG leads 252 unipolar body-surface electrodes 224 unipolar body-surface elec-
trodes

128 unipolar body-surface electrodes 12 leads ECG (direct, real time
recording but also 12 leads Holter
ECG data uploading)

12 leads ECG

Model Extracellular potential model Extracellular potential model Extracellular potential model Equivalent double layer model
(activation time)

AI based system utilizing a for-
ward solution approach

Regulatory status CE (2012) and FDA (2014) marketing ap-
proval

CE marketing approval CE marketing approval (07/2024) CE (2018) and FDA (2019) mar-
keting approval

FDA (2021) marketing approval

Surface mapped Epicardium Epicardium and endocardium Epicardium Epicardium and endocardium No distinction up to 2022 [40]
Maps Potential map, activation map propagation

map, unipolar voltage map, slew rate map.
Isopotential, isochronal, phase
map, voltage maps, activation
maps.

Isopotential, isochronal, phase map,
voltage maps, activation maps, con-
duction velocity maps.

Activation map. Specific for the type of arrhyth-
mias.

3D Imaging CT CT or MRI CT or MRI Not strictly necessary CT or MRI Not required
Atrial maps Yes Yes Yes (system focused on AF) No Yes
VT mapping accura-
cy compared to inva-
sive mapping

Median distance between ECGi identified ear-
liest activation times and invasive mapping =
22.6 mm (15.8 mm in NICM vs. 26.6 mm in
ICM, p = 0.055). Worst results when using the
earliest negative voltage.

No direct (in mm) comparison
available.

No direct (in mm) comparison avail-
able.

No direct (in mm) comparison
available.

Median spatial accuracy for VT
was reported to be 14 mm with ex-
cellent regional localization in pa-
tients, 23% of whom had SHD.

Perfect match (PM = same
anatomic segment, in a model
with 22 LV and 12 RV segments)
in 76%, near match (NM) in 97%
(n = 37 procedures).

Perfect match (PM = same
anatomic segment, in a model
with 22 LV and 12 RV segments)
in 95%, near match (NM) in
100% (n = 21 procedures).

Limits Inability to reconstruct septal struc-
tures.

Lower performance in mapping
pacing beats from the septum,
apical region, and outflow tract.

Inability to reconstruct septal struc-
tures.

Suboptimal resolution of sub-
aortic and sub-pulmonary valve
sites.Struggles to map the full macro-reentrant cir-

cuit and activation sequence of arrhythmias.
Unreliable in distinguishing between
epicardial and endocardial origins.

Unreliable in distinguishing between epicar-
dial and endocardial origins.

Main research/clini-
cal applications so
far

Ventricular arrhythmias treatment. VT treatment. Atrial mapping, particularly for AF
mechanistic understanding and treat-
ment planning (mostly rotors and
high-frequency drivers mapping).

Ventricular arrhythmias treat-
ment.

Ventricular and atrial arrhythmias
treatment.Identification of regional delay

for CRT planning and optimiza-
tion.

Identification of VT isthmuses during
sinus rhythm through conduction ve-
locity maps (substrate maps).

Legend: AI, artificial intelligence; CE, Conformité Européenne; CRT, cardiac resynchronization therapy; CT, computed tomography; FDA, U.S. Food and Drug Administration; ICM, ischemic cardiomyopathy; MRI,
magnetic resonance imaging; NICM, non ischemic cardiomyopathy; SHD, structural heart disease; VT, ventricular tachycardia; ECG, electrocardiogram.

4

https://www.imrpress.com


invasive contact mapping in epicardial procedures (notably
Brugada syndrome and arrhythmogenic right ventricular
cardiomyopathy cases) showed poor correlation, with an
average breakthrough location difference of 52 mm [43].
Additionally, no anatomical correlation was found between
lines of block, and mapping inaccuracies occurred in ar-
eas such as the right ventricular outflow tract during sinus
rhythm.

Further limitations emerged when comparing low
voltage area identification between CardioInsight and inva-
sive electroanatomic mapping, showing overall only mod-
erate correlation [44]. Since CardioInsight reconstructs the
epicardial surface, it cannot provide information on septal
low voltage areas. Two studies [18,31] directly and simul-
taneously compared noninvasive mapping with CardioIn-
sight and invasive electroanatomic mapping during differ-
ent pacing configurations and VT. The first study quantita-
tively compared electrograms recorded simultaneously by
both methods during various pacing modalities, revealing
a spatial resolution of 13.2 mm at confirmed capture sites
and moderate correlation for activation time maps (Pear-
son correlation coefficient 0.66), and even lower correla-
tion for repolarization maps (0.55, probably due to lower
T-wave amplitudes) [18]. These results were influenced
by QRS duration (with poorer outcomes for narrower QRS
complexes), anatomical misalignment, and filter settings,
with up to a 25% variation for a 4 mm anatomical shift
and reduced correlation with the default 50 Hz low-pass
filter. The same co-registration protocol was later applied
for mapping VT in patients with structural heart disease
[31]. The median distance between the earliest activation
site identified by CardioInsight and invasive mapping was
22.6 mm (better in non-ischemic vs ischemic cardiomyopa-
thy patients 15.8 mm vs. 26.6 mm, p = 0.055, respectively).
However, these results worsened when using the earliest
negative voltage method instead of activation times. De-
spite the system’s inability to reconstruct septal structures,
it mapped septal arrhythmias as accurately as those origi-
nating from other regions. Nonetheless, the system strug-
gled to map the full macro-reentrant circuit and activation
sequence of arrhythmias. Additionally, it could not reliably
distinguish between epicardial and endocardial origins, as
endocardial VTs did not exhibit rS complex electrograms
at the origin site. These findings contrast with those of
Duchateau [43], possibly due to higher system accuracy
during paced rhythms or VT compared to sinus rhythm ac-
companied by manual signal editing to improve precision.
Overall these experiences suggest CardioInsight’s resolu-
tion may be adequate to guide STAR but not a transcatheter
ablation. This specific hypothesis is in fact under investiga-
tion in the CARA-VT RCT (NCT05047198), which com-
pares STAR guided by CardioInsight with catheter ablation
in patients with structural heart disease and recurrent VT.

CardioInsight has also been applied to analyze elec-
trical activity in AF, using phase mapping to identify ro-
tor and focal activity and distinguish active drivers from

passive zones [45,46]. Ablation at these sites has led to
acute AF termination and favorable long-term outcomes
[19,20]. However, limitations exist: CardioInsight maps
derive from overlaid structures and struggle to differentiate
closely located regions like the non-coronary cusp and in-
teratrial septum [47]. Additionally, phase mapping for rotor
identification is prone to errors and false positives, particu-
larly in cases where impulse propagation occurs in opposite
directions parallel to a line of block [48,49].

Finally, moving from activation to recovery, a ven-
tricular electrical stability test, that calculates the relative
change in electrogram (EGM) local activation times be-
tween a baseline and post-exertion phase using customwrit-
ten software, was proposed to better understand and quan-
tify effort-induced cardiac conduction heterogeneity among
patients with Brugada Syndrome and idiopathic ventricular
fibrillation (VF) [50]. This pilot study also underscores the
fact that the CardioInsight vest can be used to record car-
diac activity not only at rest but also during effort, paving
new research possibilities in this field.

4.2 Amycard Mapping System
The Amycard system (Amycard 01C electrophysiol-

ogy [EP] laboratory; EP Solutions SA, Yverdon-les-Bains,
Switzerland), formerly EPCard IVM, enables the recon-
struction and mapping of both epicardial and endocardial
potentials across atrial and ventricular chambers. This sys-
tem uses 224 unipolar body surface electrodes (28 stripes
of 8 electrodes each) placed on the torso to record cardiac
electrical activity. A recent study showed that reliable iden-
tification of VPDs or premature atrial complexes (PAC) can
be achieved with as few as 74 electrodes. After electrode
placement, a torso and cardiac CT or magnetic resonance
imaging (MRI) scan is performed, followed by a 3D re-
construction of the torso and cardiac chamber geometries
using proprietary software. The system solves the inverse
problem using an extracellular potential model, reconstruct-
ing isopotential and isochronal maps on both surfaces, with
over 2500 nodes. On top of activationmaps, phasemaps are
also generated, identifying high-frequency activities and ro-
tor dynamics. [51].

Current research with this system focuses on VT treat-
ment and regional delay identification for optimizing car-
diac resynchronization therapy (CRT). Results from the
multicenter ICONIC-M (NCT05564793) study using Amy-
card for CRT optimizationare expected in 2026. A retro-
spective study showed that overlap between the latest elec-
trical activation and left ventricle pacing site correlates with
CRT response [52].

Validation studies typically involve pacing from vari-
ous endocardial regions and comparing pacing sites with the
first activation zone identified by the mapping system [53].
Amycard showed good agreement for pacing beats originat-
ing from the free ventricular walls, but showed lower per-
formance for the septum, apical region, and outflow tract.
Accuracy improved when the model was manually modi-
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Fig. 2. ECGi mapping performed with the CardioInsight system, LAO projection. Panels from left to right, up to down: (1) VT
potential map providing a snapshot of unipolar activation. In gray the reconstruction of the LAD artery (indicated by the green arrow),
a LV medio-apical calcification (indicated by the red arrow) and the LV epicardial catheter (indicated by the blue arrow). (2) Voltage
map during atrial pacing showing a medio-apical and inferior scar; the scar is represented by voltages lower than 1 mV in red and non-
purple colors, whereas normal voltages are displayed in purple. (3) VT directional activation map showing directional vectors of local
activations. (4) VT activation map (first activation in red and latest in blue). The three maps combined suggest a reentry macrocircuit
with a large epicardial exit area including the medio-basal antero-lateral LV wall. Legend: LAO, left anterior oblique; LAD, left anterior
descending; LV, left ventricle; STAR, stereotactic arrhythmia radioablation; VT, ventricular tachycardia.

fied, such as by excluding the right ventricle for septal pac-
ing sites [53].

In patients with cardiac implanted electronic devices,
Amycard identified pacing site with a mean error of 6.8 mil-
limeters, reduced to 5.5 millimeters during breath-holding.
Similarly, in patients undergoing AF catheter ablation, it
identified pacing sites in different atrial regions with an av-
erage error of ~7 millimeters (7.4 mm in the right atrium
and 6.9 mm in the left) [54].

Amycard has proven effective in identifying VPD ori-
gins [55–57], and has guided ablation when arrhythmias
were not present during the procedure [58]. A case se-

ries comparing Amycard system with the VIVO system
showed good agreement in identifying VPD origins [51].
The system has also been validated for detecting monomor-
phic reentry VT in ischemic cardiomyopathy and for iden-
tifying rotor activity and multiple wavelengths in Brugada
syndrome using phase mapping [59]. The system has also
been employed to map rotors and focal activity in patients
with AF, showing strong correlation with invasive endo-
cardial mapping; however, rotor activity did not colocalize
with regions of late gadolinium enhancement identified on
MRI [60,61]. Amycard phase mapping has also been uti-
lized for mapping typical counterclockwise and clockwise
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atrial flutter, demonstrating good correlation with invasive
data, although with some temporal delay compared to the
invasive activation map [62,63].

4.3 Acorys
The Acorys (Corify Care, Madrid, Spain) mapping

system is distinct in its clinical development, as it primar-
ily focuses on atrial mapping, particularly for AF treatment.
Despite this focus, the system can map both atrial and ven-
tricular chambers. It employs a proprietary vest with 128
electrodes to record cardiac electrical activity. A 3D cam-
era is used to scan the patient’s torso and accurately deter-
mine the position of the electrodes. Unlike other systems, a
CT or MRI scan of the cardiac structures is not strictly re-
quired [64], although integration with imaging data is pos-
sible. The system utilizes a proprietary AI software to gen-
erate chamber geometry and display mapping results [64].
The Acorys system reconstructs epicardial potentials and
offers a variety of mapping options, including isopotential,
activation, dominant frequency, and phase maps [65], with
additional information on conduction velocity also avail-
able [66].

Most clinical studies using the Acorys system have
focused on AF, specifically in identifying rotors and high-
frequency drivers to better understand the arrhythmiamech-
anisms and potentially guide ablation [66,67]. In addition
to AF, the system has been applied in planning VT ablation
procedures. Preliminary experiences have showed the role
of the system in identifyingVT isthmus during sinus rhythm
by locating regions of slow conduction, an area of active
ongoing research [68]. Another emerging application for
Acorys is guiding the implantation of CRT devices or con-
duction system pacing, highlighting its expanding role in
various cardiac interventions [69].

4.4 VIVO Mapping System
The View into Ventricular Onset (VIVO - Catheter

Precision, Fort Mill, SC, USA) mapping system enables the
reconstruction and mapping of epicardial, endocardial, and
interpolated intramural potentials [70]. It is specifically de-
signed for ventricular mapping, as it does not support map-
ping of atrial chambers. The system utilizes either a cardiac
CT orMRI scan to delineate the patient’s 3D heart anatomy.
A patient-specific heart model is reconstructed using pro-
prietary software that integrates imaging data with a refer-
ence model [71]. A key feature is a 3D camera used to scan
the patient’s torso, precisely localizing the 12 ECG leads
and three proprietary reference patches. This is crucial be-
cause minor electrode position changes can significantly af-
fect VPD localization accuracy [72]. The electrical cardiac
source is modeled using an equivalent double-layer model
that simulates the diffusion of depolarization in the my-
ocardium. The resulting map directly displays isochrones
of cardiac activation [70]. The model can theoretically also
map the repolarization phase [73]. The origin of the VPD
or VT exit site is identified by comparing the ECG-derived

vector cardiogram with simulated ones for each node of the
ventricular model at three key points: onset (30 ms after the
QRS start), midpoint (0.5× QRS duration), and end (0.8×
QRS duration) of depolarization [74,75]. Manual identifi-
cation of temporal markers, such as QRS onset and T-wave
end, is required, possibly introducing some extra margin of
error. In an ex-vivo experimental model, the system identi-
fied the pacing site with an average error of 18 mm [76].

VIVO has been validated for identifying the origin of
VPDs or VT [70,75]. In a case series of 20 patients (12
undergoing VPD ablation and 8 undergoing VT ablation),
it correctly identified the focus of VPDs and VT in 85%
and 88% of cases, respectively [74]. Another retrospective
case series showed agreement with invasive mapping sys-
tems for VPD focus identification in 72% of cases (Fig. 3).
This study emphasized that accurate origin prediction de-
pends on the use of a patient-specific heart model and pre-
cise marker timing (e.g. a 5 ms shift in QRS onset or end
can lead to significant errors), while patient positioning did
not impact accuracy [77]. Case reports have demonstrated
the feasibility of integrating the VIVO system into the abla-
tion workflow and guiding the preferred access for mapping
[78,79]. An observational study reported that the VIVO
system helped in reducing both procedure duration and ra-
diation exposure [80]. Finally, in addition to the direct 12
leads resting ECG recording through the system software,
that requires the target arrhythmia to be observed during the
hospital monitoring, the possibility to upload data from a 12
leads Mortara (Hillrom) Holter ECG to the VIVO system,
thereby expanding the observation time, was also reported
[80,81]. In these cases, the 3D photograph was taken using
the VIVO camera while the traditional Holter leads were
placed on the patient’s torso.

4.5 vMAP

vMAP (Vektor Medical, USA) uses an AI-based for-
ward modeling approach to map cardiac electrical activity.
vMAP compares a recorded 12-lead ECG with a library
of over one million arrhythmia simulations generated us-
ing the Continuity platform [40,82] (as of 2022). Patient-
specific clinical characteristics, including body metrics and
structural heart disease, are incorporated into the analysis
[40]. The system requires a digitized 12-lead ECG and can
map both atrial and ventricular chambers. The output is a
heatmap displaying probability distribution across the car-
diac surface, tailored to each arrhythmia type. For focal
arrhythmias and pacing, it identifies the site of earliest ac-
tivation; for macro-reentrant VT, it highlights the exit site
and first myocardial activation; for orthodromic atrioven-
tricular reentrant tachycardia (AVRT), it pinpoints the atrial
insertion of the accessory pathway; and for AF and VF, it
identifies reentrant areas potentially driving the arrhythmia
[40]. vMAP is currently FDA-approved based on the piv-
otal VMAP study [40], where it showed 98.7% accuracy
for chamber localization and 97.3% for segment-level iden-
tification. The median distance from invasive EP studies
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Fig. 3. Comparison between invasive mapping (A) and noninvasive mapping performed by the VIVO system (B), both in PA
projection. The maps show ventricular premature depolarization originating from the RVOT posterior wall (as highlighted by the red
circles). The image shows a local activation map, with the earliest activation shown in red and the latest in blue or purple. In this case
the correlation appears satisfactory despite in this region the noninvasive system is known to have a suboptimal resolution. Legend: PA,
posteroanterior; RVOT, right ventricular outflow tract; VPD, ventricular premature depolarization.

findings was 15 mm. For AF [83] and VF [83], the system
identifies regions associated with local reentrant activity, as
confirmed by intracavitary mapping with basket catheters.
VPDs and PACs triggering VF and AF are mapped as fo-
cal arrhythmias. The registration study found no significant
difference in accuracy between a generic anatomical model
and a patient-specific 3D model. A retrospective study [84]
showed that incorporating vMAP into clinical practice re-
duced both fluoroscopy and procedural times without com-
promising the efficacy or safety of the procedure. vMAP
has been successfully used to guide cryoablation of a VPD
focus during surgical unroofing of an anomalous right coro-
nary artery [85]. Additionally, it has been employed in six
patients undergoing STAR for VT, demonstrating feasibil-
ity in procedural planning [36], and in a case of perivalvular
VT that was inaccessible to ablation due to the presence of
mechanical mitral and aortic valves [33].

5. Current Limitations and Future
Perspectives

Despite promising initial experiences, widespread
clinical use of ECGi is limited by several aspects, as in-
accuracies in epicardial breakthrough, low resolution of
specific anatomical sites and lack of robust clinical evi-

dence. Furthermore, geometric mismatches caused by car-
diac and respiratory motion during image acquisition, mi-
nor electrode misplacement after the CT scan and during ar-
rhythmia recordings, and challenges in manually segment-
ing anatomical structures can lead to anatomical misalign-
ment and reduce reconstruction accuracy. The vMAP and
Acorys systems, not requiring cardiac imaging and using
non–patient-specific anatomical models, could potentially
be less susceptible to anatomical misregistration.

Currently, noninvasive mapping is not primarily used
for guiding transcatheter ablation, where invasive elec-
troanatomical 3D systems remain more accurate for both
substrate and activation mapping. However, ECGi is in-
creasingly used to plan STAR procedures, helping identify
target regions or areas of interest in very fast, poorly tol-
erated or unmappable VTs. In this scenario the integra-
tion of non-invasively collected ECGi maps integrated with
anatomical details on the specific arrhythmic substrate rep-
resents, especially in those cases in which invasivemapping
is not suitable, a real advantage. In addition, a growing area
of research is the application of ECGi to study not only de-
polarization (activation), but also repolarization dynamics
(at rest but also during effort), in order to improve arrhyth-
mic risk stratification in several cardiac disorders, span-
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ning channelopathies (Long QT syndrome [86] and Bru-
gada syndrome [87]) and arrhythmogenic cardiomyopathy
[88] to idiopathic ventricular fibrillation [50,89].

A recent analysis using the CADIS-ECGI system
showed significant differences between LQTS patients and
controls in both activation and recovery sequences. These
analyses may provide a visual and quantitative measure of
repolarization dispersion and potentially add to arrhythmic
risk stratification [90].

Finally, ongoing studies are further investigating
other potential clinical scenarios: the GUIDE study
(NCT06509763) will test the ability to assess resynchro-
nization in patients undergoing left bundle branch pacing;
the BREACH-ECGI (NCT04548804) aims to specifically
shed light on arrhythmic risk stratification for patients at in-
creased risk of ventricular arrhythmias in different settings
(from channelopathies to structural heart disorders).

6. Conclusion
Noninvasive mapping using ECGi systems for atrial

and ventricular arrhythmias is feasible and should be con-
sidered in specific clinical settings, such as STAR proce-
dures planning, particularly for patients without an avail-
able invasive electroanatomicmap. Several commercial so-
lutions exist, but there is currently no clear evidence fa-
voring one system over. The ENCORE-VT trial further
suggests that noncommercial, research-oriented solutions
(CADIS-ECGI system [1,25,26]) can also be effective.

If the CARA-VT trial yields positive results, the Car-
dioInsight system would be the only ECGi solution with
randomized evidence supporting its use. The VIVO map-
ping system offers the theoretical advantage of reconstruct-
ing both endocardial and epicardial surfaces with higher
anatomical resolution for septal arrhythmias compared to
CardioInsight, although it lacks other additional features.
The Amycard system also supports both endocardial and
epicardial reconstructions, retaining some CardioInsight’s
features, but current clinical studies primarily focus on its
role in cardiac resynchronization therapy. Similarly, while
the Acorys system was originally designed for AF studies,
promising data are now emerging regarding its application
in managing ventricular arrhythmias. The vMAP and Aco-
rys systems offer the benefit of not requiring cardiac imag-
ing, making them more accessible for planning catheter ab-
lation procedures. However, this may be less advantageous
in the STAR workflow, where more detailed anatomical in-
formation is often necessary.

Given these evidence, despite presenting several po-
tential advantages, invasive electroanatomic 3D mapping
remains the gold standard and should be preferred when-
ever possible, as each noninvasive system has limitations
that require further research.
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