Systematic Review

# Physiological Mechanisms Driving Microcirculatory Enhancement: the Impact of Physical Activity

Jianyu Li<sup>1,†</sup>, Guochun Liu<sup>1,2,†</sup>, Dong Zhang<sup>3</sup>, Keying Zhang<sup>4</sup>, Chunmei Cao<sup>1,\*</sup>
<sup>□</sup>

Submitted: 19 June 2024 Revised: 3 September 2024 Accepted: 20 September 2024 Published: 19 February 2025

#### **Abstract**

Background: Physical activity induces many beneficial adaptive changes to blood vessel microcirculation, ultimately improving both health and exercise performance. This positions it an effective non-pharmacological therapeutic approach for the rehabilitation of patients with various chronic diseases. Understanding the impact of different types of physical activities on microcirculation and elucidating their physiological mechanisms is crucial for optimizing clinical practice. Methods: A comprehensive literature search was performed across multiple databases including PubMed, EBSCO, ProQuest, and Web of Science. Following a rigorous screening process, 48 studies were selected for inclusion into the study. Results: Existing studies demonstrate that various forms of physical activity facilitate multiple positive adaptive changes at the microcirculation level. These include enhanced microvascular dilation—driven by endothelial cell factors and mechanical stress on blood vessels—as well as increased capillary density. The physiological mechanisms behind these improvements involve the neurohumoral regulation of endothelial cell factors and hormones, which are crucial for these positive effects. Physical activity also ameliorates inflammation markers and oxidative stress levels, upregulates the expression of silent information regulator 2 homolog 3, genes for hypoxia-inducible factors under hypoxic conditions, and induces favorable changes in multiple hemodynamic and hemorheological parameters. These structural and functional adaptations optimize myocardial blood flow regulation during exercise and improve both oxygen transport and utilization capacity, which are beneficial for the rehabilitation of chronic disease patients. Conclusions: Our provides a reference for using physical activity as a non-pharmacological intervention for patients with chronic conditions. This framework includes recommendations on exercise types, intensity, frequency, and duration. Additionally, we summarize the physiological mechanisms through which physical activity improves microcirculation, which can inform clinical decision-making.

Keywords: microcirculation; physical activity; rehabilitation; physiological mechanisms

#### 1. Introduction

Microcirculation refers to physiological processes within small blood vessels, such as arterioles, venules, and capillaries, which are essential for energy metabolism, substance exchange, and waste removal [1]. Microcirculatory dysfunction plays a crucial role in the pathophysiology of aging and many chronic diseases including diabetes, hypertension and heart failure [2]. This dysfunction is characterized by reduced microvascular blood perfusion, increased oxygen deficit accumulation, and impaired microvascular endothelial dilation [3–5]. Given the critical role of microcirculation in oxygen transport and energy metabolism, improving microcirculatory function has emerged as a significant area of interest for researchers.

Physical activity is an effective non-pharmacological therapy for improving microcirculatory function [6–8]. Numerous studies have demonstrated that aerobic exercise, resistance training, hypoxic interventions, and functional physical activity are effective strategies for enhancing mi-

crocirculatory function and reducing the risk of microvascular dysfunction associated with aging and chronic diseases [9–12]. Notably, acute high-intensity exercise in sedentary individuals can lead to microvascular endothelial dysfunction, whereas resistance-trained individuals maintain vasodilation under similar conditions, highlighting the plasticity of microvascular function in response to resistance training. Additionally, hypoxic interventions, blood flow restriction, vibration training and other functional physical activities have shown positive effects on microcirculatory function in clinical interventions [13,14].

The physiological mechanisms by which physical activity improves microcirculatory function encompass a variety of biological pathways that are still being explored. Research suggests that one mechanism involves neurohumoral regulation, where physical activity enhances microcirculatory function by modulating the secretion of endocrine and endothelial factors [15–17]. Additionally, research highlights the reduction of inflammatory factors and oxidative stress levels as another pathway for ameliorat-

<sup>&</sup>lt;sup>1</sup>Division of Sports Science and Physical Education Tsinghua University, Tsinghua University, 100084 Beijing, China

<sup>&</sup>lt;sup>2</sup>College of Exercise Medicine, Chongqing Medical University, 400331 Chongqing, China

<sup>&</sup>lt;sup>3</sup>Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, 100091 Beijing, China

<sup>&</sup>lt;sup>4</sup>Department of Physical Education, Southeast University, 210012 Nanjing, Jiangsu, China

<sup>\*</sup>Correspondence: caocm@tsinghua.edu.cn (Chunmei Cao)

<sup>&</sup>lt;sup>†</sup>These authors contributed equally. Academic Editor: Attila Nemes

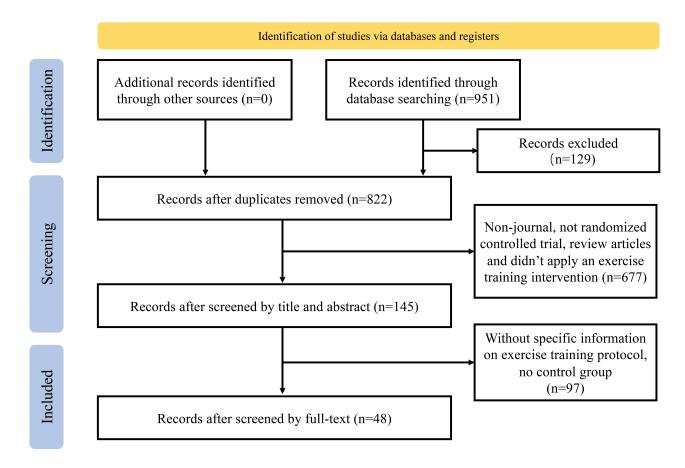



Fig. 1. PRISMA search strategy and article selection for microcirculation studies. PRISMA, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

ing microcirculatory dysfunction [18]. Additional evidence indicates that physical activity promotes increased vascular shear stress and mitochondrial biogenesis, which along with improvements in mitochondrial dynamics mediated by adenosine 5'-monophosphate-activated protein kinase (AMPK), enhance microvascular function by improving hemodynamics [19]. Furthermore, cellular hypoxia stimulation and erythrocyte membrane deformability may be potential physiological mechanisms underlying the improvement in microcirculatory function [20].

A recent study has demonstrated the capacity of physical activity to regulate vascular function and ameliorate microcirculatory dysfunction through various physiological pathways. Nevertheless, the scope and implications of these findings are subject to ongoing debate within the scientific community [21]. This review aims to delineate the most recent advancements, providing a comprehensive overview of the effects and physiological mechanisms by which physical activity influences microcirculatory function. This article explores the impact of different forms of exercise, including aerobic exercise, resistance training, hypoxic interventions, and functional training on microcirculation. Further we discuss the biological mechanisms contributing to improvements in microcirculatory function and

highlight the importance of these mechanisms and their role as non-pharmacological interventions that promote health and aid in disease recovery.

# 2. Materials and Methods

This review was conducted by querying several databases—PubMed, EBSCO, ProQuest, and Web of Science databases using the search terms "exercise", "physical activity", "physical exercise", "acute exercise", "isometric exercise", "aerobic exercise", "exercise training", "microvascular blood flow" and "microvascular circulation" for English-language articles published between January 1, 2014, and May 31, 2024. This review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Fig. 1). Two researchers independently performed the literature search and screening. In cases of disagreement, further discussion was conducted to reach a consensus. Data extraction from the selected studies was also performed independently by both researchers.

The inclusion criteria for the literature were as follows: (1) studies that utilized a randomized controlled trial (RCT) design to evaluate changes in microcirculatory function before and after physical activity interventions; (2)



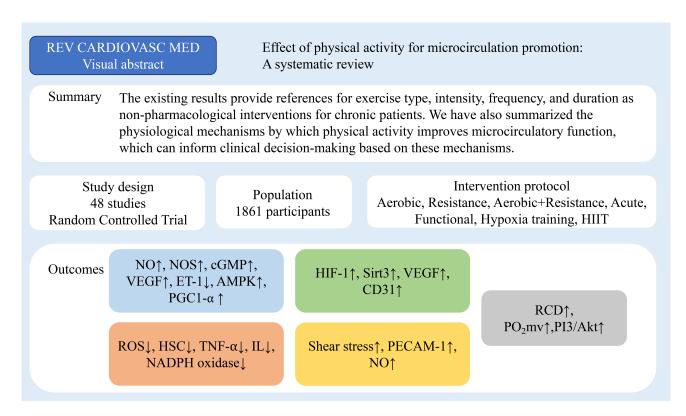



Fig. 2. Study selection for evaluating the impact of physical activity on microcirculatory function. REV CARDIOVASC MED, Reviews in cardiovascular medicine; HIIT, high intensity interval training; NO, nitric oxide; NOS, nitric oxide synthase; cGMP, cyclic guanosine monophosphate; VEGF, vascular endothelial growth factor; ET-1, endothelin-1; AMPK, adenosine5'-monophosphate-activated protein kinase; PGC1- $\alpha$ , peroxisome proliferator-activated receptor gamma coactivator-1alpha; ROS, reactive oxygen species; HSC, hepatic stellate cells; TNF- $\alpha$ , tumor necrosis factor- $\alpha$ ; IL, interleukin; NADPH, nicotinamide adenine dinucleotide phosphate; HIF-1, hypoxia inducible factor-1; Sirt3, silent information regulator 2 homolog 3; CD31/PECAM-1, cluster of differentiation 31/platelet endothelial cell adhesion molecule-1; RCD, red cell deformability; PO<sub>2</sub>mv, muscle microvascular oxygenation; PI3K/Akt, phosphoinositide 3-kinase/Protein kinase B;  $\uparrow$ , positive;  $\downarrow$ , negative.

studies published in English between January 2014 and May 2024. The exclusion criteria were: (1) studies lacking a control group; (2) studies without specific information on microcirculatory function assessment or details of the physical activity intervention; (3) prospective studies. The detailed flowchart of the study selection process is presented in Fig. 2.

## 3. Results and Discussion

Microcirculatory dysfunction is influenced by the interaction of several signaling pathways, and various types of physical activity demonstrate therapeutic potential as non-pharmacological interventions through multi-target effects [22,23]. These interventions are notable for their multi-target effects, capable of alleviating microcirculatory dysfunction and restoring endothelial homeostasis. Specifically, physical activities promote microvascular dilation and exert anti-inflammatory and antioxidant effects, which collectively improve hemodynamics and hemorheology. However, the clinical efficacy of these activities, including aerobic exercise, resistance exercise, hypoxia training,

functional exercise, high intensity interval training (HIIT), and moderate intensity continuous (MICT), shows variability (Table 1, Ref. [8–20,24–58]). This review categorizes the physiological mechanisms by which physical activity influences microcirculatory function into six key areas: neurohumoral regulation, anti-inflammation, antioxidation, hemodynamics, adaptation to hypoxic environments, and hemorheology enhancements.

# 3.1 Neurohumoral Regulation of Capillary Structure

Regular physical activity promotes increased nitric oxide (NO) secretion, which facilitates vasodilation, enhances microvascular blood flow perfusion, and regulates hemodynamics. These changes constitute the physiological foundations for the improvement of microcirculation function through physical activity. Additionally, supplementing with L-arginine after acute resistance exercise significantly increases muscle blood flow perfusion and enhances skeletal muscle glucose uptake capacity. This effect is likely due to the increased NO secretion driven by L-arginine, resulting in vasodilation and improved skeletal



Table 1. Summary of studies on the effects of various types of physical activity on microcirculation.

| Туре    | Study                              | Number                             | Duration     | Protocol                                            | Result                                                                                                |                                                                                   |                                                             |  |  |
|---------|------------------------------------|------------------------------------|--------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|
| Туре    | Study                              | Number                             | Duration     | Flotocol                                            | Positive                                                                                              |                                                                                   | Negative                                                    |  |  |
|         | Healthy animal experimentation     |                                    |              |                                                     |                                                                                                       |                                                                                   |                                                             |  |  |
| Aerobic | Herrera <i>et al.</i> , 2016 [24]  | 76                                 | 8 weeks      | Per day/1 h 60% of T <sub>max</sub> run             | E: Capillary density; Capillary-to-fibers ratio;<br>VEGF                                              |                                                                                   |                                                             |  |  |
|         | Hirai et al., 2014                 | 22 (E: n = 11; C: n =              | 6 to 7 weeks | 5 times a week/1 h treadmill                        | E: VO <sub>2peak</sub> ; Citrate synthase activity; Speed of                                          |                                                                                   |                                                             |  |  |
|         | [25]                               | 11)                                |              | run                                                 | PO2mv fall during contractions markedly slowed                                                        |                                                                                   |                                                             |  |  |
|         | Leardini-Tristão et al., 2017 [26] | 20 (E: n = 10; C: n = 10)          | 7 days       | Per day/30 min 60% VO <sub>2max</sub> treadmill run | E: Functional capillary density                                                                       | E: Microvascular cerebral blood flow                                              | E: Leukocyte adhesion; <i>NADPH</i> oxidase gene expression |  |  |
|         | Mazur-Bialy et                     | Not state (E: $n = 8-15$ ;         | 6 weeks      | Per day/Wheel running                               | E: Colonic blood flow; Plasma irisin; WAT                                                             |                                                                                   | E: TNF- $\alpha$ ; IL-6; MCP-1; IL-1 $\beta$ ;              |  |  |
|         | al., 2017 [15]                     | C: $n = 8-15$ )                    |              |                                                     | concentrations of adiponectin                                                                         |                                                                                   | Liptin levels;                                              |  |  |
|         |                                    |                                    |              |                                                     | C: Colonic tissue weight; TNF- $\alpha$ ; IL-6; MCP-1; IL-13                                          |                                                                                   | C: Colonic blood flow                                       |  |  |
|         | Robinson <i>et al.</i> , 2017 [27] | Not state                          | 2 weeks      | Per day/6 km run                                    | E: SOD isoform expression                                                                             | E: FID; Superoxide levels                                                         | E: NOX II protein expression;<br>Sensitivity to Ang II      |  |  |
|         |                                    |                                    |              |                                                     | C: Superoxide levels                                                                                  |                                                                                   | C: FID                                                      |  |  |
|         | Leardini-Tristão                   | 53 (E: n = 12; C: n =              | 12 weeks     | 3 times a week/ 30-min 60%                          | E: Functional capillary density; Synaptic proteins                                                    |                                                                                   | E: Leukocyte rolling; Microglial                            |  |  |
|         | et al., 2020 [28]                  | 11; CCHE: n = 15;<br>CCHC: n = 15) |              | V <sub>max</sub> treadmill running                  | expression in the brain; Astrocytes vessel coverage; Structural capillaries                           |                                                                                   | activation                                                  |  |  |
|         | Yuan et al., 2021                  | 60 (E+TAC: $n = 20$ ;              | 10 weeks     | 5 times a week/60 min 15                            | E: Number of skeletal muscle capillaries; mRNA                                                        |                                                                                   | E: Blood pressure                                           |  |  |
|         | [29]                               | TAC: n = 20; C: n = 20)            |              | m/min treadmill run                                 | and Protein levels of VEGF; Skeletal muscle mass                                                      |                                                                                   |                                                             |  |  |
|         | Zhang et al., 2022                 | 25 (E+ALPR: $n = 5$ ;              | 6 weeks      | 5 times a week/Treadmill run                        | E: VEGF; FGF; Microangiogenesis; ATP                                                                  |                                                                                   | E: TSP-1; Inhibited MAPK                                    |  |  |
|         | [19]                               | ALPR: $n = 5$ ; E: $n = 5$ ;       | ;            |                                                     |                                                                                                       |                                                                                   | signaling pathway; ADP; AMP                                 |  |  |
|         |                                    | MI: $n = 5$ ; C: $n = 5$ )         |              |                                                     |                                                                                                       |                                                                                   |                                                             |  |  |
|         | Shin <i>et al.</i> , 2023 [30]     | 18 (E: n = 9; C: n = 9)            | 5 months     | Voluntary wireless running wheel run                | E: Capilary flux; Capilary RBC speed;<br>Microvascular oxygenation; Cortical<br>microvascular density | E: RBC line-density; Cortical<br>hemodynamic response to<br>functional activation | E: Coeffcient of variation of capillary RBC flux            |  |  |
| HIIT    | Marques Neto et                    | 23 (HIIT: n = 6; HFD:              | 4 weeks      | 5 times a week/Treadmill                            | E: VO <sub>2max</sub> ; Contractility and relaxation index;                                           |                                                                                   |                                                             |  |  |
|         | al., 2020 [31]                     | n = 6; HIIT+HFD: n =               |              | running consisted of 7 times                        | Capillary diameter; Capillary functional density;                                                     |                                                                                   |                                                             |  |  |
|         |                                    | 5; C: $n = 6$ )                    |              | 3-min at 85% of $VO_{2max}$ and                     | Mitochondrail swelling                                                                                |                                                                                   |                                                             |  |  |
|         |                                    |                                    |              | 3-min intervals at 60% of                           |                                                                                                       |                                                                                   |                                                             |  |  |
|         |                                    |                                    |              | $VO_{2max}$                                         |                                                                                                       |                                                                                   |                                                             |  |  |



Table 1. Continued.

| Туре                | Study                                              | Number                                                  | Duration | Protocol                                                                                                       | Result                                                                                                                                         |                                                                                                                              |                                                                                                                                                                         |
|---------------------|----------------------------------------------------|---------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Турс                | Study                                              | Number                                                  | Duration | Tiotocoi                                                                                                       | Positive                                                                                                                                       |                                                                                                                              | Negative                                                                                                                                                                |
| Hypoxia<br>training | Ma et al., 2022<br>[13]                            | 24 (E: 6/3-TYP: 6/E+3-TYP: 6/C: 6)                      | 6 weeks  | 7.2                                                                                                            | E: MBP; H-MBP; Sirt3; Ang II; NO; CD31; VEGF; Mitochondrial volume                                                                             |                                                                                                                              |                                                                                                                                                                         |
|                     |                                                    |                                                         |          | Chronic dis                                                                                                    | ease animal model                                                                                                                              |                                                                                                                              |                                                                                                                                                                         |
| Aerobic             | Ranjbar <i>et al.</i> ,<br>2017 [20]               | 30 (E: n = 10; C: n = 10; Sham: 10)                     | 10 weeks | 5 times a week/50 min 60% VO <sub>2max</sub> treadmill run                                                     | E: Slow twitch muscle capillary<br>density; Capillary to fiber ratio at<br>slow twitch muscle; Fast twitch<br>muscle arteriolar density; HIF-1 | E: Slow twitch muscle (VEGF;<br>FGF-2; Angiostatin gene<br>expression); Fast twitch muscle<br>(FGF-2; TGF-β)                 | E: Slow twitch muscle (TGF-β); Fast twitch muscle (VEGF; Angiostatin)                                                                                                   |
|                     | Lapi <i>et al.</i> , 2023 [9]                      | 33 (E: n = 11; D: n = 11; E+D: n = 11)                  | 6 weeks  | 3 times a week/Moderate exercise                                                                               | E: Microvascular permeability;<br>Perfused capillary length                                                                                    |                                                                                                                              | E: ROS; Number of leukocytes adhering to the venular walls                                                                                                              |
|                     | Sytha <i>et al.</i> , 2023 [32]                    | 50 (E: n = 25; C: n = 25)                               | 14 weeks | 5 times a week/Treadmill run                                                                                   | E: Citrate synthase activity;<br>Endothelium-dependent dilation                                                                                | E: Smooth muscle function;<br>Bradykinin-mediated dilation;<br>Basal superoxide levels                                       | E: Bradykinin sensitivity                                                                                                                                               |
|                     | Rodrigues <i>et al.</i> , 2022 [33]                | 20 (E: n = 10; C: n = 10)                               | 12 weeks | 3 times a week/75%–80% VO <sub>2max</sub> treadmill run                                                        | E: Hepatic lipid peroxidation;<br>antioxidant enzyme catalase activity;<br>Nitrite level; CAT                                                  |                                                                                                                              | E: Hepatic steatosis and fibrosis;<br>Leukocyte rolling and adhesion in the<br>liver and adipose tissue<br>microcirculation; AGE deposition;<br>RAGE protein expression |
| Resistance          | Guimarães-<br>Ervilha <i>et al.</i> ,<br>2023 [10] | 32 (E: n = 8; C: n = 8;<br>PAHE: n = 8; PAHC: n<br>= 8) | -        | Per day/Climbed 1.1 m high ladder<br>with an inclination of 80° three times<br>with resting intervals of 2 min | E: NO                                                                                                                                          | E: SOD; CAT; FRAP; CP                                                                                                        | E: GST; MDA                                                                                                                                                             |
|                     |                                                    |                                                         |          | Неа                                                                                                            | lthy people                                                                                                                                    |                                                                                                                              |                                                                                                                                                                         |
| Aerobic             | Alkhatib <i>et al.</i> , 2014 [8]                  | 15                                                      | 8 weeks  | 2 times a week/20 min Moderate cycle                                                                           | E: VT, CVC                                                                                                                                     | E: Time to reach maximum perfusion                                                                                           | -                                                                                                                                                                       |
| HIIT                | Solianik <i>et al.</i> , 2021 [34]                 | 11                                                      | 1 time   | $3\times90\%$ HR <sub>max</sub> three-time rounds                                                              | E: Superior and inferior temporal venules dilatation                                                                                           | E: MAP                                                                                                                       | E: Arteriolar-to-venular diameter ratio;                                                                                                                                |
| Resistance          | Durand <i>et al.</i> , 2015 [35]                   | 54 (Exercise trained: n<br>= 33; C: n = 21)             | 1 time   | ≥4 sets of 10 repetitions leg bench press with free weights                                                    | ET: Flow-mediatied dilation                                                                                                                    | ET: ACh-mediated vasodilation matained                                                                                       | C: Flow-mediated dilation; ACh-mediated vasodilation                                                                                                                    |
|                     | Tryfonos <i>et al.</i> , 2023 [36]                 | 11 (E: $n = 6$ ; C: $n = 5$ )                           | 1 time   | 30 min continuous rhythmic handgrip exercise                                                                   | E: Radial artery mean; Antegrade<br>shear rate; Mean arterial pressure;<br>eNOS Ser1177                                                        | E: PECAM-1; PECAM-1<br>Tyr713<br>C: Radial artery mean;<br>Antegrade shear rate; eNOS<br>Ser1177; PECAM-1;<br>PECAM-1 Tyr713 | C: Mean arterial pressure                                                                                                                                               |

Table 1. Continued.

| Туре       | Study            | Number                         | Duration | Protocol -                              | Result                                                    |                                                            |                                                  |
|------------|------------------|--------------------------------|----------|-----------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|
| Туре       |                  |                                | Duration |                                         | Positive                                                  |                                                            | Negative                                         |
| Acute      | Stupin et al.,   | 38 (Exercise trained:          | 1 time   | 5 × 4 min submaximal grades             | C: ACh-induced dilation; FRAP                             | E: SNP-induced dilation; TBARS; FRAP                       | E: PORH; ACh-induced dilation                    |
|            | 2018 [37]        | n = 20; C: $n = 21$ )          |          | and a single maximal grade              |                                                           | C: PORH; SNP-induced dilation; TBARS                       |                                                  |
| Functional | Jeffries et al., | 20 (E: $n = 10$ ; C: $n =$     | 7 days   | $4 \times 5$ min lower limb ischemic    | E: Muscle oxidative capacity                              | C: Resting muscle oxygen consumption;                      | E: Resting muscle oxygen                         |
|            | 2018 [11]        | 10)                            |          | preconditioning                         |                                                           | Deoxygenated hemoglobin; Muscle                            | consumption; Deoxygenated                        |
|            |                  |                                |          |                                         |                                                           | oxidative capacity                                         | hemoglobin                                       |
| Hypoxia    | Meng et al.,     | 20 (E: $n = 12$ ; C: $n = 8$ ) | 4 weeks  | 6 times a week/3000 m altitude          | E: VO <sub>2peak</sub> ; MPO; P <sub>4</sub> ; CMBC;      | E: eNOS; PGI2; VEGF                                        |                                                  |
| training   | 2019 [12]        |                                |          | hypoxia training                        | PORH; EPO; HIF; NO; ET                                    | C: VO <sub>2peak</sub> ; MPO; P <sub>4</sub> ; CMBC; PORH; |                                                  |
|            |                  |                                |          |                                         |                                                           | EPO; HIF; NO; eNOS; ET; PGI2; VEGF                         |                                                  |
|            |                  |                                |          | Clinical studies of                     | on populations with chronic conditions                    |                                                            |                                                  |
| Aerobic    | Boa et al.,      | 108 (E: n = 44;                | 4 weeks  | 5 times a week/1 h light,               | E: Area of the rough endoplasmic                          |                                                            | C: endothelium-dependent                         |
|            | 2014 [38]        | C: $n = 64$ )                  |          | moderate run                            | Reticulum; endothelium-dependent                          |                                                            | vasodilatation                                   |
|            |                  |                                |          |                                         | vasodilatation                                            |                                                            |                                                  |
|            | Moraes et al.,   | 22                             | 12 weeks | 4 times a week/30-60 min 40%            | E: Capillary density                                      | E: Skin microvascular vasodilation                         | E: Uric acid; IL-6                               |
|            | 2016 [18]        |                                |          | HRR walk or run                         |                                                           | responses induced by either                                |                                                  |
|            |                  |                                |          |                                         |                                                           | endothelial-dependent or                                   |                                                  |
|            |                  |                                |          |                                         |                                                           | endothelial-independent vasoactive drugs                   |                                                  |
|            | Borges et al.,   | 34 (High frequency E:          | 6 weeks  | HF: $\geq$ 2 times a week; LF: $\leq$ 2 | HF: Skin microvascular blood flow;                        | HF: Catalase activity                                      | HF: Lipid peroxidation                           |
|            | 2018 [16]        | n = 23; Low frequency          |          | times a week; Cardiac                   | Cutaneous vascular conductance                            |                                                            |                                                  |
|            |                  | E: $n = 11$ )                  |          | rehabilitation                          | (Higher than LF); NO bioavailability                      |                                                            |                                                  |
|            |                  |                                |          |                                         | LF: Skin microvascular blood flow;                        | LF: Catalase activity                                      | LF: Lipid peroxidation; NO                       |
|            |                  |                                |          |                                         | Cutaneous vascular conductance                            |                                                            | bioavailability                                  |
|            | Szyguła et al.,  | 48 (E: $n = 24$ ; C: $n =$     | 8 weeks  | 3 times a week/30-40 min                | E: Regular flow; PRH <sub>max</sub> ; TH <sub>max</sub> ; |                                                            | E: Time to achieve PRH <sub>max</sub> ;          |
|            | 2020 [39]        | 24)                            |          | Aerobic march training                  | Signal strength of endothelic rhythm                      |                                                            | Time to achieve TH <sub>max</sub> ; Heart        |
|            |                  |                                |          |                                         |                                                           |                                                            | rhythm; Signal strength of the neurogenic rhythm |





Table 1. Continued.

| Туре       | Study                | Number                                        | Duration | Protocol                                                    |                                                           | Result                       |                                        |
|------------|----------------------|-----------------------------------------------|----------|-------------------------------------------------------------|-----------------------------------------------------------|------------------------------|----------------------------------------|
| Турс       | Study                | Number Duration                               |          | 11010001                                                    | Positive                                                  | Negative                     |                                        |
| Aerobic+   | Marini et al., 2019  | 30 (E: n = 15; C: n =                         | 12 weeks | 2 times a week/ 60-min 50%-70% reserve                      | E: HDL-cholesterol; PORH;                                 |                              | E: Fasting blood glucose;              |
| resistance | [40]                 | 15)                                           |          | heart rate treadmill running or cycling and                 | VO <sub>2max</sub> ; AH                                   |                              | Serum HbA <sub>1c</sub>                |
|            |                      |                                               |          | 30-min 50% 1RM muscular strength exercise.                  |                                                           |                              |                                        |
|            | Vinet et al., 2018   | 62 (HR: n = 17; HE:                           | 6 months | HR: High resistance+moderate endurance;                     | FMD (in % and relative to peak                            | Endothelium-dependent and    | IL-6                                   |
|            | [41]                 | n = 21; ME: $n = 24$ )                        |          | HE: High endurance+moderate resistance;                     | shear rate)                                               | endothelium-independent      |                                        |
|            |                      |                                               |          | ME: moderate endurance+ moderate                            |                                                           | function of the forearm skin |                                        |
|            |                      |                                               |          | resistance                                                  |                                                           | microcirculation             |                                        |
| HIIT       | Hollekim-Strand et   | 37 (E: n = 20; C: n =                         | 12 weeks | 3 times a week/40 min for 4 intervals (3 min                | E: Diastolic function; Systolic                           |                              | E: C-reactive protein level;           |
|            | al., 2014 [42]       | 17)                                           |          | 90%–95% VO <sub>2max</sub> )                                | function; Global strain rate; FMD                         |                              | $HbA_{1c}$                             |
|            | Suryanegara et al.,  | 26 (E: n = 13; C: n =                         | 12 weeks | 3 times a week/5 $\times$ 3 min 16–17 (Borg                 | E: Peak exercise arterial-venous                          | E: Glycated hemoglobin;      | E: Cardiac output                      |
|            | 2019 [43]            | 13)                                           |          | Rating: very hard) cycle                                    | oxygen difference                                         |                              |                                        |
|            | Streese et al., 2020 | 74 (E: n = 40; C: n =                         | 12 weeks | 3 times a week/45 min 80%-90% Nordic                        | E: Retinal arteriolar diameter;                           |                              | E: Venular diameter;                   |
|            | [44]                 | 34)                                           |          | Walking-based HIIT                                          | Arteriolar-to-venular diameter ratio                      |                              | Mitochondrial adaptor                  |
|            |                      |                                               |          |                                                             |                                                           |                              | p66Shc gene expression                 |
|            | Streese et al., 2020 | 69 (E: n = 33; C: n =                         | 12 weeks | 3 times a week/4 $\times$ 4 min at 80–90% $HR_{max}$        | E: ADmax; AFarea; VO <sub>2peak</sub>                     | E: VDmax; VFarea             |                                        |
|            | [45]                 | 36)                                           |          | with 3 min of active recovery                               |                                                           |                              |                                        |
|            | Mitropoulos et al.,  | 31 (Cycling E:                                | 12 weeks | 2 times a week/30-min consist of 30 s 100%                  | $E\hbox{:}\ \Delta TcpO2;\ Endothelial\hbox{-} dependent$ | E: Cutaneous vascular        | E; Raynaud's phenomenon                |
|            | 2018 [46]            | 10/Arm cranking E:                            |          | exercise followed by 30 s rest, alternating.                | vasodilation                                              | conductance;                 |                                        |
|            |                      | 10/C: 11)                                     |          |                                                             |                                                           |                              |                                        |
| HIIT/MICT  | Mitranun et al.,     | 43 (E <sub>1</sub> : n = 14; E <sub>2</sub> : | 12 weeks | 3 times a week/HIIT: 30–40 min for 4–6                      | E: NO; Glutatione peroxidase;                             | E: Resting and maximal       | E: HbA <sub>1c</sub> ; Fasting glucose |
|            | 2014 [17]            | n = 14; C: $n = 15$ )                         |          | intervals (85% $VO_{2max}$ 1 min following 50%              | FMD; Ratio of maximal to resing                           | crtaneous blood flow         | concentration; Insulin                 |
|            |                      |                                               |          | VO <sub>2max</sub> 4 min active rest); MICT: 30-40 min      | cutaneous blood flow                                      |                              | resetance                              |
|            |                      |                                               |          | for 4-6 intervals (50%-65% VO <sub>2max</sub> )             |                                                           |                              |                                        |
|            | Hwang et al., 2019   | 58 ( $E_1$ : $n = 23$ ; $E_2$ :               | 8 weeks  | 4 times a week/HIIT: $4 \times 4$ -min intervals 90%        | E: VO <sub>2peak</sub>                                    |                              |                                        |
|            | [47]                 | n = 19; C: $n = 16$ )                         |          | HR <sub>peak</sub> ; MICT: 32 min at 70% HR <sub>peak</sub> |                                                           |                              |                                        |

Table 1. Continued.

| Type    | Study                                                             | Number                                                                                            | Duration   | Protocol -                                                                                                                                                                                           |                                                                                                                                    | Result                                                                                                                                                                                                                           |                                                                                                        |
|---------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| турс    | Study                                                             | Tumor Bullion                                                                                     |            | 11010001                                                                                                                                                                                             | Positive                                                                                                                           |                                                                                                                                                                                                                                  |                                                                                                        |
|         | Mortensen <i>et al.</i> 2019 [48]                                 | ., $21 (E_1: n = 11;$<br>$E_2: n = 10)$                                                           | 11 weeks   | 3 times a week/HIIT: 20-min consist of 10 times 1 min at 95% W <sub>peak</sub> and 1 min of active recovery; MICT: 40-min                                                                            | E <sub>1</sub> : eNOS  E <sub>2</sub> : Capillary-to-fiber ratio;  Mean arithmetic thickness of endothelial cells; Capillary lumen | E: Skeletal muscle capillary area; Capillary density  E <sub>1</sub> : Capillary-to-fiber ratio; Mean arithmetic thickness of endothelial cells; Capillary lumen; Thickness of the basement membrane; VEGF; SOD-2; NADPH oxidase | E <sub>2</sub> : Thickness of the basement membrane                                                    |
|         | Baasch-Skytte <i>et al.</i> , 2020 [49]                           | 44 (E <sub>1</sub> : n = 23; E <sub>2</sub> : n = 21)                                             |            | 3 times a week/HIIT: 5 consecutive 1 min exercise periods divided into 30, 20 and 10 s at low, moderate and maximal intensity; MICT: 50 min moderate intensity continuous cycle (60%–75% HR reserve) |                                                                                                                                    | E <sub>2</sub> : eNOS; VEGF; SOD-2; NADPH oxidase E: Fasting plasma glucose; C-petide E <sub>1</sub> : AUC <sub>glucose</sub>                                                                                                    | E: HbA <sub>1c</sub> ; E <sub>2</sub> : AUC <sub>glucose</sub> ;                                       |
|         | Gildea <i>et al.</i> ,<br>2021 [50]                               | 28 (E <sub>1</sub> : n = 9; E <sub>2</sub> : n = 10;<br>C: n = 9)                                 | 12 weeks   | 3 times a week/HIIT: 10 × 1 min 90%  HR <sub>max</sub> cycle/MICT: 50 min  (80%~90%VT) cycle                                                                                                         | E: $VO_{2peak}$ ; Muscle fractional $O_2$ extraction                                                                               | E: τ $VO_{2p}$ ; End-exercise $VO_2$ amplitude;<br>Functional $VO_2$ gain                                                                                                                                                        | E: HbA <sub>1c</sub>                                                                                   |
|         | Li et al., 2022<br>[51]                                           | 37 (E <sub>1</sub> : n = 13; E <sub>2</sub> : n = 12;<br>C: n = 12)                               | 12 weeks   | 5 times a week/HIIT: 8 × 1 min<br>80%–95% cycle; MICT: 30 min<br>50%–70% cycle                                                                                                                       | E: VO <sub>2max</sub>                                                                                                              |                                                                                                                                                                                                                                  | E: HbA <sub>1c</sub>                                                                                   |
| HIIT/EN | ID Winding <i>et al.</i> , 2018 [52]                              | 32 (E <sub>1</sub> : n = 13; E <sub>2</sub> : n = 12;<br>C: n = 7)                                | 11 weeks   | 3 times a week/20 min for 10 intervals<br>(95% of peak workload cycling<br>following 1 min active rest)                                                                                              | E: VO <sub>2peak</sub>                                                                                                             | E: Oral glucose tolerance test                                                                                                                                                                                                   | E: HbA <sub>1c</sub> ; Glycaemic<br>variability; Homeostasis model<br>assessment of insulin resistance |
| Acute   | Tzanis <i>et al.</i> , 2016 [53]  Zheng <i>et al.</i> , 2021 [54] | 16 (Chronic heart failure:<br>n = 8; C: n = 8)<br>48 (DM: n = 16; DM+ulcer:<br>n = 16; C: n = 16) | -<br>5 min | Maximal exercise  Isometric ankle plantarflexion  exercise                                                                                                                                           | CHF: Oxygen consumption rate C: Oxygen consumption rate                                                                            | C: StO <sub>2</sub>                                                                                                                                                                                                              | CHF: StO <sub>2</sub> SBMF: C>DM>DM+uclear                                                             |



Table 1. Continued.

| Type           | Study           | Number            | Duration | Protocol                                          |                                                                | Result                            |                                        |
|----------------|-----------------|-------------------|----------|---------------------------------------------------|----------------------------------------------------------------|-----------------------------------|----------------------------------------|
| Туре           | Study           |                   |          | FIOLOCOI                                          | Positive                                                       | Negative                          |                                        |
| Functional     | Valensi et al., |                   |          | Diastole synchronized E; CBF; AUC5 <sub>min</sub> |                                                                | E: Plasma glucose                 |                                        |
|                | 2022 [14]       |                   |          | compressions/decompressions                       |                                                                |                                   |                                        |
|                |                 | 38                | 12 weeks | 3 times a week/60 min                             | E: AUC5 <sub>min</sub> ; HDL                                   | E: FMD; Brachial artery diameter; | E: LDL-cholesterol; Non-HDL            |
|                |                 |                   |          | diastole-synchronized                             |                                                                | VT1                               | cholesterol; Triglycerides             |
|                |                 |                   |          | compressions/decompressions                       |                                                                |                                   |                                        |
|                | Baker et al.,   | 64 (E: n = 29; C: | 3 months | 3 times a week/treadmill walk with                | E: Calf muscle blood flow; Oxygen                              | E: Recovery half-time for         |                                        |
|                | 2017 [55]       | n = 35)           |          | grade                                             | extraction                                                     | hemoglobin/myoglobin desaturation |                                        |
| Mixed-mode in- | Gaffney et al., | 24 (E: n = 12; C: | 10 weeks | 3 times a week/20 min intensive                   | E: Basal and insulin-stimulated                                |                                   | E; PCG-1 $\alpha$ ; Citrate synthetase |
| tense exercise | 2021 [56]       | n = 12)           |          | interval cycling; 2 times a week/20               | microvascular perfusion; Skeletal                              |                                   |                                        |
|                |                 |                   |          | min resistance training                           | muscle mitochondrial; Capillary density                        |                                   |                                        |
| Resistance     | Yang et al.,    | 32 (E: n = 16; C: | 12 weeks | 2 times a week/Five upper exercises               | E; MBP; CMBC; AVBC; SOD;                                       |                                   | E: MDA; CAT                            |
|                | 2023 [57]       | n = 16)           |          | in a circuit row for three circles                | GSH-PX                                                         |                                   |                                        |
|                | Mitropoulos et  | 32 (E: n = 16; C: | 12 weeks | 2 times a week/Five upper exercises               | E: $VO_{2peak}$ ; $\Delta TcpO2$ ; $\Delta TcpO2_{max}$ ; Time | E: endothelial-dependent function |                                        |
|                | al., 2019 [58]  | n = 16)           |          | in a circuit row for three circles                | to peak endothelial-dependent                                  |                                   |                                        |
|                |                 |                   |          |                                                   | reactivity; ACh Tmax;                                          |                                   |                                        |
|                |                 |                   |          |                                                   | Endothelial-independent function                               |                                   |                                        |

Note: E, exercise group; n, sample size; C, control group; VO<sub>2peak</sub>, oxygen uptake peak; PO<sub>2</sub>mv, muscle microvascular oxygenation; VO<sub>2max</sub>, maximum oxygen uptake; TNF-α, tumor necrosis factor-alpha; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; IL-1 $\beta$ , interleukin-1 $\beta$ ; SOD, superoxide dismutase; NADPH, nicotinamide adenine dinucleotide phosphate; NOX, NADPH oxidase; CCHE, coronary heart disease exercise group; CCHC, coronary heart disease control group; HIIT, high intensity interval training; TAC, transverse aortic constriction; ALPR, alprostadil; MI, myocardial infarction; HFD, high-fat diet; TYP, triazolyl pyridine; TSP-1, thrombospondin-1; RBC, red blood cell; Sirt3, silent information regulator 2 homolog 3; Ang II, angiotensin II; NO, nitric oxide; CD31, cluster of differentiation 31; HIF-1, hypoxia-inducible factor 1; TGF-β, transforming growth factor-β; ROS, reactive oxygen species; AGE, advanced glycation end-products; PAHE, pulmonary arterial hypertension exercise group; PAHC, pulmonary arterial hypertension control group; HR, heart rate; VT, ventilatory threshold; CVC, cardiac vascular conductance; RAGE, receptor for advanced glycation end-products; ET, endothelin; eNOS, endothelial nitric oxide synthase; SNP, single nucleotide polymorphism; HRR, heart rate reserve; Ser1177, anti-phospho-eNOS ser1177; HIF, hypoxia inducible factor; PGI2, prostacyclin I2; HE, high intensity exercise group; ME, moderate intensity exercise group; HF, high frequency group; LF, low frequency group; HDL, high-density lipoprotein; HbA<sub>1c</sub>, hemoglobin A1c; MICT, moderate intensity continuous training; DM, diabetes mellitus; CHF, chronic heart failure; LDL, low-density lipoprotein; PCG-1\alpha, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; ACh, acetylcholine; PECAM, platelet endothelial cell adhesion molecule; FRAP, ferric reducing ability of plasma; TBARS, thiobarbituric acid reactive substances; MPO, max power output; P4, power at blood lactic acid of 4 mmol/L; CMBC, concentration of moving blood cells; 1RM, one-repetition maximum; PORH, post-occlusive reactive hyperemia; EPO, erythropoietin; p66<sup>Shc</sup>, p66<sup>Shc</sup> adaptor protein; ΔTcpO2, transcutaneous oxygen tension; MAP, mean arterial pressure; WAT, white adipose tissue; FID, flow-induced dilation; FGF, fibroblast growth factor; MAPK, mitogen-activated protein kinase; ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; MBP, microcirculatory blood perfusion; H-MBP, blood perfusion response upon heating stimulation; PRH<sub>max</sub>, post-occlusive reactive hyperemia maximum; TH<sub>max</sub>, thermal hyperemia maximum; AUC<sub>glucose</sub>, plasma glucose area under the curve; CAT, catalase; CP, carbonylated proteins; GST, glutathione S-transgerase; MDA, malondialdehyde; StO2, oxygen saturation; ADmax, maximal arteriolar; AFarea, area under the arteriolar; VDmax, maximal venular; VFarea, area under the venular; AH, area of hyperaemia; CBF, cutaneous blood flow; AUC5<sub>min</sub>, CBF area under the curve after ACh administration; SMBF, skeletal muscle blood flow; FMD, flow-mediated dilatation;  $\tau VO_{2n}$ , pretraining time constant of the primary phase of VO2; MBP, microcirculatory blood perfusion; AVBC, average velocity of blood cells; MDA, malondialdehyde; GSH-PX, glutathione peroxidase; VEGF, vascular endothelial growth factor; ACh Tmax, acetylcholine time to maximum perfusion.

muscle metabolism [10]. Conversely, injecting the non-specific synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA) into healthy subjects inhibited skeletal muscle metabolism and prevented changes in local blood flow. This indicates that NO plays a role in mediating skeletal muscle glucose uptake and utilization during exercise.

Nitric oxide synthase (NOS), comprising NOS1 (neuronal nitric oxide synthase, nNOS), NOS2 (inducible nitric oxide synthase, iNOS), and NOS3 (endothelial nitric oxide synthase, eNOS), use the amino acid L-arginine as a substrate to synthesize NO [59]. Physical activity can upregulate the expression levels of the entire NOS family. In particular, NOS3 expression is closely associated with exercise-induced phosphorylation of AMP-activated protein kinase alpha (AMPK $\alpha$ ). This phosphorylation synergistically regulates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 $\alpha$ ) and mitochondrial biogenesis, thereby enhancing skeletal muscle metabolic function.

A study on healthy mice subjected to swimming interventions has demonstrated significant activation of eNOS expression in the heart, accompanied by increased mitochondrial density and number, as well as improved skeletal muscle metabolic activity [56]. However, such adaptive changes were not observed in NOS3 gene knockout mice not expressing the eNOS protein [60]. In mice with impaired eNOS gene expression, an upregulation of nNOS gene expression was observed. Different localizations of nNOS contribute uniquely to the effects of enhanced physical activity: Golgi-associated nNOS maintains microvascular cell structural integrity, membrane-associated nNOS in muscle cells regulates oxygen transport and utilization, and cytoplasmic nNOS modulates the balance of glucose breakdown and utilization during physical activity. This regulation enhances muscle mass and delays fatigue. An increase in nNOS expression activation can be observed after just 10 days of physical activity intervention [61].

The bioavailability of NO is determined by the balance between its enzymatic production and degradation by reactive oxygen species (ROS) [62]. Cardiovascular risk factors, such as oxidative stress can induce endothelial dysfunction, thereby reducing NO bioavailability and impairing vasodilation capacity. This reduction in vasodilation can lead to insufficient blood flow to meet myocardial oxygen demands, potentially leading to myocardial ischemia and angina [63]. Enhanced NO bioavailability increases guanylate cyclase (GC) activity, promoting the synthesis of cyclic guanosine monophosphate (cGMP). This signaling cascade increases the phosphorylation of myocardial troponin and reduces intracellular Ca<sup>2+</sup> levels in vascular smooth muscle, facilitating muscle relaxation. Additionally, NO indirectly modulates oxygen transport and energy metabolism by regulating blood flow and hormonal levels, thereby delaying the onset of skeletal muscle fatigue.

NO works in synergy with various hormones to regulate microcirculation. Notably, NO can mediate hormone production and sensitivity. In healthy subjects supplemented with L-arginine, a significant enhancement in skeletal muscle glucose metabolism was observed, without affecting insulin levels [16]. This metabolic improvement is attributed to increased NO secretion. In mice with impaired NO expression, blood glucose levels were significantly lower during exercise compared to healthy mice, and post-exercise hypoglycemia was also noted. Thus, NO likely regulates glucose metabolism by inducing insulin secretion and sensitivity. Endothelin-1 (ET-1) is an endogenous long-acting vasoconstrictor that, in coordination with NO, plays a critical role in regulating microvascular contraction and cardiovascular homeostasis. In individuals engaged in long-term aerobic exercise, NO levels gradually increase while ET-1 levels decrease [12]. This may be because NO inhibits ET-1 synthesis and release and reduces ET-1 levels and bioactivity by activating endothelinconverting enzyme expression.

Endocrine feedback can regulate both the expression and activity of NO and NOS. Growth hormone treatment of endothelial cells promotes eNOS gene expression, thereby increasing NO secretion and significantly reducing ROS levels in these cells [1]. Numerous studies have demonstrated that physical activity can improve insulin secretion and sensitivity [17,52]. Enhanced insulin secretion and activity can feedback stimulate eNOS phosphorylation, promoting further NO secretion. Maintaining normal insulin levels protects microvascular endothelial cells, reduces oxidative stress and inflammatory factors, and prevents endothelial dysfunction [17]. While NO regulates ET-1, ET-1 can also influence NO synthesis and release. For example, ET-1 can activate protein kinase C, inhibiting NOS activity and reducing NO secretion [12]. Additionally, ET-1 can stimulate vascular smooth muscle cells to produce ROS, thereby reducing NO bioavailability.

In addition to NO-regulated microvascular dilation, capillary proliferation is another key factor in the improvement of microcirculatory function due to physical activity. This process is governed by the synergistic control of proangiogenic and anti-angiogenic signals. Vascular endothelial growth factor (VEGF) is the most potent known positive regulator that increases capillary numbers. VEGF promotes the division of microvascular endothelial cells, increases angiogenesis, and enhances microvascular permeability [20]. During physical activity, the mechanical stress from increased blood flow enhances the expression of vascular endothelial growth factor A (VEGFA) mRNA. The increased secretion of VEGF then acts on VEGF receptors on capillary endothelial cells, stimulating capillary formation [19,37].



#### 3.2 Reducing Levels of Inflammatory Factors

Inflammatory cytokine levels are closely linked to the pathogenesis of autoimmune diseases, with obesity, particularly abdominal fat, being a significant factor. Numerous studies have shown a connection between abdominal fat, perivascular fat, and the mechanisms of chronic inflammatory diseases [15,18,26]. Mice fed a high-fat diet show a significant decline in microcirculation and a marked increase in plasma inflammatory markers, alongside decreases in the levels of protective factors like adiponectin and irisin [15]. Six weeks of running exercise were shown to reduce the levels of inflammatory cytokines, including interleukin-13 (IL-13), interleukin-17 (IL-17), and interleukin- $1\alpha$  (IL- $1\alpha$ ) in mice on a high-fat diet [15]. Another study investigating exercise interventions in obese mice reported similar effects [18], likely due to reduced neutrophil infiltration, which subsequently decreases macrophage infiltration and chemokine activity in perivascular tissues.

Physical activity can enhance vascular permeability, facilitating leukocyte migration and inflammatory cell infiltration. Additionally, exercise inhibits the production of inflammatory cytokines such as tumor necrosis factor-alpha (TNF- $\alpha$ ) and interleukin-1 beta (IL-1 $\beta$ ), thereby attenuating the overall inflammatory response [15]. It is noteworthy that high-intensity endurance exercise can exacerbate systemic inflammation and immune suppression, while regular, moderate physical activity has anti-inflammatory effects. There is also a potential interaction between physical activity and inflammatory cytokines like interleukin-6 (IL-6) and interleukin-8 (IL-8) [38]. Interestingly, NG-nitro Larginine methyl ester (L-NAME) supplementation significantly reduces the activation of mRNA for IL-6 and CXCL8 (the gene coding for IL-8) during exercise, indicating a potential link between NO and inflammatory cytokines [64].

In conclusion, physical activity can reduce levels of inflammatory cytokines from adipose tissue, endothelial cells, and skeletal muscle. By synergizing the effects of NO and inflammatory cytokines, physical activity mitigates damage to microvascular endothelial cells.

# 3.3 Improving Oxidative Stress in the Organism

The bioavailability of NO is shaped by the balance between enzymatic and non-enzymatic reactions that generate and scavenge NO through ROS. Cellular levels of ROS are influenced by mitochondrial nicotinamide adenine dinucleotide phosphate (NADPH) and xanthine oxidase activity, as well as the body's antioxidant stress response to clear ROS [26]. Typically, mitochondria produce small amounts of ROS during respiration, which are neutralized by cellular antioxidant enzymes. However, in patients with chronic disease, metabolic abnormalities lead to excessive ROS production within mitochondria alongside impaired ROS clearance [48]. This surplus of ROS can compromise endothelial function and damage the cardiovascular system.

Excess superoxide in the body not only directly inhibits NO bioavailability but also promotes eNOS uncoupling, which further increases the production of superoxide instead of NO [27,48]. Regular physical activity reduces the activity of ROS-generating enzymes and enhances endogenous antioxidant protection, thus decreasing levels of ROS and superoxide, and enhancing NO bioavailability. Interestingly, following acute high-intensity resistance exercise, vascular dilation function is impaired in sedentary individuals, whereas individuals with a history of regular physical activity maintain acetylcholine (Ach)-mediated endothelium-dependent dilation [35]. At this point, the predominant vasodilatory mediator may shift from NO to  $\rm H_2O_2$ , suggesting that  $\rm H_2O_2$  can compensate for reduced NO bioactivity in vasodilation.

The signaling pathway involving advanced glycation end-products (AGE) and their receptor (RAGE) is associated with oxidative stress. Specifically, AGE levels closely linked to RAGE expression, hepatic stellate cell (HSC) activation, and microcirculatory dysfunction. Activation of HSCs may promote fibrogenesis, stimulated by connective tissue growth factor and exacerbated by elevated levels of inflammatory cytokines along with oxidative stress, accelerating liver fibrosis [33]. Physical activity mitigates these effects by reducing AGE-RAGE expression levels, decreasing HSC activation, enhancing vitamin A deposition, and lowering alpha-smooth muscle actin expression, all of which contribute to improved microcirculatory function [33]. Interestingly, physical activity reduces white adipose tissue (WAT) leukocyte chemotaxis and increases microvascular blood flow in type 2 diabetic mice, illustrating the mechanisms by which physical activity can ameliorate microcirculatory dysfunction by modulating oxidative stress [15].

High blood glucose, abnormal lipid profiles and elevated inflammation levels can increase ROS generation, and consequently elevate oxidative stress [28]. Physical activity significantly enhances gene expression at the level of mRNA for antioxidant enzymes including superoxide dismutase-1 (SOD-1), superoxide dismutase-2 (SOD-2), and glutathione peroxidase, while showing no significant effect on heme oxygenase (decycling) 1 (Hmox1) [10]. By activating compensatory defensive responses, physical activity helps to regulate oxidative stress levels and facilitates the repair of microvascular damage [26].

#### 3.4 Improving Vascular Mechanical Stress Dynamics

Endothelial cells play a crucial role in controlling vascular tone. Exercise-induced increases in blood flow increase mechanical stress on endothelial cells, which promotes NO secretion to regulate hemodynamics, thus playing a fundamental role in vascular health. However, the specific physiological mechanisms underlying this process remain unclear. A study conducted *in vitro* has demonstrated that the application of shear stress to endothelial



cells leads to eNOS activation, potentially through the phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1). However, several human case studies have reported enhanced eNOS phosphorylation with increased blood flow induced by exercise, without altering PECAM-1 phosphorylation [14,36]. The study primarily investigated changes in PECAM-1 phosphorylation following sustained exercise (20 minutes of passive limb movement, 50 minutes of cycling, 30 minutes of grip exercise), potentially overlooking its dynamics during exercise [36]. Furthermore, endothelial cells cultured in vitro are subjected to fluid shear stress (1.2 Pa), while the shear stress induced by exercise in human studies is markedly lower (approximately 0.4 Pa) [65]. This discrepancy suggests that differences in PECAM-1 phosphorylation may relate to variations in the intensity, pattern, and duration of shear stress experienced during physical activity [65].

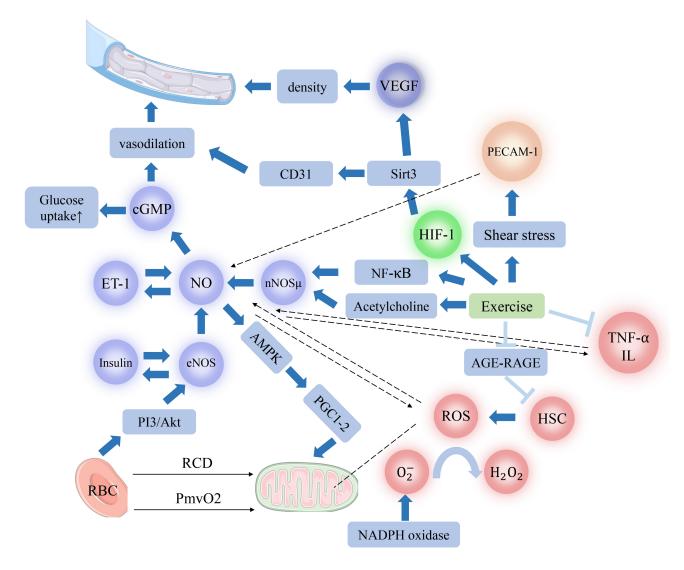
Future research should investigate the phosphorylation changes of PECAM-1 during various exercise stages and types of exercise. This investigation should determine whether increased microvascular shear stress and microcirculatory changes associated with exercise are related to PECAM-1 activity. Another hypothesis is that exercise decreases the expression of NADPH oxidase II and SOD-2, with vascular shear stress playing a crucial role in mediating adaptation to exercise. Furthermore, exercise promotes the upregulation of key genes such as *NOS3* and Ca<sup>2+</sup>-dependent *KCNN4* (potassium calcium-activated channel subfamily N member 4) channels, significantly enhances cGMP protein activity, and augments Ach-induced vascular dilation effects. It also leads to a notable increase in microvascular macromolecule permeability.

## 3.5 Microcirculation under Hypoxic Conditions

Hypoxic interventions improve microcirculation more effectively than normoxic physical activity, possibly due to unique hypoxia-induced effects [66]. Hypoxic environments activate hypoxia-inducible factors (HIF), promoting mRNA expression of VEGFA and lead to increased capillary angiogenesis. Six weeks of hypoxic training increases mRNA and protein levels of silent information regulator 2 homolog 3 (Sirt3), thereby preserving endothelial cell dilation function [13]. Sirt3, a nicotinamide adenine dinucleotide (NAD)+-dependent protein deacetylase, plays a crucial role in regulating various mitochondrial functions and signaling factors. It enhances the expression of CD31 and VEGF at the protein level, thereby improving the quantity and functionality of microcirculatory capillaries [67]. Additionally, Sirt3 increases the tolerance of skeletal muscle mitochondria to hypoxia, enhances mitochondrial metabolism, and promotes capillary growth in skeletal muscle [13]. However, the precise role of Sirt3 in modulating the upstream and downstream signals involved in capillary function is not fully understood. Additional research is needed to elucidate its specific mechanisms and to explore strategies for regulating Sirt3 activity to optimize the effects of hypoxic training.

Interestingly, hypoxia-induced microvascular reactivity changes resemble those observed in conditions of physiological impairment and chronic diseases such as sepsis, type 2 diabetes, and hypertension [13]. Exploring potential connections between these conditions warrants further investigation.

#### 3.6 Impact of Physical Activity on Red Blood Cell Deformability in Microcirculation


Decreased red blood cell (RBC) deformability impairs blood flow microcirculation, adversely impacting oxygen transport and utilization in the body, leading to microcirculatory dysfunction and diminished exercise performance. Factors influencing RBC deformability include blood viscosity, oxidative stress, and lactate levels [68]. Notably, research on changes in RBC deformability following acute physical activity yield contradictory results, likely due to differences in assessment criteria along with the intensity, duration and type of physical activity [30]. For instance, isolated elongation index alone may not fully reflect RBC deformability, with maximal deformability being a key parameter for assessing RBC hemorheology. The extent of this influence correlates with exercise intensity: moderate aerobic exercise and functional training improves RBC membrane deformability, while high-intensity training may lead to adverse effects [69]. The specific type of physical activity may also be a contributing factor; for example, cyclists exhibit significantly higher RBC deformability compared to runners, who may exhibit higher tendencies toward RBC fragmentation [69]. However, a study has indicated that RBC deformability does not significantly change before or after a marathon race. There are no substantial alterations in RBC volume or blood viscosity, although there is a tendency towards decreased RBC filterability due to increased osmotic pressure [70].

The physiological mechanisms linking physical activity to RBC deformability remain unclear and warrant further investigation, particularly through comprehensive hemorheological parameter assessments across different forms and intensities of physical activity. Fig. 3 provides a summary of signaling mechanisms regulating microcirculation.

## 4. Conclusions

Improvements to microcirculatory function are closely linked to physical activity, mediated by the regulation of endothelial cell factors such as NO, ET-1, and VEGF. These factors collectively contribute to microvascular dilation and increased capillary density. Interactions between various hormones and endothelial cell factors create feedback loops that synergistically enhance microcirculatory function. Simultaneously, reductions in inflammatory cytokines and oxidative stress





levels are linked to increased secretion and bioavailability of NO, resulting in beneficial effects on microcirculation. Research supports that physical activity promotes improvements in hemodynamics and RBC membrane deformability, regulates energy metabolism, and enhances microcirculation. Although limited, available data suggest that hypoxic stimuli influence eNOS activity and NO secretion through multiple signaling pathways, yet

their effectiveness remains somewhat limited. Existing research underscores the pivotal role of physical activity in managing various diseases. For instance, exercise interventions in diabetic patients significantly increase insulin secretion and sensitivity. In individuals with chronic heart failure, physical activity enhances skeletal muscle energy metabolism, thereby improving myocardial and microcirculatory function. In hypertensive patients,



the increased blood flow from physical exercise-induced shear stress adaptations improves hemodynamics. Physical activity, through a variety of physiological mechanisms, enhances microcirculatory function, positioning it as a promising non-pharmacological approach for combating aging, managing various chronic diseases, and enhancing athletic performance. Overall, exercise enhances the levels of numerous biologically active substances, including endothelial cell factors, hormones, inflammatory cytokines, and ROS, collectively improving the body's microcirculation.

## **Availability of Data and Materials**

All data points generated or analyzed during this study are included in this article and there are no further underlying data necessary to reproduce the results.

#### **Author Contributions**

JL: Conception, design, acquisition of data, analysis, interpretation, drafting the manuscript and reviewing and given final approval of the version; GL: Conception, design, analysis, interpretation, reviewing and given final approval of the version; DZ: Conception and reviewing; KZ: Analysis, interpretation and reviewing; CC: Conception, design, interpretation, reviewing and given final approval of the version. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript. All authors have participated sufficiently in the work and agreed to be accountable for all aspects of the work.

## **Ethics Approval and Consent to Participate**

Not applicable.

## Acknowledgment

Thanks to Man Zheng and Xuan Wen for their language review.

## **Funding**

This work was sponsored by Natural Science Foundation of Chongqing, China (NO. CSTB2022NSCQ-MSX0111).

#### **Conflict of Interest**

The authors declare no conflict of interest.

## **Supplementary Material**

Supplementary material associated with this article can be found, in the online version, at https://doi.org/10.31083/RCM25302.

### References

[1] Poole DC, Behnke BJ, Musch TI. The role of vascular function on exercise capacity in health and disease. The Journal of Physiology. 2021; 599: 889–910.

- [2] Caglioni S, Mele D, Milzi A, Bergamaschi L, Pavon AG, Landi A. Impact of Coronary Microvascular Dysfunction in Takotsubo Syndrome: Cause, Consequence or Both? Reviews in Cardiovascular Medicine. 2024; 25: 163.
- [3] Donghui T, Shuang B, Xulong L, Meng Y, Yujing G, Yujie H, et al. Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Microvascular Research. 2019; 123: 86–91.
- [4] Sucato V, Evola S, Quagliana A, Novo G, Andolina G, Assennato P, et al. Comparison of coronary artery flow impairment in diabetic and hypertensive patients with stable microvascular angina. European Review for Medical and Pharmacological Sciences. 2014; 18: 3687–3689.
- [5] Padro T, Manfrini O, Bugiardini R, Canty J, Cenko E, De Luca G, et al. ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on 'coronary microvascular dysfunction in cardiovascular disease'. Cardiovascular Research. 2020; 116: 741–755.
- [6] LaMonte MJ. Cardiorespiratory Fitness in the Prevention and Management of Cardiovascular Disease. Reviews in Cardiovascular Medicine. 2022; 23: 382.
- [7] Gaesser GA. Type 2 Diabetes Incidence and Mortality: Associations with Physical Activity, Fitness, Weight Loss, and Weight Cycling. Reviews in Cardiovascular Medicine. 2022; 23: 364.
- [8] Alkhatib A, Klonizakis M. Effects of exercise training and Mediterranean diet on vascular risk reduction in postmenopausal women. Clinical Hemorheology and Microcirculation. 2014; 57: 33–47.
- [9] Lapi D, Federighi G, Lonardo MS, Chiurazzi M, Muscariello E, Tenore G, et al. Effects of physical exercise associated with a diet enriched with natural antioxidants on cerebral hypoperfusion and reperfusion injury in spontaneously hypertensive rats. Frontiers in Physiology. 2023; 14: 1091889.
- [10] Guimarães-Ervilha LO, Soares LL, Bento IDSP, Carvalho RPR, Lima TI, Dias FCR, et al. Effect of Induced Pulmonary Arterial Hypertension on Testicular Parameters of Wistar Rats Subjected to Resistance Exercise Training. Microscopy and Microanalysis: the Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada. 2023: 29: 635–648.
- [11] Jeffries O, Waldron M, Pattison JR, Patterson SD. Enhanced Local Skeletal Muscle Oxidative Capacity and Microvascular Blood Flow Following 7-Day Ischemic Preconditioning in Healthy Humans. Frontiers in Physiology. 2018; 9: 463.
- [12] Meng Z, Gao B, Gao H, Ge P, Li T, Wang Y. Four weeks of hypoxia training improves cutaneous microcirculation in trained rowers. Physiological Research. 2019; 68: 757–766.
- [13] Ma C, Zhao Y, Ding X, Gao B. Hypoxic Training Ameliorates Skeletal Muscle Microcirculation Vascular Function in a Sirt3-Dependent Manner. Frontiers in Physiology. 2022; 13: 921763.
- [14] Valensi P, Barber-Chamoux N, Rezki A, Lambert C, Pereira B, Dualé C, et al. Effects of single and multiple sessions of lower body diastole-synchronized compressions using a pulsating pneumatic suit on endothelium function and metabolic parameters in patients with type 2 diabetes: two controlled crossover studies. Cardiovascular Diabetology. 2022; 21: 286.
- [15] Mazur-Bialy AI, Bilski J, Wojcik D, Brzozowski B, Surmiak M, Hubalewska-Mazgaj M, et al. Beneficial Effect of Voluntary Exercise on Experimental Colitis in Mice Fed a High-Fat Diet: The Role of Irisin, Adiponectin and Proinflammatory Biomarkers. Nutrients. 2017; 9: 410.
- [16] Borges JP, Nascimento AR, Lopes GO, Medeiros-Lima DJM, Coelho MP, Nascimento PMC, et al. The impact of exercise frequency upon microvascular endothelium function and oxida-



- tive stress among patients with coronary artery disease. Clinical Physiology and Functional Imaging. 2018; 38: 840–846.
- [17] Mitranun W, Deerochanawong C, Tanaka H, Suksom D. Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scandinavian Journal of Medicine & Science in Sports. 2014; 24: e69–e76.
- [18] de Moraes R, Van Bavel D, Gomes MDB, Tibiriçá E. Effects of non-supervised low intensity aerobic excise training on the microvascular endothelial function of patients with type 1 diabetes: a non-pharmacological interventional study. BMC Cardiovascular Disorders. 2016; 16: 23.
- [19] Zhang J, Long F, Duan T, Li A, Kong R, Zhu Y, et al. Exercise training combined with alprostadil improves myocardial infarction and coronary microcirculation disorder in aged rats by inhibiting mitogen-activated protein kinase (MAPK) signaling pathway activation. Annals of Translational Medicine. 2022; 10: 1324.
- [20] Ranjbar K, Ardakanizade M, Nazem F. Endurance training induces fiber type-specific revascularization in hindlimb skeletal muscles of rats with chronic heart failure. Iranian Journal of Basic Medical Sciences. 2017; 20: 90–98.
- [21] Montero D, Houben AJHM, Koster A, Muris DMJ, Schram MT, Gronenschild EH, et al. Physical Activity Is Associated With Glucose Tolerance Independent of Microvascular Function: The Maastricht Study. The Journal of Clinical Endocrinology and Metabolism. 2016; 101: 3324–3332.
- [22] Ryabov VV, Vyshlov EV, Maslov LN, Naryzhnaya NV, Mukhomedzyanov AV, Boshchenko AA, et al. The Role of Microvascular Obstruction and Intra-Myocardial Hemorrhage in Reperfusion Cardiac Injury. Analysis of Clinical Data. Reviews in Cardiovascular Medicine. 2024; 25: 105.
- [23] Wang Y, Wang B, Ling H, Li Y, Fu S, Xu M, et al. Navigating the Landscape of Coronary Microvascular Research: Trends, Triumphs, and Challenges Ahead. Reviews in Cardiovascular Medicine. 2024; 25: 288.
- [24] Herrera NA, Jesus I, Shinohara AL, Dionísio TJ, Santos CF, Amaral SL. Exercise training attenuates dexamethasone-induced hypertension by improving autonomic balance to the heart, sympathetic vascular modulation and skeletal muscle microcirculation. Journal of Hypertension. 2016; 34: 1967–1976.
- [25] Hirai DM, Copp SW, Holdsworth CT, Ferguson SK, McCullough DJ, Behnke BJ, et al. Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function. American Journal of Physiology. Heart and Circulatory Physiology. 2014; 306: H690–H698.
- [26] Leardini-Tristão M, Borges JP, Freitas F, Rangel R, Daliry A, Tibiriçá E, *et al.* The impact of early aerobic exercise on brain microvascular alterations induced by cerebral hypoperfusion. Brain Research. 2017; 1657: 43–51.
- [27] Robinson AT, Fancher IS, Sudhahar V, Bian JT, Cook MD, Mahmoud AM, et al. Short-term regular aerobic exercise reduces oxidative stress produced by acute in the adipose microvasculature. American Journal of Physiology. Heart and Circulatory Physiology. 2017; 312: H896–H906.
- [28] Leardini-Tristão M, Andrade G, Garcia C, Reis PA, Lourenço M, Moreira ETS, et al. Physical exercise promotes astrocyte coverage of microvessels in a model of chronic cerebral hypoperfusion. Journal of Neuroinflammation. 2020; 17: 117.
- [29] Yuan LY, Du PZ, Wei MM, Zhang Q, Lu L, Tian X, et al. Aerobic Exercise Attenuates Pressure Overload-Induced Cardiac Dysfunction through Promoting Skeletal Muscle Microcirculation and Increasing Muscle Mass. Evidence-Based Complementary and Alternative Medicine: eCAM. 2021; 2021: 8279369.
- [30] Shin P, Pian Q, Ishikawa H, Hamanaka G, Mandeville ET, Guo S, *et al.* Aerobic exercise reverses aging-induced depth-dependent decline in cerebral microcirculation. eLife. 2023; 12:

- e86329
- [31] Marques Neto SR, Castiglione RC, da Silva TCB, Paes LDS, Pontes A, Oliveira DF, *et al.* Effects of high intensity interval training on neuro-cardiovascular dynamic changes and mitochondrial dysfunction induced by high-fat diet in rats. PloS One. 2020; 15: e0240060.
- [32] Sytha SP, Bray JF, Heaps CL. Exercise induces superoxide and NOX4 contribution in endothelium-dependent dilation in coronary arterioles from a swine model of chronic myocardial ischemia. Microvascular Research. 2023; 150: 104590.
- [33] Lino Rodrigues K, Vieira Dias Da Silva V, Nunes Goulart da Silva Pereira E, Rangel Silvares R, Peres de Araujo B, Eduardo Ilaquita Flores E, *et al.* Aerobic Exercise Training Improves Microvascular Function and Oxidative Stress Parameters in Diet-Induced Type 2 Diabetic Mice. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2022; 15: 2991–3005.
- [34] Solianik R, Bružas V, Mockus P, Vadopalas K, Streckis V. Acute effects of high-intensity interval training on cognition and retinal microcirculation in experienced amateur boxers. The Journal of Sports Medicine and Physical Fitness. 2021; 61: 867–873.
- [35] Durand MJ, Dharmashankar K, Bian JT, Das E, Vidovich M, Gutterman DD, et al. Acute exertion elicits a H2O2-dependent vasodilator mechanism in the microvasculature of exercisetrained but not sedentary adults. Hypertension (Dallas, Tex.: 1979). 2015; 65: 140–145.
- [36] Tryfonos A, Rasoul D, Sadler D, Shelley J, Mills J, Green DJ, et al. Elevated shear rate-induced by exercise increases eNOS ser<sup>1177</sup> but not PECAM-1 Tyr<sup>713</sup> phosphorylation in human conduit artery endothelial cells. European Journal of Sport Science. 2023; 23: 561–570.
- [37] Stupin M, Stupin A, Rasic L, Cosic A, Kolar L, Seric V, et al. Acute exhaustive rowing exercise reduces skin microvascular dilator function in young adult rowing athletes. European Journal of Applied Physiology. 2018; 118: 461–474.
- [38] Boa BCS, Costa RR, Souza MGC, Cyrino FZGA, Paes LS, Miranda ML, *et al.* Aerobic exercise improves microvascular dysfunction in fructose fed hamsters. Microvascular Research. 2014; 93: 34–41.
- [39] Szyguła R, Wierzbicka M, Sondel G. Influence of 8-Week Aerobic Training on the Skin Microcirculation in Patients with Ischaemic Heart Disease. Journal of Aging Research. 2020; 2020: 4602067.
- [40] Marini E, Mariani PG, Ministrini S, Pippi R, Aiello C, Reginato E, et al. Combined aerobic and resistance training improves microcirculation in metabolic syndrome. The Journal of Sports Medicine and Physical Fitness. 2019; 59: 1571–1576.
- [41] Vinet A, Obert P, Courteix D, Chapier R, Lesourd B, Verney J, et al. Different modalities of exercise improve macrovascular function but not microvascular function in metabolic syndrome: The RESOLVE randomized trial. International Journal of Cardiology. 2018; 267: 165–170.
- [42] Hollekim-Strand SM, Bjørgaas MR, Albrektsen G, Tjønna AE, Wisløff U, Ingul CB. High-intensity interval exercise effectively improves cardiac function in patients with type 2 diabetes mellitus and diastolic dysfunction: a randomized controlled trial. Journal of the American College of Cardiology. 2014; 64: 1758–1760.
- [43] Suryanegara J, Cassidy S, Ninkovic V, Popovic D, Grbovic M, Okwose N, et al. High intensity interval training protects the heart during increased metabolic demand in patients with type 2 diabetes: a randomised controlled trial. Acta Diabetologica. 2019; 56: 321–329.
- [44] Streese L, Kotliar K, Deiseroth A, Infanger D, Gugleta K, Schmaderer C, et al. Retinal endothelial function in cardiovascular risk patients: A randomized controlled exercise trial. Scandinavian Journal of Medicine & Science in Sports. 2020; 30:



- 272-280.
- [45] Streese L, Khan AW, Deiseroth A, Hussain S, Suades R, Tiaden A, *et al.* High-intensity interval training modulates retinal microvascular phenotype and DNA methylation of p66Shc gene: a randomized controlled trial (EXAMIN AGE). European Heart Journal. 2020; 41: 1514–1519.
- [46] Mitropoulos A, Gumber A, Crank H, Akil M, Klonizakis M. The effects of upper and lower limb exercise on the microvascular reactivity in limited cutaneous systemic sclerosis patients. Arthritis Research & Therapy. 2018; 20: 112.
- [47] Hwang CL, Lim J, Yoo JK, Kim HK, Hwang MH, Handberg EM, et al. Effect of all-extremity high-intensity interval training vs. moderate-intensity continuous training on aerobic fitness in middle-aged and older adults with type 2 diabetes: A randomized controlled trial. Experimental Gerontology. 2019; 116: 46–53.
- [48] Mortensen SP, Winding KM, Iepsen UW, Munch GW, Marcussen N, Hellsten Y, et al. The effect of two exercise modalities on skeletal muscle capillary ultrastructure in individuals with type 2 diabetes. Scandinavian Journal of Medicine & Science in Sports. 2019; 29: 360–368.
- [49] Baasch-Skytte T, Lemgart CT, Oehlenschläger MH, Petersen PE, Hostrup M, Bangsbo J, *et al.* Efficacy of 10-20-30 training versus moderate-intensity continuous training on HbA1c, body composition and maximum oxygen uptake in male patients with type 2 diabetes: A randomized controlled trial. Diabetes, Obesity & Metabolism. 2020; 22: 767–778.
- [50] Gildea N, McDermott A, Rocha J, O'Shea D, Green S, Egaña M. Time-course of Vo<sub>2</sub> kinetics responses during moderate-intensity exercise subsequent to HIIT versus moderate-intensity continuous training in type 2 diabetes. Journal of Applied Physiology (Bethesda, Md.: 1985). 2021; 130: 1646–1659.
- [51] Li J, Cheng W, Ma H. A Comparative Study of Health Efficacy Indicators in Subjects with T2DM Applying Power Cycling to 12 Weeks of Low-Volume High-Intensity Interval Training and Moderate-Intensity Continuous Training. Journal of Diabetes Research. 2022; 2022: 9273830.
- [52] Winding KM, Munch GW, Iepsen UW, Van Hall G, Pedersen BK, Mortensen SP. The effect on glycaemic control of low-volume high-intensity interval training versus endurance training in individuals with type 2 diabetes. Diabetes, Obesity & Metabolism. 2018; 20: 1131–1139.
- [53] Tzanis G, Manetos C, Dimopoulos S, Vasileiadis I, Malliaras K, Kaldara E, et al. Attenuated Microcirculatory Response to Maximal Exercise in Patients With Chronic Heart Failure. Journal of Cardiopulmonary Rehabilitation and Prevention. 2016; 36: 33– 37.
- [54] Zheng J, Sorensen C, Li R, An H, Hildebolt CF, Zayed MA, et al. Deteriorated regional calf microcirculation measured by contrast-free MRI in patients with diabetes mellitus and relation with physical activity. Diabetes & Vascular Disease Research. 2021; 18: 14791641211029002.
- [55] Baker WB, Li Z, Schenkel SS, Chandra M, Busch DR, Englund EK, et al. Effects of exercise training on calf muscle oxygen extraction and blood flow in patients with peripheral artery disease. Journal of Applied Physiology (Bethesda, Md.: 1985). 2017; 123: 1599–1609.
- [56] Gaffney K, Lucero A, Macartney-Coxson D, Clapham J, Whit-field P, Palmer BR, et al. Effects of whey protein on skeletal muscle microvascular and mitochondrial plasticity following 10 weeks of exercise training in men with type 2 diabetes. Ap-

- plied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme. 2021; 46: 915–924.
- [57] Yang R, Wan L, Zhu H, Peng Y. The effect of 12 week-maximum fat oxidation intensity (FATmax) exercise on microvascular function in obese patients with nonalcoholic fatty liver disease and its mechanism. General Physiology and Biophysics. 2023; 42: 251–262.
- [58] Mitropoulos A, Gumber A, Akil M, Klonizakis M. Exploring the microcirculatory effects of an exercise programme including aerobic and resistance training in people with limited cutaneous systemic sclerosis. Microvascular Research. 2019; 125: 103887.
- [59] Moncada S, Higgs A. The L-arginine-nitric oxide pathway. The New England Journal of Medicine. 1993; 329: 2002–2012.
- [60] Vettor R, Valerio A, Ragni M, Trevellin E, Granzotto M, Olivieri M, et al. Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism. American Journal of Physiology. Endocrinology and Metabolism. 2014; 306: E519–E528.
- [61] McConell GK, Bradley SJ, Stephens TJ, Canny BJ, Kingwell BA, Lee-Young RS. Skeletal muscle nNOS mu protein content is increased by exercise training in humans. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2007; 293: R821–R828.
- [62] Dyakova EY, Kapilevich LV, Shylko VG, Popov SV, Anfinogenova Y. Physical exercise associated with NO production: signaling pathways and significance in health and disease. Frontiers in Cell and Developmental Biology. 2015; 3: 19.
- [63] Boerhout CKM, Beijk MAM, Damman P, Piek JJ, van de Hoef TP. Practical Approach for Angina and Non-Obstructive Coronary Arteries: A State-of-the-Art Review. Korean Circulation Journal. 2023; 53: 519–534.
- [64] Steensberg A, Keller C, Hillig T, Frøsig C, Wojtaszewski JFP, Pedersen BK, et al. Nitric oxide production is a proximal signaling event controlling exercise-induced mRNA expression in human skeletal muscle. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 2007; 21: 2683–2694.
- [65] Gliemann L, Rytter N, Lindskrog M, Slingsby MHL, Åkerström T, Sylow L, et al. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects. The Journal of Physiology. 2017; 595: 5557–5571.
- [66] Kong Z, Zang Y, Hu Y. Normobaric hypoxia training causes more weight loss than normoxia training after a 4-week residential camp for obese young adults. Sleep & Breathing = Schlaf & Atmung. 2014; 18: 591–597.
- [67] Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, et al. Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Circulation Research. 2020; 126: 439–452.
- [68] Connes P, Stauffer E, Liem RI, Nader E. Exercise and training in sickle cell disease: Safety, potential benefits, and recommendations. American Journal of Hematology. 2024. (online ahead of print)
- [69] Tomschi F, Bloch W, Grau M. Impact of type of sport, gender and age on red blood cell deformability of elite athletes. International Journal of Sports Medicine. 2018; 39: 12–20.
- [70] Ahmad B, Glufke K, Grau M, Sandig D, Rockstroh J, Vogel M, et al. Influence of endurance training and marathon running on red cell deformability in HIV patients. Clinical Hemorheology and Microcirculation. 2014; 57: 355–366.

