
Rev. Cardiovasc. Med. 2025; 26(2): 25758
https://doi.org/10.31083/RCM25758

Copyright: © 2025 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original Research

Application of Machine Learning Algorithms in Predicting Major
Adverse Cardiovascular Events after Percutaneous Coronary
Intervention in Patients with New-Onset ST-Segment Elevation
Myocardial Infarction
Min Chen1,†, Cuiling Sun2,3,† , Li Yang1,4,†, Ting Zhang1, Jing Zhang1,* , Chunli Chen3,*
1Department of Cardiology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, 230011 Hefei, Anhui, China
2School of Nursing, Bengbu Medical University, 233030 Bengbu, Anhui, China
3Department of Nursing, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, 230011 Hefei, Anhui, China
4The Fifth Clinical School of Medicine, Anhui Medical University, 230032 Hefei, Anhui, China
*Correspondence: 1842630697@qq.com (Jing Zhang); 851465194@qq.com (Chunli Chen)
†These authors contributed equally.
Academic Editor: Manuel Martínez Sellés
Submitted: 18 July 2024 Revised: 1 November 2024 Accepted: 5 November 2024 Published: 21 February 2025

Abstract

Background: This study aimed to develop and validate a predictive model for major adverse cardiovascular events (MACE) following
percutaneous coronary intervention (PCI) in patients with new-onset ST-segment elevation myocardial infarction (STEMI) using four
machine learning (ML) algorithms. Methods: Data from 250 new-onset STEMI patients were retrospectively collected. Feature se-
lection was performed using the Boruta algorithm. Four ML algorithms—K-nearest neighbors (KNN), support vector machine (SVM),
Complement Naive Bayes (CNB), and logistic regression—were applied to predict MACE risk. Model performance was evaluated us-
ing area under the curve (AUC), sensitivity, and specificity. Shapley Additive Explanations (SHAP) analysis was used to rank feature
importance, and a nomogram was constructed for risk visualization. Results: Logistic regression showed the best performance (AUC =
0.814 in training, 0.776 in validation) compared to KNN, SVM, and CNB. SHAP analysis identified seven key predictors, including Kil-
lip classification, Gensini score, blood urea nitrogen (BUN), heart rate (HR), creatinine (CR), glutamine transferase (GLT), and platelet
count (PCT). The nomogram provided accurate risk predictions with strong agreement between predicted and observed outcomes. Con-
clusions: The logistic regression model effectively predicts MACE risk after PCI in STEMI patients. The nomogram serves as a practical
tool for clinicians, supporting personalized risk assessment and improving clinical decision-making.
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1. Introduction

Acute myocardial infarction (AMI) is the most com-
mon type of cardiovascular disease in clinical practice,
characterized by rapid progression, and a high mortality
rate [1]. Its pathogenesis is primarily based on atheroscle-
rotic lesions in the coronary arteries, leading to plaque rup-
ture, platelet aggregation, and thrombosis, which ultimately
cause prolonged and severe ischemic necrosis of the my-
ocardium, and in severe cases, may endanger the patient’s
life [2]. Percutaneous coronary intervention (PCI) has be-
come the most widely used therapeutic approach in clini-
cal practice because it can safely, rapidly, and efficiently
help AMI patients restore coronary perfusion and alleviate
acute-phase symptoms. However, studies have indicated
that while PCI provides significant benefits, patients remain
at risk of major adverse cardiovascular events (MACE)
such as recurrent AMI, heart failure, malignant arrhyth-
mias, and sudden cardiac death post PCI [3], with incidence
rates as high as 27% [4]. The occurrence of MACE not only
reduces the patient’s quality of life and increases their eco-

nomic and social burdens, but also severely impacts their
long-term prognosis and well-being [5]. Although current
studies on MACE risk assessment in AMI patients have
made some progress [6,7], methodological limitations pre-
vent a comprehensive understanding of the complex mech-
anisms and the strength of associations between clinical
data, thus limiting the clinical applicability of these find-
ings. In recent years, the rapid development of machine
learning technology and its application in clinical data anal-
ysis have gained significant attention from medical insti-
tutions and researchers for their accurate and efficient pre-
dictive performance and clinical decision-making. By com-
prehensively analyzing large volumes of clinical and bio-
chemical data, machine learning technology identifies risk
factors that may be overlooked by traditional methods and
plays a crucial role in guiding healthcare professionals to
conduct more accurate risk assessments and make informed
clinical decisions [8]. According to the results of previous
studies, machine learning models have unlimited potential
and value in dealing with complex and high-dimensional
cardiovascular disease data and postoperative complication
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Fig. 1. Patients selection process and machine learning pipeline for acute myocardial infarction study. (a) Data inclusion and
exclusion flowchart. (b) Flowchart of ML data processing. Abbreviations: CNB, Complement Naive Bayes; KNN, K-nearest neighbors;
Logistic, logistic regression; SVM, support vector machine; SHAP, ShapleyAdditive Explanations; MACE,major adverse cardiovascular
events; ML, machine learning.

risk prediction [9]. It can help doctors better understand pa-
tients’ individualized risk of disease and adjust their treat-
ment strategies accordingly, which can better optimize a pa-
tient’s long-term treatment outcomes [10].

In this study, we collected clinical data from patients
with ST-segment elevation myocardial infarction (STEMI)
admitted to the Department of Cardiology of a tertiary care
hospital in Anhui Province, China, and constructed a risk
prediction model for MACE in STEMI patients with the
help of advanced machine learning algorithms, to provide
effective assessment tools andmethodological references to
help healthcare professionals understand the risk of the dis-
ease in more depth and to formulate personalized scientific
management strategies.

2. Materials and Methods
2.1 Data Source

This study retrospectively collected clinical data on
250 patients with a STEMI admitted to a tertiary general
hospital in Anhui Province from June 2018 to December
2023, including patients’ demographic characteristics, lab-
oratory tests, cardiac ultrasound, PCI data, MACE and
other related information, with the specific variables and
abbreviations, as shown in Appendix Table 5. This study
was approved by the hospital ethics committee and all par-
ticipants signed an informed consent form.

2.2 Study Participants
The study population consisted of patients who expe-

rienced a first time new-onset STEMI during the study pe-
riod and underwent emergency PCI. STEMI diagnosis was
made according to the Fourth Universal Definition of My-
ocardial Infarction (2018) and/or the guidelines of the Eu-
ropean Society of Cardiology (ESC)/American College of
Cardiology (ACC)/American Heart Association (AHA), in-
cluding symptoms of chest pain and significant ST-segment
elevation on the electrocardiogram (ECG) [11]. Inclusion
criteria were as follows: (1) patients diagnosedwith STEMI
based on the aforementioned guidelines, including those
with typical chest pain symptoms and ST-segment elevation
on ECG; (2) patients undergoing emergency PCI, includ-
ing successful revascularization; (3) aged ≥18 years; (4)
in a clear state of mind and with good verbal communica-
tion; (5) patients who provided informed consent and coop-
erated with the study. Exclusion criteria were: (1) patients
with acute infections, inflammatory diseases, or othermajor
conditions (e.g., advanced cancer, end-stage renal disease)
or a short prognosis of survival; (2) patients with a history
of prior myocardial infarction or those who had experienced
previous MACE; (3) patients with incomplete clinical data,
such as missing medical records or postoperative follow-up
data. The inclusion and exclusion process is illustrated in
Fig. 1a.
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Fig. 2. Results of feature variable selection based on Boruta’s algorithm. (Note: where Tentative variables are labeled yellow,
Rejected is red, Accepted is green, and Shadow is blue). Abbreviations: BUN, blood urea nitrogen; Gensini, coronary artery lesion
stenosis score; CR, creatinine; GLT, glutamine transferase; PCT, plateletcrit; HR, heart rate; HB, hemoglobin; GLU, glucose; GST,
glutathione S-transferase; PCW, platelet volume distribution width; RBC, red blood cell; UA, uric acid; MPV, mean platelet volume;
TG, triglyceride; VLDL, very low-density lipoprotein; N, absolute neutrophil value; WBC, white blood cell; L, lymphocyte absolute
value; HDL, high-density lipoprotein; M, absolute monocyte value; HP, high blood pressure; BP, diastolic blood pressure; DBIL, direct
bilirubin; TC, total cholesterol; LVD, left ventricular internal diameter; IBIL, indirect bilirubin; SP, systolic blood pressure; TDM, type
2 diabetes mellitus; PLT, platelet count; LDL, low-density lipoprotein.

2.3 MACE Event Types

MACE Types: Given the hemodynamic instability
typical of acute STEMI patients, this study placed particu-
lar emphasis on perioperative MACE, especially within the
first 7 days post-PCI. Patients were followed in real time
during the hospitalization, with special attention to the im-
mediate post-operative period. MACE was defined as the
occurrence of at least one of the following adverse cardio-
vascular events [12]: (1) Myocardial infarction: defined
as a new or recurrent myocardial infarction occurring af-
ter the procedure. (2) Coronary revascularization: includes
repeat PCI or coronary artery bypass grafting (CABG) for
recurrent cardiovascular issues. This specifically excludes
planned elective revascularization procedures. (3) Cardio-
vascular death: includes all deaths due to cardiovascular
causes, such as cardiac arrest and cardiogenic shock. (4)
Stroke: refers to new or recurrent stroke occurring after

surgery. (5) Hospitalized heart failure: hospitalization due
to exacerbation of heart failure. (6) Malignant arrhythmia:
including ventricular tachycardia (VT), ventricular fibrilla-
tion (VF) and other serious arrhythmias.

2.4 Statistical Analysis Methods
2.4.1 Data Preprocessing

Data preprocessing is the first and most crucial step
in creating machine learning (ML) models. In this study,
the fine-grained preprocessing process of the raw dataset
includes data import, handling missing values and outliers,
coding the categorized data, and splitting the dataset into
a training set and a validation set. In terms of dealing with
missing values and outliers, this study initially cleansed and
organized the raw data by deleting specific empty rows or
filling in the data. Next, the collated datasets were split
by randomization according to the 7:3 ratio, and they were
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Table 1. Baseline information of participants.
Variable Overall, N = 250 Training, N = 175 Validation, N = 75 p-value

MACE, n (%) 68 (27) 51 (29) 17 (23) 0.292
Sex, n (%) 202 (81) 138 (79) 64 (85) 0.234
Age, median (IQR) 62.500 (53.000–73.500) 63.000 (53.500–73.000) 60.000 (52.500–73.000) 0.631
Killip, n (%) 0.666

I 192 (77) 131 (75) 61 (81)
II 34 (14) 25 (14) 9 (12)
III 13 (5.2) 11 (6.3) 2 (2.7)
IV 11 (4.4) 8 (4.6) 3 (4.0)

SP, median (IQR) 124.000 (110.000–140.000) 124.000 (106.000–138.000) 127.000 (114.500–140.000) 0.075
BP, median (IQR) 72.000 (65.000–82.000) 70.000 (64.000–80.000) 77.000 (70.000–88.000) 0.008
HR, median (IQR) 78.000 (68.000–86.000) 78.000 (68.000–84.500) 78.000 (71.500–90.000) 0.102
Smoking, n (%) 152 (61) 106 (61) 46 (61) 0.910
TDM, n (%) 66 (26) 47 (27) 19 (25) 0.802
HP, n (%) 141 (56) 100 (57) 41 (55) 0.717
Lesion location, n (%) 0.918

0 3 (1.2) 2 (1.1) 1 (1.3)
1 112 (45) 76 (43) 36 (48)
2 36 (14) 26 (15) 10 (13)
3 99 (40) 71 (41) 28 (37)

Number of vessels diseased, n (%) 0.535
0 2 (0.8) 1 (0.6) 1 (1.3)
1 77 (31) 57 (33) 20 (27)
2 77 (31) 55 (31) 22 (29)
3 94 (38) 62 (35) 32 (43)

Gensini, median (IQR) 61.500 (42.625–85.750) 60.000 (42.000–86.500) 66.000 (51.500–84.500) 0.292
Thrombolysis, n (%) 62 (25) 48 (27) 14 (19) 0.142
Bivalirudin trifluoroacetate salt, n (%) 44 (18) 34 (19) 10 (13) 0.246
Number of stents, n (%) 220 (88) 151 (86) 69 (92) 0.203
WBC, median (IQR) 10.085 (7.863–12.348) 10.140 (7.865–12.335) 9.450 (7.815–12.470) 0.566
N, median (IQR) 7.510 (5.595–9.970) 7.670 (5.870–9.970) 7.070 (5.340–9.900) 0.433
L, median (IQR) 1.365 (0.993–1.968) 1.340 (0.990–1.950) 1.500 (1.025–1.975) 0.313
M, median (IQR) 0.565 (0.400–0.800) 0.580 (0.400–0.800) 0.500 (0.400–0.780) 0.513
RBC, median (IQR) 4.505 (4.003–4.888) 4.420 (3.960–4.860) 4.630 (4.170–4.985) 0.192
HB, median (IQR) 136.800 (124.000–151.000) 136.000 (124.000–151.000) 139.000 (125.500–150.500) 0.593
PLT, median (IQR) 197.500 (156.125–239.750) 201.000 (159.000–241.000) 195.000 (154.550–235.500) 0.743
MPV, median (IQR) 10.570 (9.700–11.400) 10.500 (9.650–11.350) 10.600 (9.750–11.600) 0.678
PCW, median (IQR) 16.200 (13.325–16.600) 16.200 (13.450–16.565) 16.200 (13.250–16.700) 0.412
PCT, median (IQR) 0.210 (0.170–0.248) 0.210 (0.170–0.250) 0.201 (0.171–0.244) 0.494
GLU, median (IQR) 6.310 (5.455–8.138) 6.380 (5.560–8.280) 5.990 (5.345–7.695) 0.234
BUN, median (IQR) 5.435 (4.330–6.908) 5.600 (4.320–6.975) 5.230 (4.340–6.850) 0.496
CR, median (IQR) 71.000 (59.400–83.000) 73.000 (59.000–85.200) 68.000 (61.300–79.750) 0.288
UA, median (IQR) 360.450 (296.000–434.925) 355.000 (286.650–433.400) 365.000 (312.300–438.950) 0.375
Total protein, median (IQR) 62.050 (59.200–65.875) 62.000 (58.850–66.000) 62.200 (59.700–65.550) 0.522
DBIL, median (IQR) 5.000 (3.900–6.500) 5.100 (3.900–6.300) 4.950 (4.000–7.275) 0.663
IBIL, median (IQR) 13.200 (9.900–17.275) 12.900 (10.000–17.000) 13.500 (9.250–17.350) 0.933
GLT, median (IQR) 43.000 (27.000–71.000) 43.000 (28.000–71.000) 42.000 (24.500–75.500) 0.886
GST, median (IQR) 166.500 (87.000–289.250) 163.000 (89.500–292.500) 174.000 (86.000–286.000) 0.919
TG, median (IQR) 1.495 (1.045–2.138) 1.520 (1.065–2.075) 1.420 (1.015–2.295) 0.881
TC, median (IQR) 4.250 (3.723–4.985) 4.290 (3.730–5.070) 4.250 (3.700–4.860) 0.568
HDL, median (IQR) 1.065 (0.910–1.218) 1.060 (0.905–1.200) 1.080 (0.910–1.250) 0.775
LDL, median (IQR) 2.665 (2.205–3.310) 2.680 (2.255–3.395) 2.560 (2.170–3.260) 0.276
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Table 1. Continued.
Variable Overall, N = 250 Training, N = 175 Validation, N = 75 p-value

VLDL, median (IQR) 0.300 (0.210–0.420) 0.300 (0.210–0.400) 0.280 (0.200–0.450) 0.784
LVD, median (IQR) 47.000 (43.250–51.000) 47.000 (43.500–51.000) 47.000 (43.500–51.000) 0.961
Abbreviations: MACE, major adverse cardiovascular events; SP, systolic blood pressure; BP, diastolic blood pressure; HR, heart rate;
TDM, type 2 diabetes mellitus; HP, high blood pressure; Gensini, coronary artery lesion stenosis score; WBC, white blood cell; N, absolute
neutrophil value; L, lymphocyte absolute value; M, absolute monocyte value; RBC, red blood cell; HB, hemoglobin; PLT, platelet count;
MPV, mean platelet volume; PCW, platelet volume distribution width; PCT, plateletcrit; GLU, glucose; BUN, blood urea nitrogen; CR,
creatinine; UA, uric acid; DBIL, direct bilirubin; IBIL, indirect bilirubin; GLT, glutamine transferase; GST, glutathione S-transferase; TG,
triglyceride; TC, total cholesterol; HDL, high-density lipoprotein; LDL, low-density lipoprotein;VLDL, very low-density lipoprotein;
LVD, left ventricular internal diameter; IQR, interquartile range.

sequentially divided into a training cohort (N = 175) and an
internal validation cohort (N = 75).

2.4.2 Statistical Analysis

Continuous variable information was described using
mean ± standard deviation (±S), and categorical infor-
mation was expressed as frequency and percentage n (%).
For continuous variable information that conforms to nor-
mal distribution, One-way analysis of variance (ANOVA)
or Fisher’s exact probability method was used to test the
difference, those that did not conform to normal distribu-
tion were statistically analyzed using the Mann-Whitney U
test, and discrete categorical variables were compared using
Chi-square test to compare the difference. ML algorithms
tend to perform better than traditional analytical methods
in predicting the results of large datasets [13]. In this study,
four ML algorithms, namely K-nearest neighbors (KNN),
support vector machine (SVM), Complement Naive Bayes
(CNB), and logistic regression (Logistic), were used to con-
struct a prediction model for the occurrence of MACE after
PCI in patients with an acute STEMI, and based on the area
under the curve (AUC) value, accuracy, sensitivity, speci-
ficity, positive predictive value, negative predictive value,
and F1 score, the performance of each model was com-
pared and evaluated. The area under the receiver operating
characteristic (ROC) curve was used to assess the model’s
classification ability, the accuracy of the model’s predictive
probability was reflected by the calibration curve, the accu-
racy of the model’s classification was visualized with the
help of the number of true positives, false positives, true
negatives, and false negatives provided by the confusion
matrix. The decision curve (DCA) was used to assess the
net benefit of the different models across multiple clinical
thresholds. The learning curve revealed howwell themodel
over- or under-fitted the data, reflecting the mean square
error of the model with respect to the training set and the
validation set. When comparing the performance of ML al-
gorithms, an AUC closer to 1 shows superior classification
model performance. After screening the best ML model
by comparing multiple models, the model was fine-tuned.
Shapley Additive Explanations (SHAP) analysis and fea-
ture ranking are applied to interpret the best model. Finally,

the risk factors screened by the optimized algorithm are ex-
tracted and plotted in a nomogram. All statistical analyses
in this study were conducted using Python (version 3.11.4,
Python Software Foundation, Wilmington, DE, USA) and
R (version 4.2.3, The R Foundation for Statistical Comput-
ing, Vienna, Austria). A p-value of <0.05 was considered
statistically significant. The detailed data analysis work-
flow is illustrated in Fig. 1b.

3. Results
3.1 Baseline Characteristics

A total of 250 participants were enrolled in this study
for model construction, and patients with a STEMI under-
going PCI were randomly assigned to 2 cohorts, the training
set (N = 175) and the validation set (N = 75). The number
of cases with MACE that occurred in the training set was
51 cases, or 29.1%, and in the validation set, the number
of cases with MACE occurred in 17 cases, or 22.7%. The
demographic, laboratory tests, hemodynamics, PCI intra-
operative data and other baseline characteristics of the two
groups are shown in Table 1. As shown in Table 1, except
for the diastolic blood pressure (BP) of the patients in the
validation cohort, which was higher than that of the training
cohort and was significantly difference (p < 0.05), the two
groups of patients had an overall balanced distribution in all
other aspects, and the difference was not statistically signif-
icant (p> 0.05), which indicated that the baseline data were
comparable.

3.2 Model Construction and Performance Evaluation
3.2.1 Feature Variable Selection

A total of 40 variables were included in this study. In
order to improve the accuracy of the model, we screened
the variables for features, by using the Boruta algorithm to
select the feature variables for the 40 risk factors for the
occurrence of MACE after surgery in patients with acute
ST-segment elevation myocardial infarction. Finally 7 vari-
ables were included into the model, the specific screening
results are shown in Fig. 2.
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3.2.2 Multi-Model Comparison
In this study, we employed fourML algorithms (KNN,

SVM, CNB, and Logistic) to construct predictive models
for the risk of MACE after PCI in patients with STEMI.
Model performance was comprehensively evaluated using
AUC values, accuracy, sensitivity, specificity, positive pre-
dictive values, negative predictive values, and F1 score.

We utilized nested cross-validation to optimize model
hyperparameters and evaluate model performance. Specifi-
cally, we used 5-fold outer cross-validation for model eval-
uation, and within each fold, we performed 3-fold inner
cross-validation for hyperparameter tuning. This approach
ensures a more robust estimate of model performance and
reduces the risk of overfitting.

The results of the comparison of the predictive perfor-
mance of each model in the training and validation sets are
shown in Tables 2,3, respectively. From Table 2, it can be
seen that the model that demonstrated the best classifica-
tion performance in the training set was the Logistic model
(AUC= 0.814± 0.006), followed by theKNNmodel (AUC
= 0.805 ± 0.028). The Logistic model also exhibited the
highest sensitivity (0.618 ± 0.066) and F1 score (0.632 ±
0.016) in the training set.

In the validation set (Table 3), the Logistic model
demonstrated the highest classification performance,
achieving an AUC of 0.776 ± 0.038. This was followed
by the SVM model, which had an AUC of 0.685 ± 0.090.
Additionally, the Logistic model outperformed others in
sensitivity (0.614 ± 0.149) and F1 score (0.615 ± 0.047),
maintaining its status as the best-performing model in the
validation set.

Among all the models constructed, the Logistic model
performed best in terms of key metrics such as AUC, sensi-
tivity, and F1 score in both cohorts of the training and vali-
dation sets, and showed good stability. Notably, the perfor-
mance of the Logistic model in the validation set surpassed
other models, indicating better generalization capability.
Among all the models constructed, the Logistic model per-
formed best in terms of key metrics such as AUC, sensitiv-
ity, and F1 score in both cohorts of the training and valida-
tion sets, and showed good stability. Notably, the perfor-
mance of the Logistic model in the validation set surpassed
other models, indicating better generalization capability. In
contrast, the Logistic model performed more prominently
in terms of clinical discrimination (see Fig. 3), model fit
(see Fig. 4), and clinical applicability (as shown in Fig. 5)
in both cohorts of the training and validation sets, further
demonstrating its robustness.

To further evaluate the statistical significance of the
differences in AUC values between models, we conducted
the Delong test. The results of the Delong test, as shown
in Table 4, indicate that although the Logistic model gen-
erally outperformed other models, the differences in AUC
values between some models were not statistically signifi-
cant. Specifically, the p-values between KNN and logistic

Fig. 3. ROC curve analysis and forest plot of ML algorithms
for predicting the occurrence of MACE after PCI in patients
with acutemyocardial infarction. ROC, receiver operating char-
acteristic; ML, machine learning; MACE, major adverse cardio-
vascular events; PCI, percutaneous coronary intervention; KNN,
K-nearest neighbors; CNB, Complement Naive Bayes; Logistic,
logistic regression; SVM, support vector machine; AUC, area un-
der the curve.

6

https://www.imrpress.com


Table 2. Comparison of the prediction performance of different models in the training set.
Classification model AUC (SD) Accuracy (SD) (level of) Sensitivity (SD) Specificity (SD) Positive predictive value (SD) Negative predictive value (SD) F1 score (SD)

KNN 0.805 (0.028) 0.800 (0.021) 0.346 (0.040) 0.970 (0.017) 0.814 (0.095) 0.799 (0.012) 0.484 (0.053)
CNB 0.572 (0.029) 0.678 (0.031) 0.470 (0.081) 0.755 (0.070) 0.428 (0.046) 0.793 (0.011) 0.440 (0.026)
SVM 0.720 (0.027) 0.782 (0.020) 0.544 (0.096) 0.871 (0.058) 0.632 (0.076) 0.838 (0.019) 0.572 (0.037)
Logistic 0.814 (0.006) 0.804 (0.024) 0.618 (0.066) 0.874 (0.055) 0.661 (0.069) 0.861 (0.014) 0.632 (0.016)
KNN, K-nearest neighbors; CNB, Complement Naive Bayes; SVM, support vector machine; SD, standard deviation; AUC, area under the curve; Logistic, logistic regression.

Table 3. Comparison of the prediction performance of different models in the validation set.
Classification model AUC (SD) Accuracy (SD) (level of) Sensitivity (SD) Specificity (SD) Positive predictive value (SD) Negative predictive value (SD) F1 score (SD)

KNN 0.641 (0.070) 0.756 (0.039) 0.193 (0.103) 0.967 (0.011) 0.637 (0.188) 0.763 (0.031) 0.292 (0.143)
CNB 0.533 (0.104) 0.636 (0.034) 0.385 (0.127) 0.732 (0.085) 0.352 (0.056) 0.763 (0.028) 0.357 (0.058)
SVM 0.685 (0.090) 0.732 (0.055) 0.471 (0.062) 0.830 (0.076) 0.539 (0.168) 0.807 (0.022) 0.493 (0.078)
Logistic 0.776 (0.038) 0.784 (0.081) 0.614 (0.149) 0.845 (0.163) 0.702 (0.196) 0.861 (0.029) 0.615 (0.047)
KNN, K-nearest neighbors; CNB, Complement Naive Bayes; SVM, support vector machine; SD, standard deviation; AUC, area under the curve; Logistic, logistic regression.
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Fig. 4. Comparison of calibration curves for each model in the
validation set. KNN, K-nearest neighbors; CNB, Complement
Naive Bayes; Logistic, logistic regression; SVM, support vector
machine.

Fig. 5. Analysis of clinical decision curves for eachmodel in the
validation set. KNN, K-nearest neighbors; CNB, Complement
Naive Bayes; Logistic, logistic regression; SVM, support vector
machine.

regression (p = 0.209), as well as between SVMand logistic
regression (p = 0.364), suggest that these differences were
not statistically significant (p > 0.05). However, the com-
parison between CNB and logistic regression (p = 0.115)
approached significance, highlighting the competitive per-
formance of the Logistic model compared to other models.

Table 4. p-values from delong test for pairwise AUC
comparisons between machine learning models.
Name KNN CNB SVM Logistic

KNN NA 0.24 0.261 0.209
CNB 0.24 NA 0.437 0.115
SVM 0.261 0.437 NA 0.364
Logistic 0.209 0.115 0.364 NA
KNN, K-nearest neighbors; CNB, Complement Naive
Bayes; SVM, support vector machine; Logistic, logistic
regression; NA, not applicable.

Therefore, considering its consistent superior perfor-
mance in both the training and validation sets, good gen-
eralization ability, and clinical interpretability, the logistic
regression model was selected as the optimal model for this
study.

3.2.3 Establishment and Optimization of the Optimal
Model

In summary, the logistic model was finally selected as
the optimal model for predicting the occurrence of MACE
after PCI in patients with STEMI in this study. In this study,
15% of the overall samples were randomly selected as the
test set (N = 37), and the other remaining samples were used
as the validation set (N = 213) to optimize the logistic re-
gression model using internal 5-fold cross-validation. The
results showed that the model had an AUC value of 0.795
for the area under the ROC curve in the test set, and 0.734
in the validation set, as shown in Fig. 6. Given that the
performance of the validation set for the AUC metrics did
not exceed the test set or exceeded the criterion that a ratio
of less than 10% can be considered a successful model fit,
this study determined that the logistic model was well suited
for this dataset. In addition, learning curves were plotted in
this study to assess whether there was any overfitting of the
model. As can be seen in Fig. 7, the difference in error be-
tween the training set and the test set in this model decreases
and stabilizes with the increase in the number of training
samples, indicating that there is no overfitting or underfit-
ting in this model. From the calibration curve (Fig. 8) and
mixingmatrix (Fig. 9) analysis in the figure, we showed that
the logistic regression model has good accuracy and consis-
tency in predicting the risk of MACE after PCI in patients
with STEMI. Finally, we evaluated the clinical applicability
and benefit level of the model through the clinical decision
curve. The results of Fig. 10 showed that the logistic regres-
sion model could help patients achieve a better net clinical
benefit at a lower threshold probability.

3.2.4 Interpretation of the Model and Ranking of
Significant Characteristic Variables

In order to improve the precision and interpretability
of the ML model, we also used the SHAP analysis method
to interpret and rank the importance of the included vari-
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Fig. 6. Analysis of the area under the ROC curves of the training and validation sets under 5-fold cross-validation within the
logistic regression model. ROC, receiver operating characteristic.

Fig. 7. Learning curve analysis of logistic regression model in
training and validation sets.

ables to determine themagnitude of the contribution of each
variable for the risk of developing MACE after PCI in the
population of patients with a STEMI. The results of the fea-
ture variable selection and importance analysis based on
Boruta’s algorithm are shown in Fig. 11. Fig. 11 shows the
top 7 important feature variables and eigenvalues screened,
which are Killip, Gensini, blood urea nitrogen (BUN), heart
rate (HR), creatinine (CR), glutamine transferase (GLT),
and platelet count (PCT).

3.2.5 Establishment and Evaluation of the Nomogram
Combining the results of the above analyses, we found

that Killip, Gensini, BUN, HR, CR, GLT, and PCT are inde-
pendent risk factors for the occurrence of MACE after PCI

Fig. 8. Calibration curve analysis of logistic regression model.
Logistic, logistic regression.

in patients with an STEMI. In this study, we entered these
7 variables into the logistic regression model and drew the
nomogram (Fig. 12). Compared with complex logistic re-
gression formulas, nomograms are simple, straightforward,
intuitively visualized, and often have better clinical utility.
When used with a straightedge as a plumb line, the risk
scores of each characteristic variable in the column chart
are first calculated separately according to the specific con-
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Fig. 9. Mixed matrix analysis of logistic regression model in training and validation sets.

Fig. 10. DCA curve analysis of logistic regressionmodel. DCA,
decision curve.

ditions of the individual, and then these scores are all added
together to obtain the total risk score, which can intuitively
and clearly predict the risk probability of MACE after PCI
in patients with an STEMI. The higher the total score, the
greater the risk of MACE after PCI in patients with STEMI.
The results of the analysis in Figs. 13,14 confirmed that the
model has good clinical predictive value and accuracy.

To further enhance the clinical applicability and ac-
cessibility of our model, we have developed a dynamic ver-
sion of the nomogram using the Shiny package in R. This
interactive tool allows clinicians to input patient-specific
data through a user-friendly interface, providing real-time
prediction for the risk of MACE. The dynamic nomogram
offers several advantages over the static version, including
precise value input, instant risk calculation, and improved
readability. It effectively addresses the issue of unclear risk
lines that may be present in static nomograms. We have
deployed this dynamic nomogram online, and it can be ac-
cessed at: [https://prediction1model.shinyapps.io/dynnom
app/].

4. Discussion
In this study, we employed four machine learning al-

gorithms to conduct an in-depth analysis and modeling of
the demographic, laboratory, and clinical characteristics of
acute STEMI patients. Our goal was to accurately pre-
dict the risk of MACE following PCI in STEMI patients.
After thoroughly assessing the importance of characteris-
tic variables and comparing model performance, the lo-
gistic regression model proved to be the most effective in
terms of discriminatory power, accuracy, and clinical ap-
plicability. By ranking feature importance, we identified
seven key variables—Killip, Gensini, BUN, HR, CR, GLT,
and PCT—that significantly impacted the predictionmodel.
These variables are discussed in detail below.
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Fig. 11. The top 7 important eigenvariables and eigenvalues screened based on Boruta’s algorithm. BUN, blood urea nitrogen;
HR, heart rate; CR, creatinine; GLT, glutamine transferase; PCT, platelet count; SHAP, Shapley Additive Explanations.

Fig. 12. Nomogram to show the risk prediction of postopera-
tiveMACE in patientswith acutemyocardial infarction. BUN,
blood urea nitrogen; HR, heart rate; CR, creatinine; GLT, glu-
tamine transferase; PCT, platelet count; MACE, major adverse
cardiovascular events.

Previous research has established that MACE after
PCI is a significant contributor to prolonged hospital stays,
increased healthcare costs, and elevated mortality risk in
STEMI patients. This can significantly affect their long-
term prognosis and health-related quality of life [14,15].
Consequently, early identification of critical risk factors for
MACE following PCI in STEMI patients, along with timely
interventions, is crucial.

The Killip classification, an important indicator of
heart failure severity, was identified in this study as a
strong predictor of MACE. This aligns with the findings of
Takasaki et al, who showed that higher Killip classifications
were strongly correlated with both short- and long-term

Fig. 13. ROC curve for the training set. ROC, receiver oper-
ating characteristic; AUC, area under the curve; CI, confidence
interval.

mortality, particularly in post-STEMI patients [16]. This
correlation likely arises because heart failure is a direct re-
sult of diminished myocardial contractility, which is closely
linked to elevated inflammatory markers, endothelial dys-
function, and cardiac remodeling. Furthermore, heart fail-
ure often coincides with reduced renal function, resulting
in fluid retention and increased cardiac workload, thereby
elevating the risk of adverse cardiac events [17]. Clini-
cally, STEMI patients with high Killip classifications re-
quire more aggressive monitoring and interventions. This
may involve the use of diuretics to manage fluid overload,
as well as medications such as β-blockers and angiotensin
converting enzyme (ACE) inhibitors to improve cardiac
function. These measures are critical in reducing post-PCI
adverse events and improving long-term patient outcomes.
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Fig. 14. Calibration curve of the nomogram for the training
set. MACE, major adverse cardiovascular events.

The Gensini score, which quantifies the severity of
coronary lesions based on the degree of stenosis and lesion
location seen on coronary angiography, was also identified
as an independent predictor of MACE in STEMI patients
after a PCI. This finding is consistent with previous studies
[18,19]. The Gensini score provides valuable insights into
the severity and prognosis of STEMI by accounting for the
number, location, and extent of coronary lesions [20]. For
patients with high Gensini scores, clinical teams should be
proactive in adjusting treatment strategies, providing close
follow-up care, and focusing on delaying the progression of
coronary stenosis to improve therapeutic and rehabilitative
outcomes.

Additionally, our study found that BUN levels were
closely linked to the risk of MACE after PCI in STEMI pa-
tients. BUN, a byproduct of protein metabolism, reflects
early cardiac and renal hemodynamic changes and serves
as a strong predictor of poor cardiovascular outcomes, as
supported by numerous studies [21–23]. Horiuchi et al.
[21] also demonstrated that high BUN levels significantly
increased the risk of MACE in STEMI patients post-PCI,
leading to longer hospital stays and higher mortality rates.

HR, a common clinical marker of cardiac function, has
received increasing attention for its predictive value in car-
diovascular disease. A chronically elevated heart rate is a
key risk factor for adverse cardiovascular events, heart fail-
ure, and longer hospitalizations [24–28]. Sympathetic hy-
peractivity and excessive catecholamine secretion are com-
mon causes of increased heart rate, which leads to higher
intravascular pressure, damage to the coronary endothe-
lium, and the promotion of inflammatory factors. These
processes accelerate atherosclerosis, increase the risk of ar-
rhythmias, and elevate the likelihood of recurrent myocar-

dial infarction. Effective heart rate management through β-
blockers and other medications can alleviate patient symp-
toms and reduce adverse events in STEMI patients.

Our study also revealed that CR, an indicator of renal
function, was an important predictor of MACE following
PCI in STEMI patients. This aligns with previous studies,
which showed that high creatinine levels correlate with a
3 to 5 times greater risk of death in STEMI patients [29–
31]. Persistent high creatinine levels can indicate systemic
congestion and fluid overload, leading to cardiac dysfunc-
tion and an increased risk of heart failure and arrhythmias.
Monitoring renal function in post-PCI patients is essential
to better tailor treatment strategies and reduce the risk of
mortality.

GLT, a metabolic enzyme, also showed significant
predictive value for MACE in STEMI patients in our study.
While the relationship betweenGLT and cardiovascular dis-
eases is still not fully understood, its role in metabolic reg-
ulation warrants further research to clarify its impact on ad-
verse cardiac events.

Finally, PCT, an indicator of platelet function, was
positively associated with MACE risk in this study, a find-
ing consistent with the work of Reddy et al. [32]. Higher
PCT levels suggest increased platelet aggregation, accel-
erating coronary plaque formation and an increased risk of
cardiovascular disease. This may be due to the fact that ele-
vated PCT reduces vasodilation and myocardial blood flow
after PCI, contributing to further cardiac damage [33]. Ad-
ditional large-scale studies are needed to further investigate
the link between PCT and the risk of MACE in STEMI pa-
tients.

5. Limitations
This study utilized a retrospective research method-

ology. Therefore, the results may be affected by sample
selection bias. There are numerous factors affecting the oc-
currence of MACE after PCI in patients with STEMI, and
the present studymay not have taken into account all the po-
tential predictive variables, especially the relevant variables
such as lifestyle and socioeconomic status, which have a
significant impact on the risk of developing cardiovascu-
lar disease. Future studies will need to further incorporate
these factors into the constructed model in order to more
comprehensively assess the risk for adverse cardiovascular
events in patients with an acute STEMI after a PCI. In ad-
dition, our model was constructed and validated based on
a single dataset, which may limit the applicability and gen-
eralization of the model to other patient groups. Therefore,
in order to better validate and optimize the predictive per-
formance of the model, further larger sample, prospective,
multicenter cohort studies will need to be conducted in the
future.
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Table 5. Variables and abbreviations.
Variable Full name of the variable Type of variable Unit of variability/Variable encode

Sex sex continuous variable 0 = men, 1 = women
Age age continuous variable year
Killip killip categorical variable 1 = class I,

2 = class II,
3 = class III,
4 = class IV

SP systolic blood pressure continuous variable mmHg
BP diastolic blood pressure continuous variable mmHg
HR heart rate continuous variable times/min
Smoking smoking categorical variable 0 = NO, 1 = Yes
Lesion location lesion location categorical variable 0 = left trunk,

1 = left anterior descending branch (LAD),
2 = left revolving branch (LCX),
3 = right coronary artery (RCA)

Number of vessels diseased number of vessels diseased categorical variable /
Gensini coronary artery lesion stenosis score continuous variable score
Thrombolysis thrombolysis categorical variable 0 = NO, 1 = Yes
Bivalirudin bivalirudin categorical variable 0 = NO, 1 = Yes
Trifluoroacetate salt trifluoroacetate salt
Number of stents number of stents categorical variable /
WBC white blood cell continuous variable 109/L
N absolute neutrophil value continuous variable 109/L
L lymphocytes absolute value continuous variable 109/L
M absolute monocyte value continuous variable 109/L
RBC red blood cell continuous variable 1012/L
HB hemoglobin continuous variable g/L
PLT platelets count continuous variable 109/L
MPV mean platelet volume continuous variable fL
PCW platelet volume distribution width continuous variable fL
PCT blood platelet count continuous variable %
GLU glucose continuous variable mmol/L
BUN blood urea nitrogen continuous variable mg/dL
CR creatinine continuous variable umol/L
UA uric acid continuous variable umol/L
Total protein total protein continuous variable g/L
DBIL direct bilirubin continuous variable umol/L
IBIL indirect bilirubin continuous variable umol/L
GLT glutamine transferase continuous variable U/L
GST glutathione S-transferase continuous variable U/L
TG triglyceride continuous variable mmol/L
TC total cholesterol continuous variable mmol/L
HDL high density lipoprotein continuous variable mmol/L
LDL low density lipoprotein continuous variable mmol/L
VLDL very low density lipoprotein continuous variable mmol/L
LVD left ventricular internal diameter continuous variable mm
TDM type 2 diabetes mellitus categorical variable 0 = NO, 1 = Yes
HP high blood pressure categorical variable 0 = NO, 1 = Yes

6. Conclusions

In summary, in this study, a total of 7 important char-
acteristic variables related to the occurrence of MACE af-
ter PCI in patients with an acute STEMI were screened

based on ML algorithms and incorporated into an opti-
mal logistic regression model, which can provide sufficient
evidence-based support and methodological references for
the early identification of high-risk groups of patients at risk
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for developing MACE after a PCI. This will help health-
care workers to more deeply understand the complex rela-
tionship between these indicators and the disease, and make
targeted clinical scientific decisions, so as to improve more
favorable patient prognoses and enhance long-term quality
of life. The powerful predictive power of the logistic regres-
sion model in this study highlights the great potential of ML
in the management and application of cardiovascular dis-
eases. The advantage of such models lies in their ability to
efficiently handle nonlinear relationships and a large num-
ber of interaction effects among data, yielding more accu-
rate and reliable results, and can be extended, applied, and
optimized to suit different clinical scenarios. However, to
transform these models into practical tools in clinical prac-
tice, a series of factors will still need to be incorporated,
including the quality and accessibility of data, the interpre-
tive power of the models, and their integration with existing
clinical workflows. In addition, with the rise of personal-
ized medicine, the application of ML models in providing
individualized treatment recommendations will need to be
further explored and investigated in the future.
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