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Abstract

Background: This study aimed to identify the risk factors for in-hospital acute kidney injury (AKI) in patients with acute aortic dissection
(AAD) and to establish a machine learning model for predicting in-hospital AKI. Methods: We extracted data on patients with AAD
from the Medical Information Mart for Intensive Care (MIMIC)-IV database and developed seven machine learning models: support
vector machine (SVM), gradient boosting machine (GBM), neural network (NNET), eXtreme gradient boosting (XGBoost), K-nearest
neighbors (KNN), light gradient boosting machine (LightGBM), and categorical boosting (CatBoost). Model performance was assessed
using the area under the receiver operating characteristic curve (AUC), and the optimal model was interpreted using Shapley Additive
explanations (SHAP) visualization analysis. Results: A total of 325 patients with AAD were identified from the MIMIC-IV database,
of which 84 patients (25.85%) developed in-hospital AKI. This study collected 42 features, with nine selected for model building. A
total of 70% of the patients were randomly allocated to the training set, while the remaining 30% were allocated to the test set. Machine
learning models were built on the training set and validated using the test set. In addition, we collected AAD patient data from the
MIMIC-III database for external validation. Among the seven machine learning models, the CatBoost model performed the best, with
an AUC of 0.876 in the training set and 0.723 in the test set. CatBoost also performed strongly during the validation, achieving an AUC
of 0.712. SHAP visualization analysis identified the most important risk factors for in-hospital AKI in AAD patients as maximum blood
urea nitrogen (BUN), body mass index (BMI), urine output, maximum glucose (GLU), minimum BUN, minimum creatinine, maximum
creatinine, weight and acute physiology score III (APSIII). Conclusions: The CatBoost model, constructed using risk factors including
maximum and minimum BUN levels, BMI, urine output, and maximum GLU, effectively predicts the risk of in-hospital AKI in AAD
patients and shows compelling results in further validations.
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1. Introduction
Acute aortic dissection (AAD) is characterized by a

tear in the aortic intima, with symptoms manifesting within
two weeks. Blood flows through this tear into the middle
layer of the aorta, forming a true lumen and a false lumen,
progressively separating the inner and middle layers of the
aorta [1]. Currently, AAD is primarily classified into two
types: Stanford type A, which involves the ascending aorta,
and Stanford type B, which does not [2]. Clinically, AAD
typically presents with acute, severe chest and back pain
and is characterized by rapid onset, swift progression, di-
verse initial symptoms, and high mortality risk [3]. The in-
cidence rate of AAD is about 0.005%, but the mortality rate
within 24 hours can reach 33%. Without timely interven-
tion, the mortality rate increases cumulatively by 0.5% each
hour, reaching 50% within 48 hours and 74% within one
week [4,5]. The primary treatments for AAD include sur-
gical repair and endovascular treatment, which have been
demonstrated to achieve survival rates of up to 90% when

timely administered [6]. Acute kidney injury (AKI) is a
common complication among AAD patients, occurring ei-
ther in-hospital or post-surgery, with an incidence rate of
7%–20% [7,8]. The occurrence of AKI in AAD patients
often exacerbates the condition, leading to further compli-
cations, prolonged hospital stays, and increased mortality
rates [9]. Consequently, it is crucial to establish a robust
predictive model for effectively forecasting AKI in hospi-
talized AAD patients.

Recently, the application of artificial intelligence in
the medical field has become increasingly widespread. Ma-
chine learning (ML), an important branch of artificial in-
telligence [10,11], delves deeper into the intrinsic patterns
of data when faced with highly complex, high-dimensional
clinical data compared to traditional prediction models.
Prediction models developed using machine learning and
now widely utilized in clinical predictions exhibit greater
stability, higher accuracy, and stronger generalization ca-
pabilities [12,13]. The main ML types include super-
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vised learning, unsupervised learning, and others [14]. The
Medical Information Mart for Intensive Care (MIMIC)-IV
database is a commonly used large single-center database
that contains the clinical data of 382,278 patients at Beth
Israel Deaconess Medical Center from 2008 to 2019. The
data include demographic characteristics, radiological ex-
amination results, laboratory test results, patient vital signs,
medication treatment data, various scoring data, in-hospital
complications, and clinical outcomes [15,16]. The MIMIC
database is widely used due to its high-quality and compre-
hensive data records. Previous literature has established a
predictive model for in-hospital mortality of AAD patients
[17,18] and reports of predictive models for AKI follow-
ing acute myocardial infarction [19]; however, there is cur-
rently no research on machine learning models related to
in-hospital AKI complications in AAD patients. Therefore,
this study extracted clinical data of AAD patients from the
MIMIC-IV database to establish seven types of machine
learning models: support vector machine (SVM), gradi-
ent boosting machine (GBM), neural network (NNET), eX-
treme gradient boosting (XGBoost), K-nearest neighbors
(KNN), light gradient boosting machine (LightGBM), and
categorical boosting (CatBoost). Simultaneously, the AAD
patient data in the MIMIC-III database were used to exter-
nally validate the established optimal model. These ma-
chine learning models are employed to screen for risk fac-
tors and predict in-hospital AKI complications in AAD pa-
tients, aiding clinical decision-making.

2. Materials and Methods
2.1 Clinical Data Source

The patients studied primarily originated fromVersion
2.2 of the MIMIC-IV and Version 1.4 of the MIMIC-III
databases, which mainly include records from the Beth Is-
rael Deaconess Medical Center from 2001 to 2019. The
study team obtained specific approval and permission for
the data retrieval process. Data extraction was primarily
conducted using structured query language (SQL) and Nav-
icat Premium version16.0 (PremiumSoft Cyber Tech, Hong
Kong, China). Since all patient data in the database were
anonymized, no additional ethical approval was required
for this study.

2.2 Data Collection
Inclusion criteria: patients diagnosed with AAD ac-

cording to the International Classification of Diseases
(ICD) 9th and 10th editions, with ICD-9 diagnostic codes:
441.01, 441.02, 441.03; ICD-10 diagnostic codes: I71.01,
I71.02, I71.03. Exclusion criteria: (1) patients with an in-
tensive care unit (ICU) stay of less than 24 hours; (2) pa-
tients with repeated hospital admissions or ICU readmis-
sions; (3) patients with a history of renal-related diseases;
(4) patients aged under 18 years; (5) patients with no surgi-
cal treatment or only minimally invasive surgery. Finally,
following the strict inclusion and exclusion criteria, we col-

lected 325 patients from the MIMIC-IV database and 179
patients from the MIMIC-III database. We collected data
on AAD patients within 24 hours of their admission to the
ICU. The data collected in this study included: (1) demo-
graphic characteristics: gender, age, height, weight, body
mass index (BMI); (2) laboratory test data: hemoglobin
(HB), platelet (PLT), white blood cells (WBCs), anion gap
(AG), bicarbonate (BC), blood urea nitrogen (BUN), cre-
atinine, blood glucose (GLU), calcium (Ca) ions, sodium
(Na) ions, potassium (K) ions, international normalized
ratio (INR); (3) various scores: Acute Physiology Score
III (APSIII), Sequential Organ Failure Assessment score
(SOFA score), Charlson comorbidity index, Glasgow coma
scale score (GCS score); (4) vital signs: urine output, sys-
tolic blood pressure, diastolic blood pressure; (5) other data:
overall length of stay (LOS), LOS in the ICU, and number
of deaths.

2.3 Model Establishment and Evaluation
Both univariate (single-factor) and multivariate

(multi-factor) logistic regression analyses were performed
on the training dataset to identify and utilize risk factors for
in-hospital AKI in AAD patients for model construction.
This study established seven types of machine learn-
ing models: SVM model, GBM model, NNET model,
XGBoost model, KNN model, LightGBM model, and
CatBoost model. The models were developed using the
training set, and their performance was enhanced through
10-fold cross-validation. Feature importance ranking and
other model evaluation metrics were employed for accu-
racy, sensitivity, specificity, precision, and the F1 score.
We used receiver operating characteristic (ROC) curves,
decision curve analysis (DCA) curves and precision-recall
(PR) curves to evaluate the performance of the model.
In addition, we used data obtained from the MIMIC-III
database of 179 patients to validate the model externally.
Finally, Shapley Additive explanations (SHAP) visu-
alizations were utilized to interpret the optimal model,
providing insights into the decision-making processes of
the model.

2.4 Outcome Measures
The outcome measure for this study is the new onset

of AKI during hospitalization, according to the current in-
ternational diagnostic criteria for AKI [20]: (1) a rise in
serum creatinine by ≥0.3 mg/dL or ≥26.5 µmol/L within
48 hours; (2) a rise in baseline serum creatinine by at least
50% within 7 days; (3) urinary output<0.5 mL/kg/h within
6 hours.

2.5 Statistical Analysis
First, the data were preprocessed by removing fea-

tures with more than 20% missing values, and the remain-
ing missing values were added to the dataset using the pre-
dictive mean matching method (PMM) for multiple impu-
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Fig. 1. Patient screening process diagram. AKI, acute kidney injury; ICU, intensive care unit; SHAP, Shapley Additive explanations;
CAT, categorical boosting; MIMIC, Medical Information Mart for Intensive Care.

tations. PMM primarily uses the other feature values of
a sample to predict the missing values. After imputation,
numerous datasets are generated, and researchers could
choose one for further data analysis, removing duplicates
and samples containing outliers. Following the data pre-
processing, the final cohort of 325 patients was randomly
divided into a training set (228 patients) and a test set (97 pa-
tients) in a 7:3 ratio. Since there are only 59 AKI patients in
the training set (25.88%), the large disparity between AKI
and non-AKI patients had the potential to reduce the perfor-
mance of the model. We employed the synthetic minority
oversampling technique (SMOTE) oversampling technique
to create a more balanced representation between AKI and
non-AKI patient cases. The mean ± standard deviation

represents continuous variables, and categorical variables
are represented by frequency (rate). Continuous variables
were tested for comparisons using the t-test if normally dis-
tributed or with the Mann–Whitney U test if not. Categor-
ical variables were tested using the chi-square test. This
study utilizes R 4.3.2 (R Foundation for Statistical Com-
puting, Vienna, Austria) and Python 3.10 (Python Software
Foundation, Austin, TX, USA) for data analysis and chart
creation, with statistical significance at p < 0.05.

3. Results
3.1 Baseline Characteristics

This study included 325 AAD patients from the
MIMIC-IV database, 84 of whom were AKI patients. Sig-
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Table 1. Univariate analysis results of the training set.
Variables Non-AKI (n = 169) AKI (n = 59) p-value

Gender (male) (n (%)) 129 (76.3) 49 (83.1) 0.373
Procedure (yes) (n (%))

Extracorporeal circulation auxiliary to open heart surgery 169 (100) 59 (100) -
Resection of vessel with replacement, thoracic vessels 142 (80.4) 53 (89.8) 0.381
Open heart valvuloplasty of aortic valve without replacement 34 (20.1) 9 (15.3) 0.529
Open and other replacement of aortic valve with tissue graft 31 (18.3) 12 (20.3) 0.885
Endovascular implantation of graft in thoracic aorta 28 (16.6) 8 (13.6) 0.735

Age (years) 68.27 ± 15.50 68.52 ± 12.58 0.910
Height (cm) 169.22 ± 11.70 169.88 ± 11.16 0.708
Weight (kg) 80.56 ± 20.78 91.43 ± 24.60 0.001
BMI 23.71 ± 5.52 26.82 ± 6.56 <0.001
APSIII 40.28 ± 17.21 51.08 ± 18.84 <0.001
GCS score 13.96 ± 2.66 14.22 ± 2.27 0.501
Charlson comorbidity index 4.60 ± 2.41 5.05 ± 2.40 0.221
SOFA score 4.78 ± 3.65 5.80 ± 3.63 0.065
HB min (g/dL) 9.68 ± 2.34 9.28 ± 2.30 0.248
HB max (g/dL) 11.84 ± 1.96 12.10 ± 2.22 0.393
PLT min (×109/L) 172.37 ± 100.31 153.76 ± 76.98 0.196
PLT max (×109/L) 218.14 ± 103.39 213.00 ± 80.40 0.729
WBC min (×109/L) 9.19 ± 8.85 9.12 ± 3.47 0.948
WBC max (×109/L) 13.93 ± 19.70 13.86 ± 5.40 0.981
AG min (mmol/L) 11.85 ± 2.76 12.32 ± 2.90 0.268
AG max (mmol/L) 15.00 ± 3.54 16.05 ± 3.66 0.053
BC min (mmol/L) 22.44 ± 3.69 22.05 ± 3.42 0.473
BC max (mmol/L) 25.09 ± 3.34 25.49 ± 3.20 0.428
BUN min (mmol/L) 18.78 ± 13.03 24.81 ± 17.72 0.006
BUN max (mmol/L) 21.67 ± 14.57 31.37 ± 21.68 <0.001
Ca min (mmol/L) 8.30 ± 0.83 8.33 ± 0.93 0.676
Ca max (mmol/L) 8.76 ± 0.83 8.78 ± 0.80 0.855
Creatinine min (mg/dL) 1.03 ± 0.70 1.52 ± 1.50 0.001
Creatinine max (mg/dL) 1.20 ± 0.75 2.04 ± 2.07 <0.001
GLU min (mmol/L) 113.50 ± 31.62 120.88 ± 36.77 0.141
GLU max (mmol/L) 143.50 ± 53.39 166.41 ± 70.45 0.010
Na min (mmol/L) 137.94 ± 4.19 137.34 ± 3.33 0.320
Na max (mmol/L) 140.24 ± 3.74 140.93 ± 2.99 0.202
K min (mmol/L) 3.86 ± 0.49 3.97 ± 0.59 0.159
K max (mmol/L) 4.51 ± 0.76 4.74 ± 0.92 0.065
INR min 1.26 ± 0.36 1.24 ± 0.35 0.807
INR max 1.61 ± 1.16 1.61 ± 0.56 0.998
Urine output (mL) 1563.87 ± 893.49 1244.14 ± 843.13 0.017
SBP min (mmHg) 90.41 ± 15.35 87.47 ± 14.73 0.202
SBP max (mmHg) 149.23 ± 20.53 144.73 ± 17.46 0.134
DBP min (mmHg) 44.54 ± 9.83 44.17 ± 9.09 0.800
DBP max (mmHg) 82.70 ± 17.95 82.46 ± 15.32 0.927
Length of stay (days) 10.68 ± 9.49 13.49 ± 11.06 0.062
LOS in ICU (days) 5.99 ± 7.37 8.04 ± 9.86 0.096
AKI, acute kidney injury; BMI, body mass index; APSIII score, Acute Physiology Score III; GCS score, Glasgow coma
scale score; SOFA score, Sequential Organ Failure Assessment score; HB, hemoglobin; PLT, platelet; WBC, white blood
cell; AG, anion gap; BC, bicarbonate; BUN, blood urea nitrogen; GLU, glucose; INR, international normalized ratio; SBP,
systolic blood pressure; DBP, diastolic blood pressure; Ca, calcium; Na, natrium; K, kalium; ICU, intensive care unit; LOS,
length of stay.
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Fig. 2. Heat map of risk factor associations. BMI, body mass index; APSIII, Acute Physiology Score III; BUN, blood urea nitrogen;
GLU, glucose.

nificant differences were observed between the AKI and
non-AKI groups in several parameters: weight, BMI, AP-
SIII, minimum BUN, maximum BUN, maximum creati-
nine, minimum creatinine, maximum glucose, and urine
output (p < 0.05). The two groups had no statistical dif-
ferences in other characteristics (p > 0.05). Fig. 1 presents
the patient screening flowchart, Table 1 presents the base-
line characteristics of the patients in the training set in de-
tail, and Table 2 presents the baseline characteristics of the
patients in the validation set.

3.2 Feature Selection in Machine Learning Models
Feature selection for the training dataset involved uni-

variate and multivariate logistic regression analyses. The
machine learning model was built using features identified
as significant risk factors with a significance level of p <

0.05 according to the univariate logistic regression analysis.
These features included weight, BMI, APSIII score, mini-
mum and maximum values of BUN and creatinine, maxi-
mum glucose levels, and urine output (Table 3). The cor-
relation between all selected variables is visualized using a
heat map, as shown in Fig. 2.

3.3 Machine Learning Models in the Training Set
Using the aforementioned features, machine learning

models were constructed in the training set, and each model

was ranked based on feature importance. The area under the
receiver operating characteristic curve (AUC) values were
as follows: CatBoost model: 0.876 (95% confidence in-
terval (CI): 0.833, 0.918); SVM model: 0.744 (95% CI:
0.682, 0.807); GBM model: 0.801 (95% CI: 0.746, 0.857);
NNET model: 0.790 (95% CI: 0.733, 0.848); XGBoost
model: 0.808 (95% CI: 0.753, 0.863); KNN model: 0.729
(95% CI: 0.665, 0.793); LightGBMmodel: 0.751 (95% CI:
0.692, 0.810). Among all the models in the training set, the
CatBoost model performed the best, while the KNN model
performed the worst (Table 4). All models ROC curves are
shown in Fig. 3. The DCA curve indicated that all seven
machine learning models achieved clinical net benefits, as
shown in Fig. 4. The PR curve demonstrated well-balanced
precision and recall across all models, indicating superior
performance, as observed in Fig. 5. Feature importance
rankings were performed for all models, with the top 9 fea-
tures for the CatBoost model being: maximum BUN, BMI,
urine output, maximum GLU, minimum BUN, minimum
creatinine, maximum creatinine, weight, and APSIII. The
feature importance ranking for all models can be found in
Fig. 6.
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Table 2. Univariate analysis results of the validation set.
Variables Non-AKI (n = 144/80.45%) AKI (n = 35/19.55%) p-value

Gender (male) (n (%)) 93 (64.58) 25 (71.43) 0.571
Procedure (yes) (n (%))

Extracorporeal circulation auxiliary to open heart surgery 144 (100.00) 35 (100.00) -
Resection of vessel with replacement, thoracic vessels 109 (75.69) 31 (88.57) 0.154
Open heart valvuloplasty of aortic valve without replacement 28 (19.44) 11 (32.43) 0.163
Open and other replacement of aortic valve with tissue graft 27 (18.75) 5 (14.29) 0.711
Endovascular implantation of graft in thoracic aorta 31 (21.53) 3 (8.57) 0.130

Death 7 (4.86) 2 (5.71) 1.000
Age (years) 70.02 ± 41.72 62.12 ± 13.65 0.271
Height (cm) 171.98 ± 10.36 173.01 ± 11.01 0.608
Weight (kg) 81.96 ± 18.18 93.75 ± 26.29 0.002
BMI 27.83 ± 5.43 31.00 ± 7.17 0.005
APSIII 43.52 ± 18.55 54.14 ± 16.84 0.002
GCS score 6.17 ± 15.24 5.24 ± 14.63 0.750
Charlson comorbidity index 3.94 ± 1.97 4.00 ± 2.09 0.883
SOFA score 6.05 ± 3.34 9.11 ± 3.34 0.061
HB min (g/dL) 8.28 ± 2.03 7.56 ± 1.41 0.051
HB max (g/dL) 12.54 ± 1.58 12.65 ± 1.32 0.702
PLT min (×109/L) 146.40 ± 72.23 104.29 ± 42.43 0.601
PLT max (×109/L) 221.54 ± 83.89 192.94 ± 61.53 0.060
WBC min (×109/L) 8.15 ± 3.38 8.76 ± 3.50 0.347
WBC max (×109/L) 13.08 ± 5.36 14.10 ± 5.07 0.308
AG min (mmol/L) 11.79 ± 3.13 12.94 ± 3.86 0.074
AG max (mmol/L) 14.10 ± 3.20 16.12 ± 5.02 0.014
BC min (mmol/L) 23.06 ± 2.65 21.49 ± 3.70 0.104
BC max (mmol/L) 26.01 ± 3.23 24.69 ± 3.06 0.129
BUN min (mmol/L) 17.08 ± 10.13 22.60 ± 9.10 0.004
BUN max (mmol/L) 20.58 ± 11.21 27.51 ± 10.48 0.001
Ca min (mmol/L) 0.95 ± 0.15 0.94 ± 0.13 0.610
Ca max (mmol/L) 1.28 ± 0.16 1.39 ± 0.39 0.017
Creatinine min (mg/dL) 1.12 ± 1.20 1.79 ± 2.10 0.014
Creatinine max (mg/dL) 1.37 ± 1.46 2.45 ± 2.69 0.001
GLU min (mmol/L) 94.78 ± 19.74 92.14 ± 18.28 0.474
GLU max (mmol/L) 185.51 ± 54.26 221.49 ± 64.73 0.001
Na min (mmol/L) 135.41 ± 3.14 136.14 ± 2.77 0.211
Na max (mmol/L) 141.06 ± 3.66 143.23 ± 4.13 0.103
K min (mmol/L) 3.54 ± 0.49 3.67 ± 0.55 0.168
K max (mmol/L) 5.53 ± 1.04 6.06 ± 1.13 0.108
INR min 1.19 ± 0.23 1.20 ± 0.22 0.831
INR max 1.67 ± 0.56 1.95 ± 0.78 0.068
Urine output (mL) 2004.67 ± 1323.81 904.63 ± 554.95 <0.001
SBP min (mmHg) 82.90 ± 15.05 83.80 ± 11.87 0.743
SBP max (mmHg) 146.75 ± 20.90 144.40 ± 26.50 0.573
DBP min (mmHg) 43.49 ± 7.48 44.80 ± 8.28 0.365
DBP max (mmHg) 78.65 ± 14.51 75.77 ± 11.12 0.275
Length of stay (days) 14.76 ± 10.50 17.12 ± 12.40 0.252
LOS in ICU (days) 9.39 ± 9.86 13.11 ± 12.13 0.058
AKI, acute kidney injury; BMI, body mass index; APSIII score, Acute Physiology Score III; GCS score, Glasgow coma scale score;
SOFA score, Sequential Organ Failure Assessment score; HB, hemoglobin; PLT, platelet; WBC, white blood cell; AG, anion gap;
BC, bicarbonate; BUN, blood urea nitrogen; GLU, glucose; INR, international normalized ratio; SBP, systolic blood pressure; DBP,
diastolic blood pressure; Ca, calcium; Na, natrium; K, kalium; ICU, intensive care unit; LOS, length of stay.
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Table 3. Results of univariate and multivariate logistic regression analyses.

Variables
Univariable Multivariable

OR (95% CI) p-value OR (95% CI) p-value

Procedure (yes) (n (%))
Extracorporeal circulation auxiliary to open heart surgery 1.00 (1.00–1.00) -
Resection of vessel with replacement, thoracic vessels 1.68 (0.66–4.30) 0.279
Open heart valvuloplasty of aortic valve without replacement 0.71 (0.32–1.60) 0.412
Open and other replacement of aortic valve with tissue graft 1.14 (0.54–2.39) 0.736
Endovascular implantation of graft in thoracic aorta 0.79 (0.34–1.85) 0.586

Gender (male) (n (%)) 1.52 (0.71–3.27) 0.285
Age (years) 1.00 (0.98–1.02) 0.909
Height (cm) 1.00 (0.98–1.03) 0.706
Weight (kg) 1.02 (1.01–1.04) 0.002 0.98 (0.92–1.04) 0.554
BMI 1.09 (1.04–1.15) <0.001 1.14 (0.91–1.43) 0.257
APSIII 1.03 (1.01–1.05) <0.001 1.01 (0.99–1.03) 0.362
GCS score 1.05 (0.92–1.19) 0.502
Charlson comorbidity index 1.08 (0.96–1.22) 0.221
SOFA score 1.08 (0.99–1.16) 0.067
HB min (g/dL) 0.93 (0.81–1.05) 0.248
HB max (g/dL) 1.07 (0.92–1.23) 0.391
PLT min (×109/L) 1.00 (0.99–1.00) 0.198
PLT max (×109/L) 1.00 (1.00–1.00) 0.728
WBC min (×109/L) 1.00 (0.96–1.04) 0.948
WBC max (×109/L) 1.00 (0.98–1.02) 0.981
AG min (mmol/L) 1.06 (0.96–1.18) 0.268
AG max (mmol/L) 1.08 (1.00–1.17) 0.057
BC min (mmol/L) 0.97 (0.89–1.05) 0.472
BC max (mmol/L) 1.04 (0.95–1.13) 0.427
BUN min (mmol/L) 1.03 (1.01–1.05) 0.011 0.90 (0.78–1.04) 0.153
BUN max (mmol/L) 1.03 (1.01–1.05) 0.001 1.10 (0.98–1.25) 0.110
Ca min (mmol/L) 0.93 (0.65–1.32) 0.647
Ca max (mmol/L) 1.03 (0.72–1.48) 0.845
Creatinine min (mg/dL) 1.62 (1.13–2.32) 0.008 0.43 (0.06–3.11) 0.403
Creatinine max (mg/dL) 1.98 (1.37–2.85) <0.001 3.04 (0.57–16.04) 0.191
GLU min (mmol/L) 1.01 (1.00–1.01) 0.154
GLU max (mmol/L) 1.01 (1.00–1.01) 0.015 1.00 (0.99–1.01) 0.918
Na min (mmol/L) 0.96 (0.90–1.04) 0.320
Na max (mmol/L) 1.06 (0.97–1.15) 0.202
K min (mmol/L) 1.51 (0.85–2.69) 0.159
K max (mmol/L) 1.38 (0.97–1.96) 0.071
INR min 0.90 (0.38–2.11) 0.706
INR max 1.00 (0.75–1.33) 0.998
Urine output (mL) 1.00 (1.00–1.00) 0.019 1.00 (1.00–1.00) 0.126
SBP min (mmHg) 0.99 (0.97–1.01) 0.202
SBP max (mmHg) 0.99 (0.97–1.00) 0.135
DBP min (mmHg) 1.00 (0.97–1.03) 0.799
DBP max (mmHg) 1.00 (0.98–1.02) 0.926
Length of stay (days) 1.03 (1.00–1.06) 0.068
LOS in ICU (days) 1.03 (0.99–1.06) 0.106
BMI, body mass index; APSIII, Acute Physiology Score III; GCS score, Glasgow coma scale score; SOFA score, Sequential Organ
Failure Assessment score; HB, hemoglobin; PLT, platelet; WBC, white blood cell; AG, anion gap; BC, bicarbonate; BUN, blood
urea nitrogen; GLU, glucose; INR, international normalized ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; Ca,
calcium; Na, natrium; K, kalium; ICU, intensive care unit; OR, odds ratio; CI, confidence interval; LOS, length of stay.
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Table 4. Machine learning model performance evaluation results.
Model Data AUC Accuracy Sensitivity Specificity Precision F1 score

SVM Training set 0.744 0.708 0.788 0.627 0.679 0.729
Test set 0.703 0.814 0.360 0.972 0.818 0.501

GBM Training set 0.801 0.742 0.737 0.746 0.744 0.740
Test set 0.703 0.691 0.600 0.722 0.429 0.500

NNET Training set 0.790 0.746 0.703 0.788 0.769 0.735
Test set 0.714 0.804 0.440 0.931 0.688 0.537

XGB Training set 0.808 0.756 0.856 0.661 0.716 0.780
Test set 0.722 0.742 0.600 0.792 0.500 0.545

KNN Training set 0.729 0.695 0.822 0.568 0.655 0.729
Test set 0.700 0.711 0.640 0.736 0.457 0.533

LGB Training set 0.751 0.703 0.848 0.559 0.658 0.741
Test set 0.639 0.670 0.560 0.708 0.400 0.467

CAT Training set 0.876 0.797 0.695 0.898 0.872 0.774
Test set 0.723 0.608 0.920 0.500 0.789 0.648

Validation set 0.712 0.721 0.600 0.750 0.368 0.457
AUC, the area under the receiver operating characteristic curve; SVM, support vector machine; GBM,
gradient boosting machine; NNET, neural network; XGB, eXtreme gradient boosting; KNN, K-
nearest neighbors; LGB, light gradient boosting machine; CAT, categorical boosting.

Fig. 3. ROC curve of the training set. ROC, receiver op-
erating characteristic; AUC, the area under the receiver operat-
ing characteristic curve; CI, confidence interval; SVM, support
vector machine; GBM, gradient boosting machine; NNET, neu-
ral network; KNN, K-nearest neighbors; XGB, eXtreme gradient
boosting; LGB, light gradient boosting machine; CAT, categorical
boosting.

3.4 Testing Machine Learning Models in Test Sets and
Validation Sets

In total, 30% of the data obtained from the MIMIC-IV
database were utilized as the test set to evaluate the perfor-
mance of the model, assessing the AUC for each model.

Fig. 4. DCA curve of the training set. DCA, decision curve
analysis; SVM, support vector machine; GBM, gradient boosting
machine; NNET, neural network; XGB, eXtreme gradient boost-
ing; KNN, K-nearest neighbors; LGB, light gradient boosting ma-
chine; CAT, categorical boosting.

The AUC values obtained are as follows: CatBoost model:
0.723 (95%CI: 0.610, 0.837); SVMmodel: 0.703 (95%CI:
0.577, 0.828); GBM model: 0.703 (95% CI: 0.587, 0.820);
NNET model: 0.714 (95% CI: 0.590, 0.838); KNN model:
0.700 (95% CI: 0.575, 0.825); LightGBM model: 0.639
(95% CI: 0.517, 0.760); XGBoost model: 0.722 (95% CI:
0.600, 0.845). Among all models in the test set, the Cat-
Boost model demonstrated the highest AUC value, while
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Fig. 5. PR curve of the training set. SVM, support vector machine; GBM, gradient boosting machine; NNET, neural network; XGB,
eXtreme gradient boosting; KNN, K-nearest neighbors; LGB, light gradient boosting machine; CAT, categorical boosting; PR, precision-
recall.

Fig. 6. Machine learning model characteristic importance sequence diagram. SVM, support vector machine; GBM, gradient boost-
ing machine; NNET, neural network; XGB, eXtreme gradient boosting; KNN, K-nearest neighbors; LGB, light gradient boosting ma-
chine; CAT, categorical boosting; BUN, blood urea nitrogen; APSIII, Acute Physiology Score III; GLU, glucose; BMI, body mass
index.

the LightGBM model had the lowest (Table 4). The ROC
curves for all models are depicted in Fig. 7, and the DCA
curves in Fig. 8. The optimal model CatBoost model was

externally validated using 179 patients obtained from the
MIMIC-III database, which also showed good model per-
formance with an AUC of 0.712, as shown in Fig. 9.
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Fig. 7. ROC curve of the test set. ROC, receiver operating char-
acteristic; AUC, the area under the receiver operating characteris-
tic curve; CI, confidence interval; SVM, support vector machine;
GBM, gradient boosting machine; NNET, neural network; XGB,
eXtreme gradient boosting; KNN, K-nearest neighbors; LGB,
light gradient boosting machine; CAT, categorical boosting.

Fig. 8. DCA curve of the test set. DCA, decision curve analysis;
SVM, support vector machine; GBM, gradient boosting machine;
NNET, neural network; XGB, eXtreme gradient boosting; KNN,
K-nearest neighbors; LGB, light gradient boosting machine; CAT,
categorical boosting.

3.5 Model Interpretation

After evaluating the model on the training, test, and
validation sets, the evaluation metrics indicate that the Cat-

Fig. 9. ROCcurve of the validation set. ROC, receiver operating
characteristic curve; AUC, the area under the receiver operating
characteristic curve; CI, confidence interval; CatBoost, categori-
cal boosting.

Boost model performs best in this study. Therefore, the
SHAP visualization method was employed to interpret the
CatBoost model. Initially, the overall sample features were
visualized, as shown in Fig. 10. Subsequently, force di-
agrams for the second and third samples were visualized.
For sample 2, the final Shapley value is 0.51, with fea-
tures such as maximum creatinine levels, minimum creati-
nine levels, maximum andminimumBUN, and urine output
contributing to the increased probability of in-hospital AKI,
as shown in Fig. 11. For sample 3, the final Shapley value
is 0.48, with features including minimum creatinine levels,
maximum creatinine levels, APSIII, and BMI contributing
to the increased probability of in-hospital AKI, as shown
in Fig. 12. The SHAP importance rankings and summary
plots highlight the key risk factors for in-hospital AKI in
AAD patients, which include maximum BUN, BMI, urine
output, maximum GLU, minimum BUN, minimum creati-
nine, maximum creatinine, weight, and APSIII, as shown
in Figs. 13,14.

4. Discussion
This study primarily identified the risk factors asso-

ciated with AKI complications in hospitalized AAD pa-
tients. Through univariate and multivariate logistic regres-
sion analyses, clinical features including maximum BUN,
BMI, urine output, maximum GLU, minimum BUN, min-
imum creatinine, maximum creatinine, weight, and APSIII
were found to be associated with AKI occurrence during
hospitalization in AAD patients. Seven machine learning
models were also developed: SVM, GBM, NNET, XG-
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Fig. 10. Visualization of the overall sample characteristics.

Fig. 11. Force plot of sample 2. SHAP, Shapley Additive explanations; CatBoost, categorical boosting; BMI, body mass index; BUN,
blood urea nitrogen; GLU, glucose.

Fig. 12. Force plot of sample 3. SHAP, Shapley Additive explanations; CatBoost, categorical boosting; BUN, blood urea nitrogen;
GLU, glucose.

Boost, KNN, LightGBM, and CatBoost. Each model ex-
hibited unique characteristics, while performances varied
across different datasets.

In this study, the CatBoost model demonstrated supe-
rior performance both in the training set (AUC = 0.876),
test set (AUC = 0.723), and validation set (AUC = 0.712)

compared to other models. The advantages of the Cat-
Boost model are significant, as it can reduce prediction bias
through ordered boosting and unbiased gradient estimation
to combat overfitting while using diverse samplingmethods
to enhance both precision and accuracy, thereby enhanc-
ing the model’s generalizability. SHAP visualization anal-
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Fig. 13. SHAP importance ranking diagram of the CatBoost
model. SHAP, Shapley Additive explanations; CatBoost, cate-
gorical boosting; BMI, body mass index; BUN, blood urea nitro-
gen; GLU, glucose; APSIII, Acute Physiology Score III.

Fig. 14. SHAP summary plot. SHAP, Shapley Additive expla-
nations; CatBoost, categorical boosting; BMI, body mass index;
BUN, blood urea nitrogen; GLU, glucose; APSIII score, Acute
Physiology Score III.

ysis was employed to interpret the optimalmachine learning
model. The incidence of in-hospital AKI in AAD patients
was 25.88%, which is consistent with previous studies [7].
Development of in-hospital AKI in AAD patients is associ-
ated with worsened outcomes and a poorer prognosis [21–

23]. Therefore, the timely identification of risk factors for
in-hospital AKI in AAD patients and the development of ef-
fective machine learning models are crucial for identifying
high-risk patients and providing timely clinical intervention
to prevent further complications.

In 2023, Dai A et al. [24] selected risk factors such
as urine output, intraoperative hypotension, and autologous
blood transfusion to establish four machine learning mod-
els, including XGBoost and SVM, to predict postoperative
AKI risk in patients with AAD. However, limitations in-
cluded the use of fewer models without incorporating the
most recent predictive models, as well as missing exter-
nal validation. In 2022, Luo CC et al. [25] found that
variables, such as creatinine levels and extracorporeal cir-
culation time, were closely associated with the occurrence
of postoperative AKI in AAD patients; however, the re-
searchers solely developed a nomogram, which showed
lower predictive efficacy. In 2023, Zhang C et al. [26]
selected risk factors such as hypertension and preoperative
renal artery involvement and established a predictive model
for in-hospital AKI in postoperative Stanford type A AAD
patients, with an AUC of 0.839. However, this study had
a small sample size of only 241 cases and utilized a sin-
gle, simplistic model for prediction without further elabo-
ration. Thus, the reliability of the overall research could
not be guaranteed. Previous studies have not established a
reliable predictive model for in-hospital AKI in Stanford
type A AAD patients, thereby motivating our attempt to
develop a more stable model. Utilizing SHAP visualiza-
tion analysis, we interpreted the optimal CatBoost model,
identifying key factors associated with in-hospital AKI, in-
cluding BUN, BMI, urine output, creatinine, APSIII, etc. In
AAD patients, cumulative kidney involvement often leads
to renal hypoperfusion, resulting in renal impairment, de-
creased glomerular filtration rate (GFR), and increased re-
nal reabsorption of water, thereby reducing urine output.
Abnormal urine output in AAD patients is indicative of a
higher likelihood of developing in-hospital AKI [27,28].
BUN levels are often increased following the use of nephro-
toxic drugs, potentially exacerbating kidney involvement
and increasing AKI risk in AAD patients [29,30]. Crea-
tinine, a metabolic product of phosphocreatine and creatine
in muscle tissue, is primarily filtered by the glomeruli into
the urine; therefore, elevated creatinine levels often indi-
cate impaired renal function [31,32]. Obesity is a risk fac-
tor for various diseases, such as hypertension and hyper-
lipidemia [33]. Study has demonstrated that an increase of
5 kg/m2 in BMI increases the incidence of AKI by 40%
[34], highlighting weight as an important factor in AKI oc-
currence. The APSIII, a severity-of-disease classification
system, is commonly utilized in prognosis studies of res-
piratory and neurological diseases [35,36], yet its applica-
tion in AKI complications still needs to be explored. This
study provides insights into the potential clinical utility of
the APSIII in predicting in-hospital AKI complications in
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AAD patients. Based on our findings, it is recommended
that clinicians actively prevent in-hospital AKI when there
are notable increases in indicators such as BUN, creatinine
levels, urine output, GLU, and APSIII in AAD patients or if
the patient is obese. This can be performed through medi-
cation and symptomatic supportive treatment to manage el-
evated BUN, creatinine, and GLU levels.

5. Limitations
This study has several limitations: (1) the number of

patients included, although retrieved under both the ICD-9
and ICD-10 coding systems for AADdiagnosis, was still in-
sufficient, potentially leading to sampling errors and prob-
abilistic biases; (2) our machine learning model relied on a
single-center database, the MIMIC, which despite its high
quality, may still contain issues such as missing data and er-
rors; (3) themachine learningmodel focused exclusively on
predicting in-hospital AKI in AAD patients, necessitating
further research into renal complications post-discharge;
(4) the incidence rate of AKI in this study data was only
25.85%, resulting in data imbalance. While oversampling
techniques were employed to address these limitations, they
may still compromise the effectiveness of the model.

6. Conclusions
We developed multiple machine learning models us-

ing data from the MIMIC-III and MIMIC-IV databases to
predict in-hospital AKI in AAD patients. The CatBoost
model exhibited superior performance, highlighting its po-
tential clinical implications. This study identified several
factors associated with the occurrence of in-hospital AKI in
AAD patients, including maximum BUN, BMI, urine out-
put, maximum GLU, minimum BUN, minimum creatinine,
maximum creatinine, weight, and APSIII.
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