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Abstract

Cardiovascular disease (CVD) is the leading cause of death worldwide, with physical inactivity being a known contributor to the global
rates of CVD incidence. CVD incidence, however, is not uniform with recognized sex differences as well and racial and ethnic differences.

Furthermore, gut microbiota have been associated with CVD, sex, and race/ethnicity. Researchers have begun to examine the interplay

of these complicated yet interrelated topics. This review will present evidence that CVD (risk and development), and gut microbiota are

distinct between the sexes and racial/ethnic groups, which appear to be influenced by acculturation, discrimination, stress, and lifestyle

factors like exercise. Furthermore, this review will address the beneficial impacts of exercise on the cardiovascular system and will

provide recommendations for future research in the field.
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1. Introduction and a Brief Overview of
Topics

Cardiovascular disease (CVD) remains the leading
cause of mortality and morbidity worldwide [1]. CVDs in-
clude atherosclerosis, myocardial infarction, stroke, heart
failure, and hypertension, among others. Risk factors for
CVD can be categorized as either modifiable (habitual alco-
hol and tobacco use, high blood lipids, high blood pressure,
excess adiposity/body fat, poor glucose control/diabetes,
physical inactivity, and high-fat “Western” diet) or non-
modifiable (age, biological sex, genetics). Physical inac-
tivity is a known contributor to the global rates of CVD [2].
The United States “Physical Activity Guidelines for Ameri-
cans” recommend that adults engage in 150-300 minutes of
moderate or 75 minutes of vigorous physical activity each
week [2].

This narrative review will build on our previous work
by presenting novel data that shows a clear relationship be-
tween CVD, exercise, sex, race and gut microbiota. Specif-
ically, we highlight how biological sex and race impact gut
microbiota and how exercise can be used to improve gut
health while minimizing disparities. These factors are all
linked in a complicated system that ultimately can strongly
influence cardiovascular health. This review will provide a
brief outline of each topic, take a deep dive into the impacts
of exercise on CVD with considerations for sex, race and
gut microbiota, truly getting to the heart of the matter.

2. Topical Overviews
2.1 Exercise Promotes Longevity and Health

It is well known that exercise preserves health. Stud-
ies conducted as early as the 1910’s highlight the protective
effects of manual labor on degenerative diseases [3]. Sim-
ilar reports reinforced the notion that physical activity can
help prevent disease [4]. More recently, studies have shown
that aerobic capacity correlates with an increased lifespan
and increased “healthspan” [5]. Exercise is known to de-
crease all-cause mortality, and we know that cardiorespira-
tory fitness correlates with longevity [6]. Over the past sev-
eral decades researchers have become interested in which
potential mechanisms are responsible for these protective
effects. For the purposes of this paper, we will focus on the
mechanisms involved with exercise-induced protection of
the cardiovascular system.

2.2 Gut Microbiota and Exercise

The gut microbiota consists of trillions of microbial
cells such as bacteria, fungi, viruses, and archaea [7]. Re-
garding gut bacteria, there are over 1100 genera, and ap-
proximately 90% fall under the phylum Bacteroidota and
Bacillota (formerly known as Bacteroidetes and Firmi-
cutes [8], respectively) while, the minority of gut bacte-
ria are Pseudomonadota, Actinomycetota, Fusobacteriota,
and Verrucomicrobiota (formerly known as Proteobacteria,
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Actinobacteria, Fusobacteria, Verrucomicrobia [8], respec-
tively) phyla [9]. Commonly observed in a healthy gut mi-
crobiota is a decreased Bacillota to Bacteroidota ratio, sta-
ble community, and greater species diversity [10].

The gut microbiota is now recognized as being criti-
cal for the maintenance of optimal human health. When the
gut microbiota is in symbiosis with the host, microbes can
promote health. However, when in dysbiosis (unbalanced
gut microbes) with the host, the bacteria can contribute to
chronic disease. In a healthy host, the gut microbiota favor-
ably affects digestion, nutrient absorption, and production
of folate, vitamins, and short chain fatty acids (SCFAs).

Our lab [10], and others [11-13] have examined the
link between the gut microbiota and exercise in animal
models. The gut microbiota of sedentary individuals dif-
fers from active individuals [14—17]. Results from hu-
mans and animal studies clearly show that exercise is cen-
tral to healthful aging, improves the diversity of microbes
within the Bacillota phylum [10,13,14], and increases the
abundance of beneficial bacteria such as Roseburia in-
testinalis, Faecalibacterium prausnitzii, and Akkermansia
muciniphila [15,18].

In addition, the gut microbiota appears to adapt to the
unique demands of exercise [19-21]. Changes in the gut
microbiota that occur with exercise generate metabolites
that further provide the host with performance advantages
[19-24]. Athletes typically have improved carbohydrate
metabolism, higher tolerance to oxidative stress, greater in-
sulin sensitivity, enhanced muscle tissue repair, and greater
energy harvesting [14,25-27].

Moreover, results from antibiotic and germ-free
mouse models demonstrate a bidirectional relationship be-
tween gut microbiota and exercise. Results show that gut
microbiota must be intact for exercise performance and var-
ious aspects of maintenance of exercise training but perhaps
not for adapting to exercise training [12,19-24,28].

In summary, habitually exercise-trained individuals
have a beneficial gut microbiota. Additionally, sedentary
individuals who undertake exercise training can improve
the abundance of beneficial gut microbes. Importantly,
exercise-induced microbial changes in human studies are
observed across the lifespan and are seen in both men and
women. It is important to underscore that the favorable gut
modifications that come with habitual exercise training are
lost with cessation of exercise (“use it or lose it””). In conclu-
sion, an intact gut microbiota must be present to fully adapt
to exercise-induced training adaptations, including muscle
hypertrophy.

2.3 Sex and Exercise Differences

There are established sex differences in heart size,
stroke volume, and hemoglobin content contributing to ex-
ercise performance [29-31]. Among humans, sex differ-
ences in heart size do not manifest until puberty. By adult-
hood, hearts are approximately 30% larger in males com-

pared to females, primarily due to greater myocyte hyper-
trophy among males [32]. These observed sex-based dif-
ferences in heart size are the primary factors contributing
to larger stroke volume among males compared to females
[33-35]. However, there does not appear to be a difference
in maximum heart rate by sex [33]. Hemoglobin concen-
tration in blood is higher for males compared to females,
contributing to sex differences in oxygen carrying capacity
[36]. Although males have larger muscle fibers and more
capillaries per fiber, capillary density does not differ be-
tween sexes [37]. Furthermore, while skeletal muscles of
men are usually stronger and more powerful than women,
men are often more fatigable than women for sustained or
intermittent isometric contractions performed at a similar
relative intensity [38]. Importantly, these fundamental dif-
ferences between biologic males and females emerge at the
onset of puberty, suggesting that sex hormones may be re-
sponsible for conferring sex-based differences. This is rel-
evant because exercise motivation, particularly in females,
has been shown to be regulated by estrogen. Krause et al.
[39] demonstrated that in estrogen deficiency there was re-
duced melanocortin-4 signaling which lowered the drive to
exercise, illuminating the power of estrogen during the re-
productive cycle in motivating behavior and maintaining an
active lifestyle in women. Intriguingly, estrogen deficiency
(menopause) is also when CVD risk increases [40], mean-
ing not only are women at high risk of CVD, but they may
be less likely to want to engage in exercise which would
help in the prevention of CVD and other metabolic risk fac-
tors.

2.4 Sex Differences in Gut Microbiota Considering
Lifespan

Studies comparing compositional differences in the
microbiota between males and females often find differ-
ences between each sex, but not always [41]. This may in-
dicate that the sex differences are context-dependent. For
example, in several studies, compositional differences were
described as females having higher levels of Clostridium
from the Bacillota (formerly Firmicutes) phylum and males
having higher levels of Prevotella from the Bacteroidota
(formerly Bacteroidetes) phylum and Lactobacillus from
the Bacillota phylum [42—44]. Other observations include
males having less microbial diversity compared to females
[42]. These compositional differences are not always con-
sistent between the sexes, particularly when a study alters
an additional factor like diet [42].

2.4.1 Birth and Childhood

A variety of factors impact microbiota in the early
years of life including mode of birth, breastfeeding or for-
mula feeding, antibiotic treatment, genetics, sex, and more
[41]. Consequently, these microbes likely affect human de-
velopment in a sex-dependent manner. Even from birth,
some studies show different microbial communities be-
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tween males and females [42]. For example, females de-
livered by asthmatic mothers are prone to Bacteroidaceae
microbes compared to males that tend to harbor Lacto-
bacilli [45]. Another example of early sex differences ob-
serving 300 infants is the temperament of males appears
to be more positive when Bifidobacterium of the Actino-
mycetota (formerly Actinobacteria) phyla and Clostridi-
aceae of the Bacillota phyla are present [46]. Female mem-
bers that have gut communities with Veillonella tend to be
more risk averse [46]. Using reverse-transcriptase qPCR
a study showed that boys had higher abundance of several
Bifidobacterium spp. over three years [47]. A study exam-
ined how normal weight pre-puberty girls have increased
Bacteroidota compared to obese girls [48]. Interestingly,
these differences were not seen in boys of the same age
[48]. Obesity in girls of this group had more developed
adrenal glands and an underexpression of gonadal estradiol,
the predominant estrogen [49]. Boys in this group had in-
creased dehydroepiandrosterone (DHEA) [49]. Given that
other studies have linked estrogen levels with certain groups
of microbes, it would suggest that these girls could have gut
microbes that play a role in estrogen-driven diseases.

2.4.2 Puberty

During puberty, the difference in levels of sex hor-
mones between males and females increases, and the ef-
fects they have on the microbiome appear to be more promi-
nent as well [50]. For example, in a human twin study
of teenagers, there was greater dissimilarity of the gut mi-
crobiota between opposite-sex twins than same-sex twins
during puberty [51]. In another study using mice, the
alpha-diversity of females changed significantly compared
to males after puberty and the sex-related compositional
differences disappeared after these male mice were cas-
trated [52]. Interestingly, in a study by Yuan ef al. (2020)
[53] there was no difference in alpha-and beta-diversity of
girls and boys before puberty, but there was an associa-
tion of certain microbes to testosterone including Adler-
creutzia, Ruminococcus, Dorea, Clostridium, and Parabac-
teroides. Similarly, male mice undergoing a gonadectomy
were administered testosterone and subsequently, did not
exhibit the microbiota changes [52]. Another group of mice
that had a gonadectomy that did not receive testosterone
supplementation did exhibit microbial changes [52]. This
highlights testosterone as a key factor in microbial change.
Similar studies performing ovariectomies on mice showed
changes in microbiota including a reduction of Pseudomon-
adota (formerly Proteobacteria), higher Akkermansia, and a
decreased ratio of Bacillota to Bacteroidota [54].

2.4.3 Adulthood

During adulthood, estrogen and testosterone are de-
scribed as potent modifiers of the human body and the mi-
crobiota [55]. And due to the different concentrations of
sex hormones in males and females, the microbiota and its
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effects are modulated in a sex-dependent manner [55]. The
adult microbiota is also characterized as being more stable
compared to other stages of life [42]. In a human study
of 516 Japanese males and females, Prevotellaceae was
more abundant in males and Ruminococcaceae was more
abundant in females [44]. The microbiota from 91 preg-
nant women were transplanted via fecal microbiota trans-
fer (FMT) into germ-free (GF) mice in the 1st and 3rd
trimester [56]. Mice receiving FMT from third trimester
(T3) showed pregnancy-like effects like increased adipos-
ity and insulin sensitivity, but FMT from first trimester (T1)
did not show these effects [56]. Additionally, there was
no correlation between the microbiota compared to estro-
gen levels throughout the menstrual cycle of 17 females
[57]. Importantly, adulthood is when many diseases can
progress, and this can have sex-dependent effects on the mi-
crobiota as well. In a study by Mahnic et al. (2018) [58],
they also found higher levels of Bacteroides and Prevotella
in males compared to females. To understand these rela-
tionships fully, the mechanisms that influence them should
be investigated.

2.4.4 01d Age

As people age, the microbial changes between males
and females become less prominent [42]. It is impor-
tant to note that this is also when male and female hor-
mone levels become more similar [41]. These events are
likely not a coincidence. In a study by Santos-Marcos et
al. (2018) [59], the microbiota of human males and post-
menopausal females were compared to measure any differ-
ences between each sex. The Bacillota/Bacteroidota ratio
was different between males and females as well as the
amount of saccharolytic activity [59]. More specifically,
pre-menopausal women versus post-menopausal women
and pre-menopausal females versus males were most differ-
ent [59]. Given that estrogen levels are greatly reduced in
post-menopausal women, the data suggests that the changes
in the microbiota are influenced by the changes in sex hor-
mones [59]. Interestingly, Deltaproteobacteria in the cecum
increased in abundance as mice aged [60]. This raises the
question of how age may impact the microbiota differently
depending on where along the gastrointestinal tract the sam-
ple is taken.

2.5 Race, Sex, and Exercise Differences

According to the 2022 Centers for Disease Control,
National Center of Health Statistics Data Brief on phys-
ical activity in the United States (US) the percentage of
adults who met the guidelines for both aerobic and muscle-
strengthening activities varied by race and Hispanic ori-
gin [61]. In general, in 2020, 24.2% of adults aged 18
and over met the 2018 Physical Activity Guidelines for
Americans for both aerobic and muscle-strengthening ac-
tivities [61]. When accounting for race/ethnicity Hispanic
men (23.5%) were less likely to meet both physical activity
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guidelines than non-Hispanic White (30.5%), non-Hispanic
Asian (30.2%), and non-Hispanic Black (29.7%) men [61].
Non-Hispanic White women (24.3%) were more likely to
meet both guidelines than Hispanic (18.0%), non-Hispanic
Asian (16.7%), and non-Hispanic Black (16.5%) women
[61]. Across all race and Hispanic-origin groups, men
were more likely than women to meet the guidelines for
both aerobic and muscle-strengthening activities [61]. The
percentage of men who met both physical activity guide-
lines increased as family income increased, from 16.2% of
men with a family income of less than 100% of the fed-
eral poverty level (FPL), to 20.0% of men with income at
100%-199% of FPL, and 32.4% of those with income at
200% of FPL or more [61]. The percentage of women who
met both physical activity guidelines increased as family in-
come increased, from 9.9% of women with family income
less than 100% of FPL, to 13.6% of women with income
at 100%—-199% of FPL, and 25.9% of those with income
at 200% of FPL or more [61]. Across all income groups,
men were more likely than women to meet the guidelines
for both types of activity [61].

2.6 Racial Disparities and Gut Microbiota

Currently, human gut microbiota studies have had a
narrow focus or simply describe broad population-level
changes to gut communities in response to environmental
variation. As such, only a few studies have been designed to
address gut microbiota variation in relation to structural in-
equities, and even fewer have attempted to link host health
to socially attributed variations in the gut microbiota [62—
66]. Nevertheless, the small but existing literature does
provide accumulating evidence that the social and envi-
ronmental factors that contribute to health inequities may
also predict gut microbiota characteristics. For example,
measures of socioeconomic status (SES) across globally
diverse populations, have been associated with a distinct
gut microbiota in both adults [66—68] and children [69—
73]. Similarly, the gut microbiota consistently varies with
race (e.g., Asian, Black, Hispanic, White) and/or ethnic-
ity/ancestry (Arapaho, Cheyenne, Dutch, Ghanaian, Mo-
roccan) in adults [62,63,65,74] and children [70,71,75,76].

There is strong evidence linking structural inequities
to gut microbiota variation in the context of SES. For ex-
ample, neighborhood SES has been shown to explain 12—
25% of the variation in adult gut microbiota composition,
after adjustment for demographic and lifestyle factors, and
was positively correlated with gut microbiota diversity [67].
Similar results noting an association between neighborhood
SES and gut microbiota diversity were also obtained utiliz-
ing a discordant-twin analysis, which minimizes the possi-
bility of confounding by shared genetic or family influences
[68]. Finally, it has been shown that the relative abundance
of taxa, accounting for 38.8% of the gut microbiota, varies
in relation to indices of wealth appraised as personal yearly
income and spending [66].

Despite the important contributions of these findings,
most gut microbiota studies in minoritized populations do
not operationally define structural inequities. Furthermore,
race and ethnicity/ancestry are often incorrectly conflated.
Whether the gut microbiota is impacted more by the per-
sonal lived experiences of perceived racism and discrimi-
nation (internalization) versus overt structural/systemic op-
pressive policies remains largely unknown. It is likely a
combination of both. Similarly, the scale (i.e., household,
neighborhood, and beyond) at which structural inequities
might affect the gut microbiota is unclear. Nonetheless,
the existing literature demonstrates that the same social in-
equities that predict disease disparities also predict varia-
tion in the gut microbiota. These relationships underscore
the likely role of the gut microbiota in mediating socially
driven health disparities.

3. Why is Exercise so Critical?

Exercise has many health benefits. These benefits ap-
ply to people of all ages, races and ethnicities, and sexes.
Exercise helps individuals maintain a healthy weight, re-
duces the risk of depression and a decline in cognitive func-
tion and lowers a person’s risk for many diseases, such as
CVD and other chronic health diseases [3—6]. When done
regularly, moderate- and vigorous-intensity physical activ-
ity strengthens the cardiac myocardium and improves the
heart’s ability to distribute blood to the body, thereby re-
ducing CVD risk. Exercise can reduce this risk through a
variety of mechanisms including lowering blood pressure,
and triglycerides, raising HDL (high-density lipoproteins),
decreasing arterial stiffness, reducing the risk of being over-
weight or obese and maintaining a healthy weight, mainte-
naining in-range blood glucose and insulin levels, and re-
ducing inflammation [3—6]. This section of the review will
highlight the impacts of exercise on the cardiovascular sys-
tem and the mechanisms by which this occurs, providing
a foundation for which we will later discuss the integrated
roles of sex, race/ethnicity, CVD, and gut microbiota.

3.1 Impacts of Exercise on the Cardiovascular System

Broadly, exercise decreases CVD [77] and increased
aerobic fitness has been shown to reduce mortality rates
of individuals following myocardial infarction [78]. These
improvements have been shown in various animal models
[79-81] and human studies [82—84]. Specifically, it is be-
lieved that chronic shear stresses on the endothelial lining of
the blood vessels and the endocardium, which are derived
from exercise-induced increases in blood flow, increase ni-
tric oxide (NO) bioavailability [85] (Fig. 1). NO is a va-
soprotective molecule that prevents vascular dysfunction,
platelet aggregation, leukocyte adhesion and vascular stift-
ening [86,87]. Reductions in NO have been indicated in the
development of hypertension and CVD [88,89].

Furthermore, exercise augments anti-oxidant defense
and decreases reactive oxygen species (ROS) production
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Shear Stress Mediated Nitric Oxide Signaling
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Fig. 1. A representation of nitric oxide signaling. Shear stress increases intracellular calcium (Ca®) which enhances endothelial nitric

oxide synthase (eNOS) enzymatic action. eNOS catalyzes the synthesis of L-arginine to nitric oxide. Tetrahydrobiopterin (BH4) is a

critical cofactor.

[90-92]. Production of ROS is known to increase the poten-
tial for cellular damage [93,94] and can augment the sever-
ity of myocardial ischemia [95]. Previous work has shown
that exercise-trained rodents have increased cardiac output
compared with sedentary littermates following in-vivo my-
ocardial ischemia [96]. Exercise has been long known to in-
crease cardiac output via myocardial hypertrophy and pro-
liferation [97]. More recently exercise has been shown to
increase peroxisome proliferator-activated receptor-gamma
coactivator-1a [98,99], which has the potential to increase
longevity and promote health [100]. Lastly, exercise has
several indirect effects that improve cardiovascular health
including weight reduction [101] and improved gut health
[10]. In the following sections, we will review each of these
mechanisms in detail.

3.2 Exercise Mediated NO Production

Endothelium-derived NO is essential for cardiovas-
cular health [86,87] and its production is augmented with
acute [102] and chronic exercise [ 103]. Endothelial-derived
NO is synthesized from L-arginine by endothelial nitric
oxide synthase (eNOS) and released by endothelial cells
[104,105]. Shear stresses placed on the endothelial cells

&% IMR Press

of blood vessels cause the release of NO, which triggers
vasodilation [104,105]. The repeated shear stresses which
are associated with repeated bouts of exercise are thought
to increase NO bioavailability by chronically stimulating its
release [85].

Improvements in rodent vascular NO bioavailabil-
ity are often indicated in-vivo by examining endothelial-
dependent dilation (EDD) in the blood vessel of interest
[90]. Because NO is a key regulator of vasodilation, reduc-
tions in EDD can be indicative of diminished NO bioavail-
ability. Rodent exercise perturbations ranging from 2-13
weeks have been shown to improve EDD [90,103,106] and
thus NO bioavailability. This was confirmed in an acute
study consisting of two to four weeks of treadmill training
in healthy rats. Dose-dependent EDD was improved in the
skeletal muscle arterioles of the exercise-trained rats [107],
while endothelial independent dilation was not changed. In
a 13-week exercise intervention, EDD and NO production
in the femoral artery were increased in Wistar-Kyoto rats
following treadmill training [108]. Both eNOS expression
and phosphorylated eNOS (Ser1177) expression were in-
creased in trained rats when compared to their sedentary
littermates.
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Exercise also has a vascular protective effect in sev-
eral models of rodent vascular dysfunction. In a study by
Guers et al. [109], 6 weeks of voluntary wheel running pro-
tected against salt-induced (4% NaCl chow) losses in EDD
in rat femoral arteries. Western blot analysis demonstrated
that this may have been mediated through a decrease in pro-
tein concentration of the reactive oxygen species: nicoti-
namide adenine dinucleotide phosphate (NADPH) oxidase
4 (NOX4) and Gp91-phox, two subunits of NADPH oxi-
dase. Protein concentrations of both NOX4 and Gp91-phox
were initially increased following 6-weeks of a high salt
diet in rodents. Exercise also led to an upregulation of the
antioxidant superoxide dismutase-2 (SOD2). Collectively,
there was a reduction in overall oxidative stress and thus an
increase in vascular eNOS bioavailability. eNOS tends to
become uncoupled with high levels of oxidative stress [110]
and thus becomes unable to synthesize NO [111].

Exercise not only augments NO production in blood
vessels but also in the heart [112]. In a study by Kuczmarski
et al. [113], 4 weeks of voluntary wheel running helped
maintain left ventricular (LV) cardiac function following
an ischemia-perfusion injury in rats in a model of chronic
kidney disease. Kuczmarski found that wheel running pro-
tected against losses in LV NO levels and improved overall
cardiac redox status [113]. Specifically, this appeared to be
mediated through an upregulation of the antioxidant SOD2
[113]. Furthermore, similar to blood vessels, eNOS is up-
regulated in the heart with chronic aerobic exercise [112].
Dogs who were treadmill trained for 10 days experienced
increases in dose dependent EDD in both coronary arteries
and the microvasculature of the heart [114]. The authors
also found an increase in the constitutive nitric oxide (EC-
NOS) gene. Together these data further support the notion
of an increase in NO bioavailability in the heart as a result
of exercise.

Exercise also has the potential to increase NO
bioavailability in humans [115,116]. Performing moderate
aerobic exercise for 1 hour a day for a month increased NO
generation and reduced resting blood pressure. This effect
was thought to be mediated through an increase in antiox-
idant enzymes in blood monocytes [115]. In another study
by Tanaka ef al. [117], the authors discovered that individ-
uals who have high levels of aerobic fitness do not experi-
ence the typical age-related decreases in vascular function
as measured by EDD. Furthermore, 12 weeks of brisk walk-
ing restored losses in EDD in previously sedentary middle-
aged and old individuals [117]. Lastly, four weeks of home-
based exercise restored losses in forearm EDD in individu-
als with hypercholesterolemia independent of dietary mod-
ifications [118].

3.3 Exercise and Heart Failure

Collectively, patients with heart failure tend to have
a significant reduction in aerobic capacity [119]. This ap-
pears to be at least partially mediated through a reduction in

NO [120]. Heart failure patients also consistently have a re-
duction in EDD [121] which can be partially restored with
supplementation of L-Arginine, a precursor of NO [122]. A
hallmark of heart failure tends to be the reduction in blood
flow back towards the heart which diminishes pre-load. Ex-
ercise training has been shown to improve outcomes in pa-
tients with heart failure by increasing NO bioavailability
and in turn blood flow and preload. Further to this, 12
weeks of aerobic exercise training increases forearm EDD
in hypertensive individuals [123].

In both the heart and blood vessels, as indicated in
the aforementioned studies, oxidative stress appears to be
one of the principal mediators in reducing NO levels conse-
quently disrupting cardiovascular homeostasis. Oxidative
stress is defined as an imbalance of free radical production
and the production of free radical scavenging antioxidants
[124]. Oxidative stress has been indicated in a number of
pathologies including CVD [95,123,125]. As an example of
this: NADPH oxidases were found to be significantly up-
regulated in aortic atherosclerotic lesions taken from human
autopsies [126]. Furthermore, SOD2 knockout mice expe-
rienced increased mitochondrial oxidative stress which led
to the onset of hypertension [127] and elevations in oxida-
tive stress levels were associated with the severity of heart
failure in both the left and right ventricles of mice follow-
ing myocardial ischemia [128]. Lastly, a clinical studyhas
found correlations between markers of oxidative stress and
instances of heart failure [ 129]. Interestingly, in many cases
exogenous antioxidants have been shown to improve out-
comes in certain instances of CVD [130,131].

3.4 Upregulation of Endogenous Antioxidant Defense

As mentioned earlier exercise has the capacity to in-
crease antioxidant defenses and decrease oxidative stress
levels which protects against a reduction in NO bioavail-
ability and maintains normal cardiovascular function. SOD
is an antioxidant that can be upregulated through exercise
[109,113]. SOD is critical in the maintenance of cardiovas-
cular homeostasis as it prevents the breakdown of NO by
the reactive oxygen species superoxide (02 7) [132]. Og~
has a high affinity for NO and rapidly converts it to per-
oxynitrite (ONOO-) which can damage lipoproteins. SOD
reacts and dismutates Oy~ to HoO4 before this reaction can
occur. An increase in Oo"~ disrupts vascular function [133]
and elevations in ONOO- levels are associated with CVD
[134] (Fig. 2).

Therefore, a deficiency in SOD will lead to a de-
crease in NO bioavailability and diminishes vascular func-
tion. As an example, copper zinc SOD (CuZnSOD) defi-
cient mice had a 2-fold increase in Oy~ relative to their
control littermates. Ultimately, this led to a decrease in
dose-dependent EDD in the carotid artery [135]. Reduced
SOD has also been associated with a number of pathologies
including atherosclerosis, hypertension, and hypercholes-
terolemia [136]. Importantly, as mentioned previously aer-
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Free Radical Scavenging by Endogenous Antioxidants
02_— NQO ) (ON()()-

SOD
"HO < 1,0

Catalase |GPx

O,

Fig. 2. A representation of free radicals being scavenged by endogenous antioxidants. Superoxide (O2-) reacts with nitric oxide

(NO) to form peroxynitrate (ONOO-). Superoxide dismutase (SOD) catalyzes the reaction of O2- to hydrogen peroxide (H202), which

participates in the formation of hydroxyl radicals (-HO). Both catalase and glutathione peroxidase (GPx) reduce HoO2 to water (H20)

and oxygen (O2).

obic exercise can increase SOD levels. In a study by Dur-
rant ef al. (2009) [103], old mice with access to a running
wheel had greater levels of aortic SOD and lower levels
of NADPH oxidases relative to their untrained littermates.
This coincided with better dose-dependent EDD and higher
levels of aortic eNOS and phosphorylated eNOS (Ser1177)
expression [103].

H50,, is the result of the dismutation of O5 ~ by SOD
and elevated levels of HoO5 can also lead to oxidative stress
[93] and vascular dysfunction [137]. The antioxidants, Glu-
tathione peroxidase (GPx) and catalase are both capable of
reducing HoO4 to oxygen and water. In humans, low levels
of GPx are associated with an increased risk of CVD [138].
Furthermore, in mice, GPx deficiency led to a reduction in
NO and a decrease in vascular function [139]. Similar to
GPx, low levels of catalase are also associated with CVD
[140]. Like SOD, several studies have shown that exercise
increases levels of both GPx and catalase [141].

3.5 Protection from Arterial Stiffness

Arterial stiffness is a consistent independent predic-
tor of all-cause mortality in individuals with hyperten-
sion [142]. Arterial stiffening is often associated with
atherosclerosis, aging, smoking, obesity, and hyperlipi-
demia amongst other factors [143]. Over time, the struc-
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tural properties of the vasculature can change. Collagen de-
position in the tunica media and the degradation of elastin
decreases the ability of arteries to dampen pulse waves and
increases blood pressure [144]. Furthermore, chronic ele-
vations in blood pressure increase LV overload which leads
to the eventual development of LVventricular hypertrophy.
Specifically, the loss of the ability to “dampen” a pulse
wave in the aorta leaves organs with low vascular resis-
tance vulnerable to injury [144]. One particular example
is the kidneys where the exacerbation of damage is associ-
ated with the stiffening of both resistance arteries as well
larger elastic arteries [145].

It has been established that exercise has the ability
to slow down and help prevent vascular stiffening as well
as decrease collagen levels in rodents [90,91,146] and hu-
mans [147,148]. Further, arterial stiffness tends to be cor-
related with maximal aerobic capacity [130]. Fleenor ef al.
2010 [146], found that 10-14 weeks of voluntary exercise
was associated with decreased age-related vascular stiff-
ness. Specifically, collagen I and III fibers were reduced.
Another study examining a model of heart failure in mice
discovered that 6 weeks of treadmill exercise was able to
prevent the onset of aortic stiffening relative to sedentary
mice [149]. Wheel running also protected young and old
mice from arterial stiffness after consuming a Western-style
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diet (40% fat and 19% sucrose) for 10-14 weeks. Seden-
tary mice placed on a Western-style diet also had dimin-
ished EDD and NO bioavailability, exercise protected from
losses in both. Lastly, rats placed on a high salt diet for 6
weeks experienced increased vascular stiffness and aortic
collagen I protein expression [90]. All of these variables
were attenuated when rats were given access to a running
wheel during the same 6 weeks. Exercise-trained mice also
had higher levels of aortic SOD2 protein expression when
compared to sedentary rats who were placed on the same
diet.

Arterial stiffening and oxidative stress tend to go
hand in hand. Oxidative stress is a known initiator of
vascular inflammation [150]. Studies have shown that
antioxidant therapy is successful at decreasing oxidative
stress and arterial stiffness. While this appears evident
in animal models [131,151] the results tend to be mixed
in human trials [150,152]. When TEMPOL (4-hydroxy-
2,2,6,6-tetramethylpiperidin-1-oxyl), a superoxide dismu-
tase mimetic was given to aging mice, not only was EDD
improved there was lower levels of oxidative stress and
large artery stiffness decreased [131]. Mitoquinone (Mi-
toQ), an antioxidant which targets mitochondrial specific
reactive oxygen species, not only reduced oxidative stress
in aging mice but decreased aortic stiffness [153]. MitoQ
was also shown to be effective in healthy older adults. Fol-
lowing chronic supplementation brachial flow-mediated di-
lation and aortic stiffness were lower [151].

Therefore, reduction and protection from arterial stiff-
ness may be related to the ability of exercise to reduce ox-
idative stress. Spontaneous hypertensive rats had reduced
vascular stiffness in the mesenteric and coronary arteries
following 12 weeks of treadmill training. Authors found
that these mice also had high NO bioavailability and less
evidence of oxidative stress when compared to the spon-
taneous hypertensive rats who did not exercise [92]. Fi-
nally, voluntary wheel running reversed aortic stiffening in
old mice. There was also a subsequent reduction in aortic
O, bioavailability [154].

4. Getting to the Heart of the Matter
4.1 The Gut-Heart Axis and CVD: An Update

We have previously reviewed the strong connection
between the gut microbiome and cardiovascular disease,
showing how dysbiosis and specific gut-derived metabo-
lites can cause endothelial dysfunction, large artery stift-
ening, hypertension, and ultimately CVD [155]. Since our
review on this topic, the literature has continued to evolve
and continues to support a strong association between the
gut microbiome and CVD. Here, we will summarize semi-
nal new findings on the gut-heart axis since the publication
of our previous review.

Studies since our last review have focused on under-
standing the role of gut microbial derived metabolites in
CVD [156-158]. These studies have produced equivocal

results with some metabolites like Indole-3-Propionic acid
protecting against heart failure in patients with preserved
ejection fraction [159], but others like butyrate showing no
signs of altering, perhaps increasing CVD related diseases
like hypertension [160] while gut microbial metabolite im-
idazole propionate (ImP) is increased in individuals with
heart failure and is a predictor of overall survival [161].

With regards to studies associating specific gut mi-
crobiota to CVD, there have been some recent advances.
Okami et al. [162], showed that as coronary artery cal-
cification (CAC) scores rose in Japanese men, so did the
Bacillota to Bacteroidota ratio, suggesting a relationship
between higher gram-positive microbes and artery calci-
fication. Given this is at such a high level of taxonomic
resolution, the authors further reported that Lactobacil-
lales were associated with a 1.3- to 1.4-fold higher risk
of CVD and a higher CAC score. In addition, presence
of Streptococcaceae and Streptococcus were linked to a
higher risk of CVD while Enterobacteriaceae correlated
with CAC scores. Sayols-Baixeras et al. [163], showed
that Streptococcus anginosus and Streptococcus oralis had
the strongest associations to CAC. Keeping in mind find-
ings at the level of species and strain could be beneficial
for the generation of -biotics, using bugs and drugs. Sal-
vado et al. [164], showed that early vascular aging was
associated with Bilophila, Faecalibacterium sp.UBA1819
and Phocea. Furthermore, when logistic regression analy-
sis was completed, Bilophila remained significant. This is
important because animal work has shown that Bilophila.
wadsworthia caused systemic inflammation, suggesting the
pathogenicity of this bacterium [165]. Guo et al. [166],
showed that the genera Escherichia-Shigella, Lactobacil-
lus, Enterococcus were more abundant in patients with re-
sistant hypertension compared to normotensive adults.

While trimethylamine N-oxide (TMAO) continues to
be a major gut microbial-derived metabolite of focus for
CVD [167], an emerging metabolite phenylacetylgutamine
(PAGIn) has received a lot of attention recently [168]. In
2020, PAGIn was discovered and is both associated with
atherothrombotic heart disease in humans [169-171], and
mechanistically linked to cardiovascular disease pathogen-
esis in animal models via modulation of adrenergic recep-
tor signaling [172,173]. Since then, Romano ef al. [174]
demonstrated that circulating PAGIn levels were dose-
dependently associated with heart failure presence and in-
dices of severity (reduced ventricular ejection fraction, el-
evated N-terminal pro-B-type natriuretic peptide) indepen-
dent of traditional risk factors and renal function, with as-
sociations between TMAO and incident heart failure be-
ing stronger among Black and Hispanic/Latino adults com-
pared to White adults. Similar findings were shown by Tang
et al. [175], which extended the work to show that PAGIn
levels, independent of TMAO, may be used as a predictor
of future CV events.
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Despite these recent advances, mechanistic studies
are still either in their infancy or lacking in the field and
even more importantly studies which compare sex and
race/ethnicity need urgent attention. Knowledge of which
gut microbes may be involved is a good start, but under-
standing their function and role in the development of CVD
is still lacking. Finally, there has been a lot of attention
on ways to manipulate the gut microbiota via fecal trans-
plants, symbiotics, probiotics, high-fiber diets and prebi-
otics, while this is outside the scope of this review, it has
recently been reviewed elsewhere and the authors call your
attention to Theofilis ef al. [176].

4.2 Racial Variation in CVD

Despite trends for reductions in mortality rates from
CVD in the US between 1980 and 2010, deaths attributable
to CVD are once again on the rise. One pattern that has
remained constant during this time is that racial and eth-
nic minority groups in the US (and globally) experience a
disproportionate burden of CVD compared to their White
counterparts [177—180]. Overall, CVD prevalence remains
highest among non-Hispanic Black women (59%) and non-
Hispanic Black men (58.9%) [179,181]. Black women and
Black men are more than twice as likely to die of CVD, rel-
ative to White women and White men [179,181] and among
young and middle-aged adult survivors of a myocardial in-
farction, Black patients have a 2-fold higher risk of adverse
outcomes [182].

It has been suggested that hypertensive target or-
gan damage is widespread in Black and African American
adults [183]. Young Black patients have an increasing bur-
den of CVD risk factors [177]. Individuals of Black and
African American ancestry experience hypertensive target
organ damage earlier in life compared with White Amer-
icans [184]. Black/African American adults may also be
more susceptible to the damaging effects of high blood pres-
sure [185,186]. Numerous studies note large disparities in
measures of vascular health, with Black/African American
adults displaying lower NO-mediated EDD and higher large
artery stiffness and pressure from wave reflections com-
pared with White Americans [187-189]. We and others
have shown that disparities in these vascular health mea-
sures can be seen in childhood and correlate with proxies
of target organ damage such as carotid intima-media thick-
ness, LV mass, myocardial work, and coronary perfusion
[190-193]. Such “early vascular aging” in Black/African
American adults likely serves as the catalyst for detrimen-
tal LV remodeling, heart failure, and future CVD [194].
For the past several decades, racial differences in CVD
were ascribed to biological (“genetic”) differences (e.g., bi-
ological differences in inflammation, oxidative stress, NO
metabolism, renin-angiotensin-aldosterone system, and au-
tonomic nervous system function), neglecting the crucial
role of the environment on risk [195-197]. It is now com-
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monly recognized that cardiovascular health disparities are
driven largely by deep-rooted structural racism and not race
per se [178,198-200].

Individuals who self-identify as members of a racial or
ethnic minority group experience greater obstacles to health
due to social, economic, and/or environmental disadvan-
tages [199]. Systemic oppressive structures, policies, and
practices in the US (i.e., social injustice) have created in-
equity in access to resources, services, and opportunities in
minoritized (and marginalized) groups, driving disparities
in SES and cardiovascular health [201]. Minority-related
psychosocial stressors experienced by marginalized groups
such as prejudice, discrimination, pressure to conform to
a group stereotype by members of the same marginalized
group, and pressure to acculturate/acculturation, are emerg-
ing as powerful risk factors for CVD and cardiovascular
mortality [202]. Indeed, perceived discrimination is asso-
ciated with increased risk for hypertension, systemic in-
flammation and oxidative stress, subclinical atherosclero-
sis, and detrimental vascular remodeling (increased carotid
intima-media thickness, coronary artery calcification, and
large artery stiffness), target organ damage, myocardial in-
farction, heart failure, and stroke [203—207]. Other factors
related to structural racism such as lower SES, educational
attainment, place of birth, neighborhood safety and food
insecurity from residential segregation, and built environ-
ment (i.e., access to blue and green space, also shaped by
neighborhood-level racial residential segregation) are bar-
riers to ideal cardiovascular health [208-213]. Moreover,
each of these social determinants of health (SDoH) along
with others such as stress from the incarceration of fam-
ily or friends, job insecurity, violence in the home setting,
and healthcare access are also associated with hypertension,
inflammation, and oxidative stress, subclinical atheroscle-
rosis, detrimental vascular remodeling, target organ dam-
age, and ultimately CVD [214-221]. We have recently
shown that environmental toxicants found in higher concen-
trations in areas of lower SES are “cardiovascular disrup-
tors” in children, contributing to altered vascular reactivity
(greater blood pressure and vascular resistance in response
to psychological stress) and subclinical CVD measured as
carotid intima-media thickness at a young age [222-225].
Additionally, we have shown that relative to White chil-
dren, Black children have significantly greater hair cortisol
levels and flatter diurnal slopes, which were in turn asso-
ciated with subclinical CVD (measured as carotid intima-
media thickness and aortic stiffness) [222]. Black children
experienced significantly more environmental stress than
White children with income inequality partially explaining
the higher subclinical CVD risk in Black children [222].
Taken together, psychosocial determinants are the likely
drivers of early (premature) vascular aging in Black and
African American people in the US, some of which may
be transmitted intergenerationally via biological (i.e., pre-
natal fetal programming) and social (i.e., early life adver-
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sity) mechanisms. This hypothesis is in keeping with mi-
nority stress theory and the weathering hypothesis whereby
chronic exposure to social and economic disadvantage leads
to increased allostatic load and accelerated biological (and
physiological) “wear and tear” on end organs causing in-
flammation and oxidative stress, hastening aging [226].

4.3 Racial Variation in the Gut-Heart Axis: Implications
for CVD

This section will examine racial variation in the gut
microbiome with consideration for how the systemic envi-
ronment (i.e., structural racism) impacts the microbial envi-
ronment to perpetuate cardiovascular health disparities. As
introduced above, there is growing evidence that the social
and environmental gradients which contribute to health in-
equities also predict gut microbiota traits [227]. Evidence
shows that the human microbiome variation is linked to the
incidence, prevalence, and mortality of many diseases and
is associated with race and ethnicity in the US. To date,
there have been several studies (discussed next) that have
examined this outcome and have identified gut microbiota
profiles shaped by host environments which affect host
metabolic, immune, and neuroendocrine functions, making
itan important pathway by which differences in experiences
caused by social, political, and economic forces could con-
tribute to health inequities.

It is thought that the gut microbiota is well estab-
lished by the time a child is 4 years old, and there is
strong evidence that maternal, and family socioeconomic
status can influence gut microbiota. Several investiga-
tors have analyzed data from the Food and Microbiome
Longitudinal Investigation (FAMiLI) study to obtain an-
swers on how maternal family and SES influences the gut.
FAMILI is an ongoing multi-ethnic prospective study in the
US that began in 2016 where participants complete demo-
graphic questionnaires and (optional) food frequency ques-
tionnaires and provide oral and stool samples. In 2020,
Peters et al. [228], analyzed samples from 863 US res-
idents, including US-born (315 White, 93 Black, 40 His-
panic) and foreign-born (105 Hispanic, 264 Korean). The
authors determined dietary acculturation from dissimilari-
ties based on food frequency questionnaires and used 16S
rRNA gene sequencing to characterize the microbiome
[228]. Their results showed a clear difference in gut mi-
crobiome composition across study groups. They found the
largest differences in gut microbiota between foreign-born
Koreans and US-born Whites, and significant differences
were also observed between foreign-born and US-born His-
panics. Specifically, differences in sub-operational taxo-
nomic unit (s-OTU) abundance between foreign-born and
US-born groups tended to be distinct from differences be-
tween US-born groups. Bacteroides plebeius, a seaweed-
degrading bacterium, was strongly enriched in foreign-born
Koreans, while Prevotella copri and Bifidobacterium ado-
lescentis were strongly enriched in foreign-born Koreans
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and Hispanics, compared with US-born Whites. Dietary
acculturation in foreign-born participants was associated
with specific s-OTUs, resembling abundance in US-born
Whites; e.g., a Bacteroides plebeius s-OTU was depleted in
highly diet-acculturated Koreans. The authors concluded
that US nativity is a determinant of the gut microbiome in
a US resident population.

The “sociobiome” was coined by Nobre and Alpuim
Costa [229] to describe the microbiota composition oc-
curring in residents of a neighborhood or geographic re-
gion due to similar socioeconomic exposures; socioeco-
nomic status. Recently, Kwak et al. [230], using the
FAMILI cohort, investigated the sociobiome in a large,
multi-ethnic sample. The cohort consisted of 825 adults
(36.7% male), with a mean age of 59.6 years and racial
and ethnic group composition consisting of 311 (37.7%)
non-Hispanic White, 287 (34.8%) non-Hispanic Asian, 89
(10.8%) non-Hispanic Black, and 138 (16.7%) Hispanic
participants and compared alpha-diversity, beta-diversity,
and taxonomic and functional pathway abundance by SES.
They showed that lower SES was significantly associ-
ated with greater a-diversity and compositional differences
among groups, as measured by [S-diversity. Several taxa
related to low SES were identified, especially an increas-
ing abundance of Prevotella copri and Catenibacterium
sp000437715, and decreasing abundance of Dysosmobac-
ter welbionis in terms of their high log-fold change dif-
ferences. This is significant as Dysosmobacter welbionis
was isolated from human commensal bacterium from sam-
ples provided by the Human Microbiome Project, Ameri-
can Gut Project, Flemish Gut Flora Project and Microbes4U
projects. This bacterium was detected in 62.7%—69.8% of
the healthy population and correlates negatively with body
mass index, fasting glucose and glycated hemoglobin. In
addition, Cani’s group using the humanized mouse model,
taking human fecal samples/strains and putting them into
a mouse, showed that Dysosmobacter welbionis prevented
diet-induced obesity and metabolic disorders in mice by
reducing fat mass gain, insulin resistance and white adi-
pose tissue hypertrophy and inflammation [231]. In ad-
dition, live Dysosmobacter welbionis administration pro-
tected the mice from brown adipose tissue inflammation in
association with increased mitochondria number and non-
shivering thermogenesis. While this has yet to be translated
to humans, the reduction of this bacteria in the human study
coupled with its actions seen in animal studies suggest that
the lack of this bacteria may place individuals at increased
risk for metabolic disorders and adipose tissue dysfunction
which could lead to adverse CVD outcomes.

Most recently, Mallott et al. [232], set out to deter-
mine the age at which microbiome variability emerges be-
tween race and ethnic groups. They used 8 datasets with
16S ribosomal RNA (rRNA) sequencing data and available
race and ethnicity metadata for this study. Individuals be-
tween birth and 12 years of age, living in the US, with a
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caregiver-reported race of Black, White, or Asian/Pacific
Islander, and with a caregiver-reported ethnicity of His-
panic or non-Hispanic were included in the analysis. They
found that race and ethnicity did not significantly vary
with gut microbiome alpha-diversity or beta-diversity in the
early weeks and months of life, including the first week, 1
to 5.9 weeks, and 6 weeks to 2.9 months, however, at 3 to
11.9 and 12 to 35.9 months, gut microbiome composition
varied slightly but significantly by both race and ethnicity.
The group concluded that race and ethnicity are associated
with gut microbiome composition and diversity beginning
at 3 months of age, indicative of a narrow window of time
when this variation emerges [232].

Finally, discrimination and stress have been found to
contribute to changes in gut microbiota among racial and
ethnic groups [233,234]. A study by Dong et al. [235],
examined 154 adults from the Los Angeles community
and clinics. Participants self-reported race and ethnicity
(Asian American, Black, Hispanic, or White) and discrim-
ination was measured using the Everyday Discrimination
Scale. Hispanic individuals self-reported the highest lev-
els of early-life adversity, while Black individuals reported
the highest levels of resilience. Microbiome and metabo-
lite differences related to discrimination were only appar-
ent when stratified by race/ethnicity. Results showed that
Prevotella copri was the highest in Black and Hispanic in-
dividuals, who experienced high levels of discrimination,
whereas White individuals reported low levels of discrim-
ination. Isovalerate and valerate were significantly lower
in Hispanic than in White individuals and fucosterol was
significantly higher in Asian rather than White individu-
als. In a related study, Zhang et al. [236], investigated
the impact of discrimination exposure on brain reactivity
to food images and associated dysregulations in the brain—
gut-microbiome axis. By employing multi-omics analyses
of neuroimaging and fecal metabolite, they showed that dis-
crimination is associated with increased food-cue reactiv-
ity in regions of the brain important for reward, motivation
and executive control; altered glutamate-pathway metabo-
lites involved in oxidative stress and inflammation as well
as a preference for unhealthy foods. In addition, the rela-
tionship between discrimination-related brain and gut sig-
natures was shifted towards unhealthy sweet foods after ad-
justing for age, diet, body mass index, race and SES. Given
the extensive literature on diet, obesity and the gut micro-
biota, these results are significant in suggesting that indi-
viduals facing discrimination may prefer unhealthy foods
(and/or may not have access to healthy foods) contributing
to a more dysbiotic gut and thus adverse cardiometabolic
health outcomes.

In conclusion, there are distinct gut microbiota pro-
files between racial and ethnic groups, which appear to be
influenced by acculturation [237-239], discrimination and
stress [233,234], and diet [240], which may occur as early
as 3 months of age. Where a person lives and the related
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neighborhood and environmental constraints, what stresses
they are exposed to, and what a person eats (both what
they choose to eat and what they have access to eat) may
shape the gut microbiome more than race or ethnicity per
se. Finally, these distinct gut microbial community struc-
tures can exacerbate CVD risk among minority racial and
ethnic groups [241] (Fig. 3).

4.4 Biological Sex, Gender and CVD

Another prejudice that has a profound impact on
health and CVD risk is sexism [242]. Women, in gen-
eral, have also been historically marginalized due to institu-
tionalized patriarchy and a male-dominated social system.
When considering the impact of sexism on CVD, we must
first operationalize and contextualize differences (and over-
lap) between biological sex and gender. Sex, when con-
sidered biologically, comprises genetic differences related
to chromosomes, gonadal structure and function, and hor-
monal sequela. We will conceptualize sex as referring to
male, female, and intersex. Gender is a social construct
based on sociocultural predetermined roles, relationships,
and stereotypes (e.g., masculine versus feminine). Gender
can be shaped by different power dynamics and how we in-
teract with others around us based on ascribed gender and
can vary based on regionality, nationality, and temporal-
ity (i.e., ideals can change over time). Gender also encom-
passes gender identity referring to a person’s inner sense of
self as a man, woman, nonbinary person, or agender per-
son among other identities. Sex and gender can be con-
sidered together to inform on both biological sex and self-
identified gender. For example, a person who identifies as a
cis-gender woman is a woman whose self-identified gender
aligns with the biological sex assigned at birth.

In the context of CVD, biological sex and gender may
converge to affect risk [243,244]. Women are typically be-
lieved to be at lower risk for CVD owing to the biological
effects of the gonadal hormone estrogen. Note here that
we do not consider estrogen a sex hormone per se as both
men and women produce estrogen (and testosterone), just
in varying amounts. Just as low estrogen is associated with
increased risk for coronary heart disease and CVD mortal-
ity in older men [245], low testosterone is associated with
a greater risk of ischemic CVD and major adverse cardio-
vascular events in older women [246,247]. Subsequently,
CVD risk increases in women with advancing age, partic-
ularly post-menopause. With that said, it should be high-
lighted that CVD remains the leading cause of mortality
in women of all ages, and hospitalizations and deaths at-
tributed to CVD have witnessed an increase for younger
and middle-aged women [248]. The reasons for these ob-
servations are likely multifactorial and may partly be re-
lated to societal sex- and gender-based discriminatory at-
titudes [249]. Not until the American Heart Association’s
“Go Red” campaign has there been equitable education and
promotion of CVD risk for women. As such, educational
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Fig. 3. Working conceptual model. Race, ethnicity, gender, and sex interact (i.e., intersectionality) and are shaped by social determinants

of health (SDoH) to moderate gut effects (dysbiosis, diversity, specific metabolites, gut “age”) on subclinical cardiovascular disease

(CVD) (endothelial dysfunction, large artery stiffness) - driving CV health disparities and overt CVD (hypertension, coronary ischemia

and vasospasm, myocardial infarction, heart failure). CV, cardiovascular.

efforts on signs, symptoms, risk factors, and consequences
of CVD in women were sparse. This may have contributed
to increased CVD risk factor burden in women and women
being less likely to seek timely medical care for signs and
symptoms related to CVD. As cardiology is still a predom-
inantly male workforce drawing from scientific literature
where women are underrepresented, implicit bias may af-
fect clinical decision-making. For example, signs of my-
ocardial infarction are often categorized as “atypical” in
women not because they are abnormal but because they are
different from men, with male symptomology being con-
strued as the norm. Some male physicians may also incor-
rectly assume that a younger/middle-aged woman present-
ing with chest pain cannot be having a myocardial infarc-
tion because that would go against the entrenched dogma
that estrogen is cardioprotective. As a result, when seeking
care, women have longer wait times when presenting with
chest pain, are more likely to be misdiagnosed, more likely
to have symptomology dismissed, and are less likely to be
prescribed medications or treatments known to mitigate risk
[250]. Women are also less likely to be referred to cardiac
rehabilitation after a cardiac event [251,252]. Together, all
of these factors contribute to women having poorer out-
comes after a cardiovascular event compared to men.

Women are more likely to develop concentric LV re-
modeling and heart failure with preserved ejection frac-
tion than men [253]. The pathophysiology of coronary
artery disease also differs by sex with women possibly hav-
ing coronary endothelial dysfunction and microvascular de-
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fects compared to men, contributing to sexual dimorphism
in acute coronary syndromes [254]. While premenopausal
women may have better endothelial function than men
[255], we and others have shown that women may have
greater pressure from wave reflections increasing central
hemodynamic load [256-258]. Sex differences in central
hemodynamic burden may contribute to greater LV dias-
tolic dysfunction and associations between arterial stiffness
and LV mass/LV diastolic dysfunction may be greater in
women compared to men [259-261]. Large artery stiffness
increases disproportionately in postmenopausal women and
the association between large artery stiffness and CVD mor-
tality is almost twofold higher in women versus men [262].
As noted above, it is difficult to parse out how much CVD
risk is attributable to sex and how much to gender. Some
CVD risk in this setting has been suggested to be related to
stature (e.g., smaller coronary arteries experiencing more
shear stress, shorter aortic length contributing to greater
pressure from wave reflections) [263,264], which may be
theorized to be biologically driven. Some CVD risk may
be related to the physiological response to mental stress
[265-267], which may be influenced by psychosocial de-
terminants of health. Myocardial ischemia and peripheral
microvascular endothelial dysfunction in response to men-
tal stress are greater in women compared to men and asso-
ciated with major adverse cardiovascular events in women
only [268]. Taken together, CVD risk in women likely cap-
tures the interaction of both sex and gender on cardiovas-
cular structure and function.
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While traditional risk factors (age, lipids, glucose,
smoking, blood pressure) affect CVD risk in women and
men similarly, there are also sex-specific risk factors that
are critically important to consider for women [269]. Sex-
specific risk factors relate to biological variation in re-
productive health factors and are uniquely ascribed to fe-
male biological sex [270]. Such risk factors may in-
clude adverse pregnancy outcomes (e.g., hypertensive dis-
orders of pregnancy, gestational diabetes, fetal growth re-
striction, preterm delivery, and placental abruption), pre-
mature menarche, premature menopause and vasomotor
symptoms, endometriosis and polycystic ovarian syndrome
[270]. Additionally, there are other emerging CVD risk fac-
tors caused by other comorbidities and social factors that are
more prevalent in women and may be influenced by both
sex and gender. These factors include autoimmune disor-
ders, migraine, fibromyalgia, postural orthostatic tachycar-
dia syndrome, osteoporosis, breast cancer, irritable bowel
syndrome, abuse, intimate partner violence, post-traumatic
stress disorder, anxiety, and depression [270]. Each of
the aforementioned female sex-specific and female sex-
prevalent risk factors is associated with increased risk for
hypertension, systemic inflammation and oxidative stress,
subclinical atherosclerosis, and detrimental vascular re-
modeling (increased carotid intima-media thickness, coro-
nary artery calcification, and large artery stiffness), tar-
get organ damage, myocardial infarction, heart failure, and
stroke [271].

When considering intersectionality, Black and His-
panic women may encounter “double jeopardy” due to the
combination of race and ethnicity bias, coupled with sex
and gender bias [272]. Minority women experience ad-
ditional ethnic, racial and gender constraints and risks in-
cluding reduced health care access, possible language bar-
riers, lower health literacy, racial discrimination, pressure
to acculturate or conform to both a racial and culturally
gendered identity, higher reports of depression and higher
incidence of pregnancy complications (e.g., hypertensive
disorders of pregnancy) [273,274]. As stated above, these
SDoH are also CVD risk factors and are as important and
sometimes more important correlates of subclinical CVD in
women [275-281]. As such, the prevalence of sex-specific
CVD risk factors, coronary artery disease, heart failure, and
stroke is highest among non-Hispanic Black women [282].
As stated by the American Heart Association, to understand
and address the root causes of the prominent disparities
in CVD outcomes between Black and White women and
men in the United States, the intersectional aspects between
race, sex, and gender must be considered [283]. Nearly
60% of Black women have CVD, contributing to a per-
sistent life expectancy gap in the US [181]. Current life
expectancy for Non-Hispanic Black women is 75 years on
average compared with 80 years for non-Hispanic White
women [269]. CVD is also the most prominent cause of
mortality amongst Hispanic women, with approximately
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42% of Hispanic women having CVD [181]. Paradoxi-
cally, despite a higher prevalence of such traditional CVD
risk factors such as diabetes, obesity, and metabolic syn-
drome, CVD death rates in Hispanic women have remained
15% to 20% lower than in non-Hispanic White women -
an observation commonly referred to as the Hispanic Para-
dox [284]. Interestingly, we have seen that young Hispanic
women have better endothelial function and lower large
artery stiffness compared to White women [285], suggest-
ing that traditional CVD risk factors may not capture ac-
tual CVD risk in this population. It should be noted that
this paradox is disappearing as Hispanic American individ-
uals acculturate and adopt the high-fat, sedentary lifestyle
of those with US nativity [286]. As noted above, sex dif-
ferences in the vascular response to mental stress are a pre-
dictor of major adverse cardiovascular events in women.
Endothelial dysfunction in response to mental stress is also
a predictor of adverse CV outcomes in Black adults, ex-
plaining 69% of their excess risk [287]. Notable predic-
tors of the development of transient endothelial dysfunction
with mental stress beyond Black race include female gen-
der, employment status, income, and a composite distress
score derived from post-traumatic stress disorder, depres-
sion, anxiety, anger, perceived stress and racial discrimina-
tion [288-291]. These findings highlight the importance of
intersectionality and psychosocial determinants of vascular
health impacting CVD risk in women, particularly Black
women.

There is also emerging evidence that lesbian, gay, bi-
sexual, transgender, and queer or questioning (LGBTQ+)
adults, as a stigmatized and marginalized group, experience
notable cardiovascular health disparities [292,293]. Ac-
cording to the American Heart Association, people who
are transgender and gender diverse may be at greater risk
for CVD [294]. There is growing evidence that LGBTQ+
adults experience worse cardiovascular health relative to
their cisgender heterosexual peers [292,295]. For exam-
ple, men who are transgender have a >2-fold and 4-fold
increase in the prevalence of myocardial infarction com-
pared with men who are cisgender and women who are cis-
gender, respectively. Conversely, women who are trans-
gender have >2-fold increase in the prevalence of my-
ocardial infarction compared with women who are cisgen-
der. Moreover, compared to heterosexuals, sexual minori-
ties are at a higher risk of hypertension and CVD and
more likely to develop CVD at an earlier age [296,297].
It should be underscored that the LGBTQ+ (intersexual,
asexual, pansexual, two spirit) community is not a mono-
lithic group [298]. Each has unique lived experiences that
may subsequently shape CVD risk. Differences in CVD
risk are partially, but not completely, explained by tradi-
tional CVD risk factors suggesting that SDoH plays a sig-
nificant role. LGBTQ+ adults not only experience sig-
nificantly higher discrimination from the broader commu-
nity, but also specifically from healthcare professionals
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[299]. Additional psychosocial risk factors including self-
stigma and internalized phobia, gender-related victimiza-
tion, expectations of rejection, and concealment, all detri-
mentally impact mental health (anxiety, depression) and be-
havioral health (diet, sleep, physical activity, alcohol and
tobacco/nicotine use) [300,301]. Together, these factors
may contribute to inflammation and oxidative stress, has-
tened vascular aging, subclinical atherosclerosis, target or-
gan damage and overt CVD [302,303].

Biological effects of gender-affirming hormone ther-
apy (GAHT) may also have an impact on CVD risk [304,
305]. Use of GAHT in transgender and nonbinary individ-
uals is perceived to improve cardiovascular health [306].
The association between GAHT and CVD risk is complex
[307]. A higher blood concentration of testosterone among
women who are transgender is associated with higher odds
of having hypertension. Cross-sectional comparisons be-
tween men who are transgender receiving testosterone cy-
pionate compared with age-matched women who are cis-
gender have found reduced endothelial function measured
via brachial artery flow-mediated dilation [308]. In cross-
sectional studies, carotid intima-media thickness, arterial
stiffness and measured via brachial-ankle pulse wave ve-
locity, and carotid augmentation index are higher in men
transitioning (female to male) receiving testosterone than
in men who are transgender not receiving hormone ther-
apy [309-311]. Similarly, transgender men on long-term
treatment with testosterone have higher aging-related aortic
stiffening [312], suggesting accelerated vascular aging in
transgender men receiving gender-affirming hormone treat-
ment. This is supported by animal studies noting that fe-
male mice receiving dihydrotestosterone experience has-
tened rates of arterial stiffening and cardiovascular dam-
age, mediated by decreased estrogen receptor expression
[313]. Brachial artery flow-mediated dilation is higher
in women who are transgender treated with estrogen than
in age-matched men who are cisgender but is similar to
women who are cisgender [314,315]. Women who are
transgender receiving estrogen also have a greater fore-
arm blood flow response to acetylcholine, an endothelial-
dependent vasodilator, than age-matched men who are cis-
gender [314]. In summary, GAHT is associated with an
increased risk of subclinical atherosclerosis in transgender
men but may have either neutral or beneficial effects in
transgender women [316].

4.5 Biological Sex, Gender and the Gut-Heart Axis:
Implications for CVD

This section will consider the mediating and moderat-
ing effects of sex, sex-specific CVD risk factors, and gen-
der (operationalized as sexual orientation and gender iden-
tity) on the gut microbiome as an effector of CVD risk
(Fig. 3). As stated above, there are notable sex differ-
ences in gut microbiota across a lifespan, and these dif-
ferences may serve, in part, as the substrate for sex differ-
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ences in CVD risk across a lifespan. The distribution of
gut microbiota varies according to age (childhood, puberty,
pregnancy, menopause, and old age) and sex. Also, as al-
ready established, this gut microbiota can contribute and is
linked to CVD. It is critical to understand which gut micro-
biota and/or microbial derived metabolites may be linked
to CVD in the sexes. To that end, Garcia-Fernandez et
al. [317], analyzed gut microbiota data from the CORDIO-
PREV study, a clinical trial which involved 837 men and
165 women with CVD compared to their reference group of
375 individuals (270 men, 105 women) without CVD. They
clearly demonstrated a sex-specific difference in beta diver-
sity. Additional analysis showed there were sex-specific al-
terations in the gut microbiota linked to CVD. Women who
have CVD show increased UBA 1819 (Ruminococcaceae),
Bilophila, Phascolarctobacterium, and Ruminococcaceae
incertae sedis while men with CVD had a higher abun-
dance of Subdoligranulum, and Barnesiellaceae. The au-
thors concluded that the dysbiosis of the gut microbiota as-
sociated with coronary heart disease (CHD) seems to be
partially sex-specific, which may influence the sexual di-
morphism in its incidence particularly since the bacteria
identified to be higher in CVD patients are linked to inflam-
mation, intestinal barrier dysfunction, and CVD directly
[317,318].

The dysbiotic gut microbiome is associated with in-
creased blood pressure and risk of hypertension [319]. Vir-
wani et al. [320], specifically examined sex differences,
gut microbiota and hypertension. Interestingly they re-
ported that significant differences in beta-diversity and gut
microbiota composition in hypertensive versus normoten-
sive groups were only observed in women and not in men.
Specifically, Ruminococcus gnavus, Clostridium bolteae,
and Bacteroides ovatus were significantly more abundant in
hypertensive women, whereas Dorea formicigenerans was
more abundant in normotensive women. Furthermore, total
plasma short-chain fatty acids and propionic acid were inde-
pendent predictors of systolic and diastolic blood pressure
in women but not men. Ruminococcus gnavus and Clostrid-
ium bolteae have been reported to induce inflammation and
are pathogenic in humans. Gut microbial-derived metabo-
lites are likely critical to affect the way gut microbiota in-
fluences systemic disease states. As noted above, butyrate
may exacerbate hypertension, as propionate has also been
demonstrated in this study [160]. However, the mecha-
nisms by which this occurs are not elucidated, but need to
be to fully understand the interactions of these SCFA and
hypertension outcomes in women.

In addition to sex differences in gut microbiota and
CVD, there are also sex differences in many of the risk
factors associated with CVD of which most have associa-
tions with the gut microbiota including diabetes, hyperten-
sion and dyslipidemia, and obesity (see review by Ahmed
and Spence [321]), which may be further exacerbated by
race and ethnicity [322]. In addition, sex-specific CVD risk
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factors related to maternal health during pregnancy may
also influence and be influenced by the gut microbiome.
In 2023, Colonetti et al. [323], conducted a meta-analysis
which included 6 studies, with 479 pregnant women. They
reported a significantly lower gut microbiota alpha diver-
sity in pregnant women with pre-eclampsia in comparison
with healthy controls, while no significant differences were
found in the relative abundance of Bacteroidota, Bacil-
lota, Actinomycetota, and Pseudomonadota, despite signif-
icant differences being reported in the individual studies
[323]. However, this could be due to a number of factors,
most significantly the analytical techniques used to identify
lower levels of taxonomic resolution that vary greatly be-
tween gut microbiota studies. A rodent study by Jama et
al. [324], examined female C57BL/6J dams fed nutrient-
matched high- or low-fiber diets during pregnancy and lac-
tation, to understand how maternal fiber influences the gut
microbiota. In addition, to evaluate long-term effects and
predisposition to CVD, the authors exposed 6-week-old
male offspring to saline or angiotensin II for 4 weeks to
induce hypertension and organ damage. Results showed
that male offspring from low-fiber-fed dams had signifi-
cantly larger hearts relative to body weight, and echocar-
diography studies in the offspring demonstrated low-fiber
offspring had increased LV posterior wall thickness, con-
firming hypertrophy, and reduced ejection fraction, show-
ing reduced LV contraction [324]. Regarding the gut mi-
crobiota, offspring born to dams who received a low-fiber
diet showed distinct gut microbial colonization that per-
sisted into adulthood, with higher levels of several taxa,
including Akkermansia species. Furthermore, the authors
reported that they identified 174 microbial enzymatic path-
way signatures enriched in low-fiber offspring with 154
of the identified enzyme signatures in low-fiber belonged
to Akkermansia muciniphila. Akkermansia muciniphila-
upregulated genes encoded for mucolytic enzymes that de-
grade the intestinal mucus, putting the colon at risk for
inflammation [324]. In contrast, high-fiber offspring had
only 5 grouped enzyme signatures, which belonged to Bac-
teroides ovatus, Escherichia coli, and Lactobacillus muri-
nus; the latter of which has been known to reduce inflam-
matory pathways and blood pressure. The gut microbiota
of women with hypertensive disorders of pregnancy is dif-
ferent from that of women with normotensive pregnancy
[325]. Pregnant women with hypertensive disorders of
pregnancy had a higher abundance of Rothia, Actinomyces,
and Enterococcus and a lower abundance of Coprococcus
than pregnant women with normotension [325]. Indeed,
results from Mendelian randomization support a causal re-
lationship between gut microbiota and hypertensive disor-
ders of pregnancy [326]. Wu ef al. [326] found causal
associations of LachnospiraceaeUCGO010, Olsenella, Ru-
minococcaceaeUCG009, Ruminococcus2, Anaerotruncus,
Bifidobacterium, and Intestinibacter with gestational hy-
pertension, of Eubacterium (ruminantium group), FEu-
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bacterium (ventriosum group), Methanobrevibacter, Ru-
minococcaceaeUCGO002, and Tyzzerella3 with preeclamp-
sia, and of Dorea and RuminococcaceaeUCGO0I10 with
eclampsia, respectively. These findings are supported by
experimental studies whereby fecal microbiota transplanta-
tion from preeclamptic women into preeclamptic rats sig-
nificantly exacerbated the phenotype whereas the gut mi-
crobiota of healthy pregnant women had significant pro-
tective effects [327]. Akkermansia muciniphila, propi-
onate, or butyrate significantly alleviated the symptoms of
preeclamptic rats whereas Akkermansia, Oscillibacter, and
SCFAs could be used to accurately diagnose preeclampsia
[327]. Taken together, recent findings support that gut dys-
biosis is important in the etiology of preeclampsia, a signif-
icant sex-specific risk factor for CVD in women.

To date there are very few studies examining gut mi-
crobiota and gender (operationalized as sexual orientation
and gender identity) hence research in this area is greatly
needed. Rosendale ef al. [328], recently published a cross-
sectional study of 12,180 adults using 20072016 National
Health and Nutrition Examination Survey data, Black, His-
panic, and White sexual minority female individuals with
the primary outcome of overall cardiovascular health score.
Results showed that Black, Hispanic, and White sexual mi-
nority female adults had lower overall cardiovascular health
scores compared with their heterosexual counterparts. Fur-
thermore, there were no differences in overall cardiovascu-
lar health scores for sexual minority male individuals of any
race or ethnicity compared with White heterosexual male
individuals [328]. It is important to mention that there are
even fewer studies on GAHT and gut microbiota [329], and
none to our knowledge which include CVD which is an area
of research importance.

5. Future Directions

The mantra “exercise is medicine” is often touted as
a solution to restore cardiovascular health and prevent dis-
case. Indeed, as discussed above, exercise has a power-
ful effect on improving gut health, attenuating vascular ag-
ing, improving large artery compliance and systemic vas-
cular endothelial function through its antioxidant effects,
and preserving nitric oxide bioavailability - all reducing the
risk for CVD. However, exercise (like medicine) is not ac-
cessible to all and exercise is not medicine for all. Black
adults, Hispanic adults, and women in general are not meet-
ing physical activity recommendations. Unique social bar-
riers such as neighborhood dynamics (safety and cohesion)
may contribute to disparities in physical activity engage-
ment across different races and ethnicities [330,331]. There
is also considerable heterogeneity in the response to exer-
cise across race and sex [332]. For example, while women
may have a blunted cardiovascular physiological response
to exercise training compared to men [333], women derive
greater protection against CVD mortality from that same
amount of exercise [334]. Indeed, the female athlete’s heart
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has a lower risk of experiencing exercise-induced coronary
calcification, LV fibrosis, atrial fibrillation, lethal ventric-
ular arrhythmias and sudden cardiac death. There is also
racial variation in the cardiovascular response to acute ex-
ercise and exercise training [335,336]. Some of the dif-
ferences in cardiovascular responses to exercise may be
related to the physiological impact of various psychoso-
cial factors [337,338]. For example, racial discrimination
is associated with oxidative stress and endothelial damage
[339,340]. Future research is needed to explore racial varia-
tion and sex differences in the gut microbiome’s response to
exercise. Can targeting the gut with diet (e.g., prebiotics),
probiotics and/or exercise confer cardiovascular resilience?
Additional research is also needed to examine the effect of
the gut microbiome on cardiovascular responses to exercise
training. Does underlying dysbiosis mediate or moderate
heterogeneity in physiological adaptations to exercise train-
ing? Additional research will also be needed to understand
the importance of intersectionality on the gut microbiome,
considering race, ethnicity, sex and gender.

6. Conclusions

Studies continue to support that gut dysbiosisisa CVD
risk factor, with numerous microbes impacting unique as-
pects of cardiovascular structure and function. The gut
microbiome is shaped by biological sex, gender, race and
ethnicity, potentially contributing to cardiovascular health
disparities and sex differences in CVD. Psychosocial fac-
tors related to systemic racism, sexism, and discrimina-
tion impact the microbiome via effects on diet and food
access. These same factors may also activate physiologi-
cal stress systems, contributing to inflammation, oxidative
stress, subclinical changes in vascular structure and func-
tion (i.e., EDD and arterial stiffening) and ultimately CVD.

To conclude, sociology impacts physiology and con-
tributes to pathophysiology. Oppressive social factors ex-
perienced by minorities and women may shape the gut, in
turn contributing to cardiovascular health disparities. Exer-
cise remains a critical lifestyle and biobehavioral factor to
promote gut resilience and foster cardioprotection.
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