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Abstract

Background: Extended aortic arch repair (EAR) is increasingly adopted for treating acute type A aortic dissection (ATAAD). How-
ever, existing prediction models may not be suitable for assessing the in-hospital death risk in ATAAD patients undergoing EAR. This
study aims to develop a comprehensive risk prediction model for in-hospital death following EAR based on patient’s preoperative sta-
tus and surgical data, which may contribute to identification of high-risk individuals and improve outcomes following EAR.Methods:
We reviewed clinical records of consecutive adult ATAAD patients undergoing EAR at our institute between January 2015 and De-
cember 2022. Utilizing data from 925 ATAAD patients undergoing EAR, we employed multivariable logistic regression and machine
learning techniques, respectively, to develop nomograms for in-hospital mortality. Employed machine learning techniques included
simple decision tree, random forest (RF), eXtreme Gradient Boosting (XGBoost), and support vector machine (SVM). Results: The
nomogram based on SVM outperformed others, achieving a mean area under the receiver operating characteristic (ROC) curve (AUC)
of 0.842 on training dataset and a mean AUC of 0.782 on testing dataset, accompanied by a Brier score of 0.058. Key risk factors
included cerebral malperfusion, mesenteric malperfusion, preoperative critical station, Marfan syndrome, platelet count, D-dimer, coro-
nary artery bypass grafting, and cardiopulmonary bypass time. A web-based application was developed for clinical use. Conclusions:
We develop a novel nomogram risk prediction model based on SVM algorithm for in-hospital death following extended aortic arch
repair for ATAAD with good discrimination and accuracy. Clinical Trial Registration: Registration number ChiCTR2200066414,
https://www.chictr.org.cn/showproj.html?proj=187074.
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1. Introduction
Acute type A aortic dissection (ATAAD), defined by

an intimal tear and the dissection’s propagation between
the media and intima layers of the aorta, remains one of
the most challenging and highly morbid conditions encoun-
tered by cardiovascular surgeons. Despite advancements in
surgical techniques and perioperative care, in-hospital mor-
tality rates after ATAAD surgery remain significant, rang-
ing from 5% to 20% in relatively stable patients, and reach-
ing up to 35% in unstable cases [1,2]. Extended aortic
arch repair (EAR), which includes total arch replacement
(TAR) combined with a frozen elephant trunk (FET), has
gained popularity for its benefits in promoting favorable
aortic remodeling, reducing the risk of reintervention, and
enabling future completion of descending aortic procedures
[3,4]. Consequently, this approach is increasingly em-
ployed for managing ATAAD, particularly in China, where
it has emerged as a preferred strategy [5]. However, EAR
presents considerable challenges for cardiac surgeons, with
its outcome being heavily dependent on the patient’s pre-

operative condition and the surgical components [6,7]. De-
veloping a risk prediction model that integrates preopera-
tive characteristics and surgical data to estimate in-hospital
mortality after EAR could aid in identifying high-risk pa-
tients, optimizing clinical decisions, and potentially im-
proving surgical outcomes.

The widely used European System for Cardiac Oper-
ative Risk Evaluation (EuroSCORE) II [8], a standard tool
in cardiovascular surgery, was not specifically designed for
ATAAD patients and has been shown to have limited ef-
fectiveness in predicting ATAAD surgical outcomes [9].
The German Registry of Acute Aortic Dissection Type A
(GERAADA) score, developed to estimate mortality risk
in ATAAD surgery, may not be suitable for predicting out-
comes in EAR procedures, as it is based on data from only
16%of patients who underwent the TARprocedure [6]. Ad-
ditionally, the GERAADA score primarily considers pre-
operative risk factors, without including potentially signifi-
cant intraoperative variables that could influence postopera-
tive outcomes in ATAADpatients. Themodel developed by
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Rampoldi et al. [10], based on data from the International
Registry of Acute Aortic Dissection in 2007, may also lack
relevance due to advancements in surgical techniques over
time. For example, only 11.5% of the patients included
in their study underwent the TAR procedure [10]. Simi-
larly, an early mortality prediction model for ATAAD re-
pair developed by Zhang et al. [11] was limited by its small
sample size and the potential exclusion of critical variables.
These limitations suggest that current prediction models
may not be well-suited for evaluating in-hospital death risk
in ATAAD patients undergoing EAR. Moreover, the four
models mentioned above were developed using logistic re-
gression analysis, which is constrained by its assumption of
linear relationships between predictors and outcomes. Ma-
chine learning offers an alternative approach, as it excels
in identifying complex, non-linear patterns [12,13]. Stud-
ies have demonstrated the potential of machine learning
shines in analyzing the enormous data [14]. Thus, predic-
tive models based on machine learning algorithms might
be superior to those built using traditional logistic regres-
sion methods. However, the complexity of machine learn-
ing presents challenges in interpreting models and their out-
puts. Nomograms, known for their simplicity and utility
in clinical practice, offer a promising solution. Incorpo-
rating variables identified through machine learning into a
nomogram-based risk prediction model may be a promising
approach to developing a risk prediction model. Nonethe-
less, data are scarce in this context.

In this study, we developed and validated prediction
models using baseline characteristics and surgical data from
consecutive ATAAD adult patients who underwent EAR at
our institution between January 2015 and December 2022.
The primary objective was to create a practical and accurate
mortality risk prediction model by comparing the predictive
performance and calibration of models constructed through
logistic regression and machine learning techniques. We
hypothesized that employing machine learning algorithms
might provide superior predictive capability compared to
traditional logistic regression methods.

2. Materials and Methods
2.1 Study Protocol and Study Population

This study was a single-center, retrospective analysis
approved by the Institutional Review Board of our institu-
tion (No. B2022-592), with a waiver of individual consent.
The study was registered with the Chinese Clinical Trial
Registry (Registration number: ChiCTR2200066414,
https://www.chictr.org.cn/showproj.html?proj=187074)
and adhered to the Declaration of Helsinki. The research
was conducted in compliance with the Strengthening the
Reporting of Cohort, Cross-sectional and Case-control
Studies in Surgery (STROCSS) criteria and aligned with
the Transparent Reporting of a Multivariable Prediction
Model for Individual prognosis or Diagnosis (TRIPOD)
statement.

We reviewed the records of 925 adult ATAAD patients
(aged>18 years) who underwent EAR, with or without ad-
ditional procedures, at Zhongshan Hospital of Fudan Uni-
versity from January 2015 to December 2022. Exclusion
criteria were as follows: (1) patients undergoing no-arch
proximal aortic repair, hemiarch, or partial arch replace-
ment; (2) patients undergoing fully endovascular or hybrid
procedures, defined as a combination of surgical and en-
dovascular approaches in the same setting; (3) cases of ia-
trogenic dissection; and (4) patients with dissection dur-
ing pregnancy. No-arch proximal aortic repair, hemiarch,
partial arch replacement, endovascular procedures, and hy-
brid procedures were excluded because these different sur-
gical approaches could impact patient outcomes, and the
study’s aim was to construct a predictive model specifi-
cally for EAR procedures. Including patients who under-
went alternative surgical methods would not align with the
study’s focus. Iatrogenic dissections were excluded due to
their distinct onset mechanisms andmanagement strategies,
which might lead to varied clinical outcomes. Additionally,
patients with dissection during pregnancy were excluded
to account for the unique pathophysiological changes and
mortality risks associated with pregnancy, such as amniotic
fluid embolism.

2.2 Grouping

Eligible patients were categorized into two groups
based on the occurrence of in-hospital death: the death
group and the survival group. Baseline characteristics and
surgical data were compared between these two groups.

2.3 Variable and Data

This study collected a comprehensive dataset compris-
ing 108 clinical features. These included baseline charac-
teristics (such as demographic, comorbidity, comorbidities,
medical history, end-organ malperfusion, preoperative crit-
ical conditions, dissection characteristics, and laboratory
and transthoracic echocardiographic [TTE] data), surgical
details, and in-hospital outcomes. All data were retrieved
from the hospital’s electronic database and reviewed using a
standardized data collection form. Data collection was con-
ducted by two trained staff members who were unaware of
the study’s specific objectives to minimize bias. Discrep-
ancies in data interpretation were resolved through consen-
sus with a third reviewer. An independent database mon-
itoring center was engaged to verify the plausibility of the
dataset. Laboratory and TTE data were obtained within the
first 24 hours before surgery. Only datasets that were vali-
dated through independent monitoring were included in the
statistical analysis.

The primary outcome was in-hospital mortality, de-
fined as all-cause deaths occurring within 30 days or any
in-hospital deaths beyond 30 days for patients who had not
been discharged after the index procedure. Previous car-
diac surgery was defined as any prior major cardiac opera-
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tion involving the opening of the pericardium [8]. A critical
preoperative state was defined as the occurrence of one or
more of the following occurring preoperatively in the same
hospital admission as the operation: cardiac massage, pre-
operative ventilation prior to arrival in the anesthetic room,
hypotension or shock, intra-aortic balloon counterpulsation,
ventricular-assist device placement prior to arrival in the
anesthetic room, or cardiac tamponade [8]. Malperfusion
was defined as inadequate blood supply to specific organs
due to aortic dissection, confirmed by clinical signs, symp-
toms, physical examination findings, and laboratory results
[15]. Emergency surgery was defined as a procedure per-
formed before the start of the next working day following
the decision to operate [8]. Binary variables were encoded
as 0 or 1 (0 = no, 1 = yes). Other categorical variables were
preprocessed according to their nature. For example, the
Neri classification of coronary involvement [16] was en-
coded as 0, 1, 2, or 3 (0 = no coronary involvement, 1 =
Neri A class, 2 = Neri B class, and 3 = Neri C class). Sim-
ilarly, the degree of aortic valve stenosis or regurgitation
was encoded as 0, 1, 2, or 3 (0 = no stenosis/regurgitation,
1 = mild, 2 = moderate, and 3 = severe).

For handling missing data, the MissForest imputation
method (R package “missForest”, https://CRAN.R-project
.org/package=missForest) was employed to impute vari-
ables with less than 10%missing data. Variables with more
than 10% missing data were excluded from the analysis.
The distribution of variables before and after imputation
was shown in Supplementary Fig. 1.

2.4 Development, Validation, and Comparison of
Nomogram Prediction Models

For this study, the dataset was randomly divided into
two subsets: a training dataset (70%) for model devel-
opment and a testing dataset (30%) for model validation.
Variables for the nomogram risk prediction models were
identified using logistic regression analyses and machine
learning techniques, including random forest (RF), deci-
sion tree (Dtree), eXtreme Gradient Boosting (XGBoost),
and support vector machine (SVM). After variable selec-
tion, the optimal parameters for each nomogram risk pre-
diction model were modified within the training dataset and
subsequently validated using the testing dataset.

Nomogram risk prediction model 1 (Fit.logistic re-
gression analysis (LR)) was constructed using univariate
and multivariate binary logistic regression analyses to se-
lect variables. Variables with p < 0.05 in the between-
group comparisons were included in the univariate logistic
regression analysis performed on the training dataset. Sub-
sequently, variables with p < 0.05 and odds ratios (OR)
not equal to 1, as identified in the univariate analysis, were
entered into the multivariate logistic regression analysis
within the training dataset. Finally, variables with p< 0.05
and OR not equal to 1 from the multivariate analysis were
incorporated into the Fit.LR model.

Four additional nomogram risk prediction models
were constructed using machine learning algorithms for
variable selection. Initially, four machine learning predic-
tion models, RF, Dtree, XGBoost, and SVM, were devel-
oped on the training dataset. Variables with p < 0.05 in
between-group comparisons were included in these mod-
els. To prevent overfitting, the machine learning mod-
els were constructed using the optimal subset of feature
variables obtained via feature selection, selected to maxi-
mize model accuracy. The variations in prediction accu-
racy during the feature selection process are illustrated in
Supplementary Fig. 2. The SHapley Additive exPlana-
tions (SHAP) method [17] was applied to assess the signif-
icance of each variable in the machine learning models. To
avoid overfitting in the nomogram risk prediction models,
the principle of 10 events per variable (EPV) [18] was fol-
lowed, as 84 valid events (in-hospital deaths) were observed
in this cohort. Therefore, the top eight most significant vari-
ables were included in the final models. These variables
were used to construct the nomograms, and the SHAP val-
ues for each variable in the machine learning models were
shown in Supplementary Fig. 3.

The performance of the nomogram risk prediction
models was evaluated by using receiver operating charac-
teristic (ROC) curves, with the area under the ROC curve
(AUC) calculated for all models. To ensure robust per-
formance evaluation and to reduce the risk of overfitting,
the AUC was computed using the bootstrap method, with
1000 resampling iterations. Nomograms were developed
for models with good predictive performance to enhance
practical applicability. Calibration curves were generated
to assess the agreement between predicted and observed
outcomes. The Brier score was used to quantify the dif-
ference between predicted and actual outcomes. Decision
curve analysis (DCA) evaluated the utility of the predictive
models in clinical decision-making by using net benefit as
an indicator [19]. Additionally, the net reclassification in-
dex (NRI) and integrated discrimination improvement (IDI)
were calculated to further evaluate the predictive accuracy
and discriminatory ability of models with similar predic-
tive performance. Finally, the nomogram prediction model
demonstrating the best overall performance was integrated
into a web-based survival calculator for ease of use.

2.5 Statistical Analysis

The incidence of in-hospital death in the cohort was
estimated to be 10%. Based on a margin of error ≤0.05
and following established recommendations for develop-
ing clinical prediction models [20], the minimum required
sample size was calculated to be 139 patients. To improve
model stability and ensure the development of a more rep-
resentative predictive model, the study included a total of
925 patients over an 8-year period.

The Shapiro-Wilks test was used to assess data nor-
mality. Continuous variables with a normal distribution
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were expressed as the mean ± standard deviation and
compared between groups using the independent-sample t-
test. Non-normally distributed continuous variables were
reported as the median and interquartile range and com-
pared using the Wilcoxon rank-sum test. Categorical vari-
ables were presented as frequencies and percentages and
were compared between groups using the Chi-square test
or Fisher’s exact test when the expected frequency was<5.
To identify variables associated with in-hospital death, uni-
variate and multivariate binary logistic regression analy-
ses were conducted to calculate OR and 95% confidence
intervals (CI). Statistical significance was set at p < 0.05
(two-sided). All statistical analyses were performed using
SPSS version 26.0 (SPSS Inc., Chicago, IL, USA) and R
version 4.3.2 (R Project for Statistical Computing, https:
//www.r-project.org).

2.6 Code Availability

R (version 4.3.2) was used for building and validating
the predictive models. The complete code for this study
was publicly available without restriction at the follow-
ing repository: https://github.com/qiyi-chen/Nomogram-
for-in-hospital-death-following-EAR.

3. Results
The variable distribution before and after imputation

was shown in Supplementary Fig. 1, indicating no sig-
nificant changes in data distribution following imputation.
After random allocation, the distribution of variables in the
training and testing datasets was presented in Table 1. As
shown in Table 1, a statistically significant difference was
observed in the time from symptom onset to surgery be-
tween the two datasets. However, this variable was not in-
corporated into the prediction models, and the overall dis-
tribution of variables in the training and testing datasets was
considered balanced.

3.1 Study Population and Risk Factors for in-Hospital
Death

A total of 1064 adult patients underwent surgical re-
pair of ATAAD at our center over an 8-year period. After
excluding 139 patients (Fig. 1), 925 eligible patients were
included in the analysis and categorized into the death group
(n = 84) or the survival group (n = 841). Among the study
population, the average age was 51.9 ± 12.4 years, and the
mean body mass index (BMI) was 25.7 ± 3.7 kg/m2, with
731 (79%) patients being male. Significant differences in
baseline characteristics and surgical data were observed be-
tween the two groups, as detailed in Supplementary Table
1.

The results of univariate and multivariate logistic re-
gression analyses on the training dataset are presented in
Table 2. After conducting both univariate and multivariate
logistic regression analyses, the following variables were
identified as independent predictors of in-hospital death fol-

lowing EAR for ATAAD: cerebral malperfusion, mesen-
teric malperfusion, critical preoperative status (CPStatus),
D-dimer (D2), international normalized ratio (INR), car-
diopulmonary bypass (CPB) time, and coronary artery by-
pass grafting (CABG).

3.2 Variables of Nomogram Risk Prediction Models

The following variables were included in the Fit.LR
model after logistic regression analyses: cerebral malper-
fusion, mesenteric malperfusion, CPStatus, D2, INR, CPB
time, and CABG. The Fit.RF model incorporated eight
variables: mesenteric malperfusion, cardiac tamponade,
D2, INR, platelet count (Plt), albumin levels, CPB time,
and intraoperative red blood cell transfusion. For the Fit-
Dtree model, the eight variables included were: mesen-
teric malperfusion, hypotension, Marfan syndrome (MFS),
Plt, cardiac troponin T (cTnT), INR, D2, and CPB time.
The Fit.XGBoost model utilized the following variables:
mesenteric malperfusion, CPStatus, Plt, D2, aspartate
aminotransferase (AST), creatinine (Cr), CPB time, and
aortic cross-clamp time (ACC). Lastly, the Fit.SVM model
analyzed these variables: cerebral malperfusion, mesen-
teric malperfusion, CPStatus, D2, Plt, CABG, intraopera-
tive blood product transfusion, and CPB time.

3.3 Performances of Nomogram Risk Prediction Models

The predictive performances of all five models were
evaluated using both the training and testing datasets. As
shown in Table 3 and Fig. 2, the Fit.LR model demon-
strated the highest mean AUC value on the training dataset
(0.849, 95% CI 0.786 to 0.908), followed by the Fit.SVM
model (0.842, 95% CI 0.780 to 0.910), the Fit.XGBoost
model (0.835, 95% CI 0.772 to 0.892), the Fit.Dtree model
(0.834, 95% CI 0.772 to 0.890), and the Fit.RF model
(0.822, 95% CI 0.757 to 0.884). On the testing dataset,
the Fit.SVM model achieved the highest mean AUC value
(0.782, 95% CI 0.698 to 0.860), followed by the Fit.RF
model (0.769, 95% CI 0.688 to 0.857), the Fit.LR model
(0.768, 95% CI 0.668 to 0.859), the Fit.XGBoost model
(0.766, 95% CI 0.673 to 0.860), and the Fit.Dtree model
(0.740, 95% CI 0.636 to 0.860). Among the models, the
Fit.Dtree model had the lowest standard error (0.030), fol-
lowed by the Fit.LR model (0.031), the Fit.SVM model
(0.031), the Fit.XGBoost model (0.031), and the Fit.RF
model (0.033). Calibration curves showed that the pre-
dicted probabilities for all five models were comparable to
the actual observations (Fig. 3). All models demonstrated
a good fit based on the Hosmer-Lemeshow test. Addition-
ally, the Fit.SVMmodel had the lowest Brier score (0.058),
followed by the Fit.LR model (0.059), the Fit.XGBoost
model (0.060), the Fit.Dtree model (0.063), and the Fit.RF
model (0.064), indicating effective probability calibration.
The DCA curves for each prediction model are presented in
Fig. 4. As shown, all five models outperformed the “treat
all” and “treat none” strategies across the risk threshold
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Table 1. Characteristics of datasets.

Variable
Training dataset Testing dataset

p(N = 684) (N = 277)
Demographics

Male 519 (80.1%) 212 (76.5%) 0.223
Age, years 52.0 (43.0–63.0) 52.0 (42.0–60.0) 0.255
Height, cm 170.0 (166.0–175.0) 170.0 (165.0–175.0) 0.888
Weight, kg 75.0 (65.0–83.0) 75.0 (65.0–83.0) 0.561
BMI, kg/m2 25.6 (23.4–27.8) 25.3 (22.8–27.8) 0.339
Somking 123 (19.0%) 45 (16.2%) 0.323

Comorbidity
HBP 470 (72.5%) 188 (67.9%) 0.152
DM 31 (4.8%) 10 (3.6%) 0.427
Stroke 31 (4.8%) 8 (2.9%) 0.189
CAD 28 (4.3%) 12 (4.3%) 0.994
CKD 15 (2.3%) 2 (0.7%) 0.115
AF 10 (1.5%) 3 (1.1%) 0.765
COPD 6 (0.9%) 1 (0.4%) 0.684
AD family history 16 (2.5%) 6 (2.2%) >0.999
BAV 18 (2.8%) 8 (2.9%) >0.999
MFS 54 (8.3%) 23 (8.3%) >0.999
Heart surgery history 22 (3.4%) 12 (4.3%) 0.567
Previous TEVAR 18 (2.8%) 9 (3.2%) 0.674

Medical history
Anticoagulation drugs 11 (1.7%) 3 (1.1%) 0.572
Warfarin sodium 9 (1.4%) 3 (1.1%) >0.999
Rivaroxaban 2 (0.3%) 0 >0.999
Antiplatelet drugs 19 (2.9%) 10 (3.6%) 0.681
Aspirin 19 (2.9%) 10 (3.6%) 0.681
Clopidogrel 9 (1.4%) 0 0.064
Ticagrelor 0 0 >0.999

Malperfusion
IscCoronary 27 (4.2%) 7 (2.5%) 0.257
IscCerebral 67 (10.3%) 24 (8.7%) 0.433
IscSpinal 14 (2.2%) 4 (1.4%) 0.607
IscMesenteric 16 (2.5%) 8 (2.9%) 0.822
IscRenal 48 (7.4%) 25 (9.0%) 0.403
IscUEM 12 (1.9%) 1 (0.4%) 0.123
IscLEM 76 (11.7%) 31 (11.2%) 0.815

Critical preoperative status 62 (9.6%) 31 (11.2%) 0.452
Hypotension 21 (3.2%) 15 (5.4%) 0.117
Shock 4 (0.6%) 2 (0.7%) >0.999
Tamponade 19 (2.9%) 14 (5.1%) 0.123
Ventilation 22 (3.4%) 10 (3.6%) 0.846

Laboratory data
Hb, g/L 133.0 (122.0–145.0) 132.0 (120.5–144.0) 0.354
WBC, ×1012/L 12.0 (9.8–14.6) 11.9 (10.0–15.0) 0.607
Plt, ×109/L 155.0 (124.0–194.0) 161.0 (134.4–201.0) 0.074
N, ×1012/L 10.2 (8.0–12.5) 10.0 (8.0–12.9) 0.600
cTnT, ×1000 ng/mL 20.0 (10.0–68.8) 20.0 (9.0–86.2) 0.685
BNP, pg/mL 317.3 (144.1–763.2) 348.2 (162.0–777.1) 0.614
Fibrinogen, mg/dL 243.5 (184.0–377.0) 253.0 (182.5–380.0) 0.534
D2, mg/L 8.8 (4.0–15.7) 8.8 (3.9–14.7) 0.660
INR 1.1 (1.0–1.1) 1.1 (1.0–1.2) 0.125
Tbil, µmol/L 16.5 (12.3–22.8) 16.3 (11.8–21.5) 0.536
Albumin, g/L 40.0 (37.0–43.0) 40.0 (37.0–43.0) 0.436
ALT, U/L 25.0 (17.0–44.0) 28.0 (16.0–46.0) 0.533
AST, U/L 25.0 (18.0–40.1) 26.0 (17.5–44.7) 0.473
Urea, mmol/L 6.7 (5.4–8.9) 7.0 (5.4–8.9) 0.753
Cr, µmol/L 87.0 (70.0–115.0) 83.0 (66.0–117.0) 0.306
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Table 1. Continued.

Variable
Training dataset Testing dataset

p(N = 684) (N = 277)
Na, mmol/L 140.0 (138.0–142.0) 139.0 (137.8–142.0) 0.677
K, mmol/L 3.8 (3.5–4.1) 3.8 (3.6–4.1) 0.656

TTE data
Root, mm 40.0 (36.0–44.0) 40.0 (36.0–44.0) 0.861
LAD, mm 36.2 (33.0–39.0) 36.0 (33.0–39.0) 0.164
LVEDD, mm 48.0 (44.2–51.0) 48.0 (45.0–51.0) 0.536
LVESD, mm 30.6 (29.0–33.0) 31.0 (29.0–33.0) 0.424
IVS, mm 11.4 (10.0–12.3) 11.0 (10.0–12.2) 0.166
LVEF, % 63.2 (61.0–66.0) 64.0 (61.0–66.0) 0.880
ProxAo, mm 44.0 (41.0–49.0) 45.0 (41.0–50.0) 0.364
AI 0.128

No or trace 256 (39.5%) 103 (37.2%)
Mild 154 (23.8%) 75 (27.1%)
Moderate 145 (22.4%) 46 (16.6%)
Moderate to sever 60 (9.3%) 33 (11.9%)
Severe 33 (5.1%) 20 (7.2%)

AS 0.459
No or trace 642 (99.1%) 834 (99.2%)
Mild 1 (0.2%) 2 (0.7%)
Moderate 4 (0.6%) 2 (0.7%)
Moderate to sever 1 (0.2%) 0
Severe 0 0

Pericardial effusion 197 (30.4%) 93 (33.6%) 0.341
Characteristics of dissection

IMH 64 (9.9%) 34 (12.3%) 0.278
PAU 14 (2.2%) 6 (2.2%) >0.999
Thrombosis of the false lumen

Root 68 (10.5%) 27 (9.7%) 0.732
Ascending 151 (23.3%) 77 (27.8%) 0.146
Arch 69 (10.6%) 29 (10.5%) 0.935
Descending 18 (2.8%) 2 (0.7%) 0.050

Entry tear
Root 22 (3.4%) 10 (3.6%) 0.846
Ascending 310 (47.8%) 152 (54.9%) 0.050
Arch 30 (35.7%) 283 (33.7%) 0.076
Descending 156 (24.1%) 61 (22.0%) 0.500

Commissure detachment 307 (47.4%) 126 (45.5%) 0.598
Sinus involved 427 (65.9%) 180 (65.0%) 0.789
Coronary involvement
RCA 0.804

None 480 (74.1%) 209 (75.5%)
Neri A 57 (8.8%) 19 (6.9%)
Neri B 96 (14.8%) 42 (15.2%)
Neri C 15 (2.3%) 7 (2.5%)

LCA 0.618
None 619 (95.5%) 262 (94.6%)
Neri A 11 (1.7%) 5 (1.8%)
Neri B 16 (2.5%) 10 (3.6%)
Neri C 2 (0.3%) 0

Supra-aortic vessels involvement
IA 407 (62.8%) 183 (66.1%) 0.345
LCCA 294 (45.4%) 135 (48.7%) 0.347
LSCA 280 (43.2%) 138 (49.8%) 0.064

Duration
Sym.hosT, h 13.0 (7.0–24.0) 15.0 (8.0–26.5) 0.116
Hos.surgT, h 13.0 (5.0–24.0) 15.0 (6.0–24.0) 0.115
Sym.surgT, h 28.0 (17.0–63.8) 32.0 (20.0–71.0) 0.042
Emergency 506 (78.1%) 210 (75.8%) 0.449
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Table 1. Continued.

Variable
Training dataset Testing dataset

p(N = 684) (N = 277)
Surgical data
Proximal

ARR 455 (70.2%) 177 (63.9%) 0.059
Bentall 66 (10.2%) 38 (13.7%) 0.119
David 58 (9.0%) 33 (11.9%) 0.166
Wheat 2 (0.3%) 3 (1.1%) 0.162

Distal
TAR 684 (100%) 277 (100%) >0.999
FET 639 (98.6%) 269 (97.1%) 0.120

Associated surgeries
CABG 44 (6.8%) 24 (8.7%) 0.317
Other /

MV procedures 4 (0.6%) 1 (0.4%) >0.999
TV procedures 0 0 >0.999

Perfusion
CPB time, min 185.0 (160.0–214.0) 187.0 (162.0–220.0) 0.268

Re-CPB 16 (2.5%) 8 (2.9%) 0.822
Re-re-CPB 3 (0.5%) 1 (0.4%) >0.999

ACC, min 103.0 (84.0–127.0) 107.0 (86.5–129.0) 0.135
Re-ACC 8 (1.2%) 4 (1.4%) 0.759
DHCA, min 21.0 (17.0–26.0) 20.0 (17.0–27.0) 0.984

Unilateral ACP 644 (99.4%) 273 (98.6%) 0.214
Bilateral ACP 17 (2.6%) 4 (1.4%) 0.341

LNT, °C 22.0 (21.0–23.0) 22.1 (21.1–23.0) 0.229
LBT, °C 25.9 (25.0–26.8) 26.0 (25.1–27.0) 0.063

Blood product
Transfusion rate 503 (77.6%) 220 (79.4%) 0.544
Red cell, U 7.5 (4.0–10.0) 4.0 (2.0–6.0) 0.566
Plam, mL 800.0 (600.0–1200.0) 600.0 (5.0–800.0) 0.934
Mortality 60 (9.3%) 24 (8.7%) 0.773

BMI, body mass index; HBP, high blood pressure; DM, diabetes mellitus; CAD, coronary artery
disease; CKD, chronic kidney disease; AF, atrial fibrillation; COPD, chronic obstructive pul-
monary disease; AD, aortic dissection; MFS, Marfan syndrome; BAV, bicuspid aortic valve;
TEVAR, thoracic endovascular aortic repair; IscCerebral, cerebral malperfusion; IscSpinal,
spinal malperfusion; IscCoronary, coronary malperfusion; IscMesenteric, mesenteric malper-
fusion; IscRenal, renal malperfusion; IscUEM, upper extremity malperfusion; IscLEM, lower
extremity malperfusion; Hb, hemoglobin; WBC, white blood cell count; Plt, platelet count; N,
neutrophil count; BNP, brain natriuretic peptide; D2, D-dimer; INR, international normalized
ratio; ALT, alanine transaminase; AST, aspartate aminotransferase; Cr, creatinine; LAD, diam-
eter of left atrium; LVEDD, left ventricular end-diastolic dimension; LVESD, left ventricular
end-systolic dimension; IVS, interventricular septum; LVEF, left ventricular ejection fraction;
ProxAo, diameter of the ascending aorta; AI, aortic insufficiency; AS, aortic valve stenosis;
IMH, intramural hematoma; PAU, penetration aortic ulcer; Sym.hosT, time to hospital from
symptom onset; Hos.surgT, time to surgery from hospital onset; Sym.surgT, time to surgery
from symptom onset; RCA, right coronary artery; LCA, left coronary artery; IA, innominate
artery; LCCA, left common carotid artery; LSCA, left subclavian artery; ARR, ascending aorta
replacementwith commissure resuspension; CABG, coronary artery bypass grafting; MVproce-
dures, mitral valve procedures; TV procedures, tricuspid valve procedures; FET, frozen elephant
trunk; CPB, cardiopulmonary bypass; ACC, aortic cross-clamp time; DHCA, deep hypothermic
circulatory arrest; ACP, anterograde cerebral perfusion; LNT, lowest nose temperature; LBT,
lowest bladder temperature; Reb cell, intraoperative red blood cell transfusions; Plam, intraop-
erative plasma transfusions; cTnT, cardiac troponin T; TTE, transthoracic echocardiographic;
TAR, total arch replacement; Tbil, total bilirubin.
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Fig. 1. Flow chart for the selection of study population and study design. ATAAD, acute type A aortic dissection; FET, frozen
elephant trunk; LR, logistic regression analysis; RF, random forest; Dtree, decision tree; XGBoost, eXtreme Gradient Boosting; SVM,
support vector machine; SHAP, SHapley Additive exPlanations; ROC, receiver operating characteristic; DCA, decision curve analysis.
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Table 2. Univariable and Multivariable logistic regression analyses on the training set.
Variable Univariable OR (95% CI, p) Multivariate OR (95% CI, p)

MFS 0.17 (0.02–1.26, p = 0.083)
IscCoronary 5.59 (2.39–13.07, p < 0.001) 1.22 (0.31–4.29, p = 0.800)
*IscCerebral 4.71 (2.52–8.81, p < 0.001) 2.77 (1.10–6.63, p = 0.025)
IscSpinal 5.85 (1.89–18.06, p = 0.002) 3.06 (0.73–11.60, p = 0.110)
*IscMesenteric 19.40 (6.77–55.58, p < 0.001) 10.1 (2.32–44.40, p = 0.002)
IscRenal 3.34 (1.61–6.96, p = 0.001) 1.19 (0.40–3.28, p = 0.700)
IscLEM 2.58 (1.34–4.96, p = 0.004) 2.33 (0.92–5.58, p = 0.064)
*Critical preoperative status 7.93 (4.29–14.68, p < 0.001) 4.65 (1.22–17.10, p = 0.022)
Hypotension 4.24 (1.58–11.39, p = 0.004) 0.49 (0.04–4.70, p = 0.600)
Shock 10.10 (1.40–73.06, p = 0.022) 0.41 (0.01–20.50, p = 0.700)
Tamponade 4.91 (1.80–13.45, p = 0.002) 1.16 (0.10–14.80, p > 0.999)
Ventilation 7.81 (3.18–19.14, p < 0.001) 1.22 (0.32–4.50, p = 0.800)
WBC, ×1012/L 1.08 (1.01–1.16, p = 0.018) 1.18 (0.74–1.85, p = 0.500)
Plt, ×109/L 0.99 (0.99–1.00, p = 0.004) 0.99 (0.99–1.00, p = 0.110)
N, ×1012/L 1.09 (1.01–1.17, p = 0.018) 0.79 (0.49–1.28, p = 0.300)
cTnT, ×1000 ng/mL 1.07 (1.00–1.15, p = 0.064)
BNP, pg/mL 1.00 (1.00–1.00, p = 0.023)
Fibrinogen, mg/dL 1.00 (0.99–1.00, p = 0.001)
*D2, mg/L 1.06 (1.03–1.08, p < 0.001) 1.03 (1.00–1.07, p = 0.034)
*INR 4.56 (2.01–10.38, p < 0.001) 3.48 (1.12–9.41, p = 0.016)
Albumin, g/L 0.96 (0.91–1.01, p = 0.096)
AST, U/L 1.00 (1.00–1.00, p = 0.018)
Urea, mmol/L 1.00 (0.99–1.02, p = 0.734)
Cr, µmol/L 1.00 (1.00–1.00, p = 0.037)
IVS, mm 1.17 (1.01–1.34, p = 0.030) 1.14 (0.94–1.38, p = 0.200)
AS

no or trace \
mild 0.00 (0.00–Inf, p = 0.993)
moderate 0.00 (0.00–Inf, p = 0.985)
moderate to sever 56894998.27 (0.00–Inf, p = 0.990)
severe \

Thrombosis of the false lumen of aortic root 0.13 (0.02–0.97, p = 0.046) 0.20 (0.01–1.07, p = 0.130)
*CABG 6.43 (3.21–12.85, p < 0.001) 4.01 (1.44–10.70, p = 0.006)
*CPB time, min 1.01 (1.01–1.02, p < 0.001) 1.01 (1.00–1.02, p < 0.001)

Re-re-CPB 20.24 (1.81–226.62, p = 0.015) 1.58 (0.09–50.10, p = 0.800)
ACC, min 1.01 (1.00–1.01, p = 0.054)

Bilateral ACP 2.16 (0.60–7.73, p = 0.238)
Transfusion rate 2.79 (1.17–6.61, p = 0.020) 1.04 (0.30–4.06, p > 0.999)
Red cell, U 1.12 (1.06–1.19, p < 0.001) 1.04 (0.93–1.15, p = 0.500)
Plam, mL 1.00 (1.00–1.00, p < 0.001)
OR, odds ratio; CI, confidence interval; MFS, Marfan syndrome; IscCerebral, cerebral malperfusion; IscSpinal, spinal
malperfusion; IscCoronary, coronary malperfusion; IscMesenteric, mesenteric malperfusion; IscRenal, renal malperfu-
sion; IscLEM, lower extremity malperfusion; WBC, white blood cell count; Plt, platelet count; N, neutrophil count; BNP,
n-terminal pro-brain natriuretic peptide; D2, D-dimer; INR, international normalized ratio; AST, aspartate aminotrans-
ferase; Cr, creatinine; IVS, interventricular septum; AS, aortic valve stenosis; CABG, coronary artery bypass grafting;
CPB, cardiopulmonary bypass; ACC, aortic cross-clamp time; ACP, anterograde cerebral perfusion; Reb, intraoperative
red blood cell transfusions; Plam, intraoperative plasma transfusions; cTnT, cardiac troponin T; Inf, infinity.
* Variables were finally included in the Fit.LR model.

range of 1.8% to 100%, suggesting considerable clinical
utility for all models. Among them, the Fit.SVM model
exhibited the largest area under the curve, indicating its su-
perior performance across various decision-making scenar-
ios.

3.4 Comparison of Nomogram Risk Prediction Models

In summary, the Fit.SVM model outperformed other
predictive models based on machine learning algorithms.
It achieved the highest AUC values on both the training
and testing datasets while demonstrating minimal devia-
tion between predicted results and actual outcomes, as re-
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Fig. 2. The ROC curves of models. (A) The ROC curves of Fit.LR model; (B) the ROC curves of Fit.RF model; (C) the ROC
curves of Fit.Dtree model; (D) the ROC curves of Fit.XGBoost model; (E) the ROC curves of Fit.SVM model. ROC, receiver operating
characteristic; LR, logistic regression analysis; RF, random forest; Dtree, decision tree; XGBoost, eXtreme Gradient Boosting; SVM,
support vector machine; AUC, the area under the receiver operating characteristic curve.
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Table 3. Performance of the 5 models.
Models Mean AUC on training set Mean AUC on testing set p∗ Brier score Std. Error

Fit.LR 0.849 (95% CI 0.786 to 0.908) 0.768 (95% CI 0.668 to 0.859) 0.892 0.059 0.031
Fit.RF 0.822 (95% CI 0.757 to 0.884) 0.769 (95% CI 0.688 to 0.857) 0.929 0.064 0.033
Fit.Dtree 0.834 (95% CI 0.772 to 0.890) 0.740 (95% CI 0.636 to 0.844) 0.895 0.063 0.030
Fit.XGBoost 0.835 (95% CI 0.772 to 0.892) 0.766 (95% CI 0.673 to 0.860) 0.909 0.060 0.031
Fit.SVM 0.842 (95% CI 0.780 to 0.901) 0.782 (95% CI 0.698 to 0.860) 0.949 0.058 0.031
AUC, the area under the receiver operating characteristic curve; Std. Error, standard error; CI, confidence interval; LR,
logistic regression analysis; RF, random forest; Dtree, decision tree; XGBoost, eXtreme Gradient Boosting; SVM, support
vector machine.
∗, p value for HosmerLemeshow test.

flected in its lowest Brier score. Consequently, the Fit.SVM
model was further compared with the Fit.LR model, which
was constructed using logistic regression. Both the Fit.LR
and Fit.SVM models showed excellent predictive perfor-
mance. To further compare these models, the NRI and
IDI were calculated. Using the Fit.LR model as the base-
line and the Fit.SVM model as the comparator, in-hospital
mortality <20% was classified as low risk, while mortal-
ity ≥20% was classified as high risk. The Fit.SVM model
improved prediction accuracy by 14.3% (NRI 0.143, 95%
CI 0.030 to 0.257, p = 0.013) and enhanced overall predic-
tive ability by 6.2% (IDI 0.062, 95% CI 0.020 to 0.104, p =
0.004) compared to the Fit.LRmodel. These results demon-
strated that the Fit.SVM model provided superior predic-
tive performance. A nomogram was developed based on
the Fit.SVMmodel to estimate the probability of a compos-
ite endpoint event (Fig. 5). The equation for the Fit.SVM
model is as follows: Fit.SVM model = –5.040871 +
(0.886100× cerebral malperfusion) + (2.608367×mesen-
teric malperfusion) + (1.725816 × CPStatus) + (0.028642
× D2) + (–0.006118 × Plt) + (1.381637 × CABG) +
(0.379383 × intraoperative blood product transfusion) +
(0.010404 × CPB time). Additionally, a web-based sur-
vival calculator based on the Fit.SVM model has been
created and can be accessed at: https://heartsugery7zs-
hospital.shinyapps.io/DynNomapp/.

3.5 Stratified Analyses

Patients were stratified into low-risk and high-risk
groups based on the probability of death predicted by the
Fit.SVM model, with a threshold of 20%. As shown in Ta-
ble 4, 810 low-risk patients were identified in the cohort,
with 37 in-hospital deaths, corresponding to a mortality rate
of 4.6%. Meanwhile, 115 high-risk patients were identified,
of whom 47 died during hospitalization, resulting in a mor-
tality rate of 40.8%. The difference in the incidence of in-
hospital death between the low-risk and high-risk groups
was statistically significant. The distribution of variables
included in the Fit.SVM model also differed significantly
between the low-risk and high-risk groups. Notably, vari-
ables with a substantial impact on mortality, such as cere-
bral malperfusion (univariate OR 4.71, 95%CI 2.52 to 8.81,

p< 0.001), mesenteric malperfusion (univariate OR 19.40,
95% CI 6.77 to 55.58, p< 0.001), and CPStatus (univariate
OR 7.93, 95% CI 4.29 to 14.68, p < 0.001), were predom-
inantly observed in the high-risk group.

4. Discussion
In this cohort of 925 adult patients who underwent

EAR for ATAAD over an 8-year period, the in-hospital
mortality rate was 9.1%, aligning with findings from pre-
vious studies [1,2]. EAR has become a widely adopted sur-
gical approach in China for ATAAD involving the aortic
arch and descending thoracic aorta, with an acceptable in-
hospital mortality rate [6,7]. In recent years, EAR has at-
tracted significant attention and is increasingly utilized in
clinical practice. Current guidelines also recommend EAR
as a surgical strategy for treating ATAAD [15]. EAR, how-
ever, has been considered to be the most difficult and chal-
lenging among all kinds of surgical procedures for ATAAD
with a high risk for mortality [21]. Identifying high-risk
patients and improving outcomes following EAR requires
the development of a practical and effective risk predic-
tion model for in-hospital death. In this study, we devel-
oped five nomogram models based on different methods
for selecting predictive variables to estimate the risk of in-
hospital mortality after EAR for ATAAD. Among these,
the Fit.SVM model, constructed using the SVM machine
learning algorithm, demonstrated excellent predictive per-
formance on both the training and testing datasets. It also
showed strong discrimination and calibration capabilities.

In this study, the SHAP method [17] was utilized to
evaluate the significance of each variable in the machine
learning model, aiding in variable selection through ma-
chine learning algorithms. SHAP serves as a robust tool
that visualizes the predictions of the final model, making it
widely recognized for improving the interpretability of ma-
chine learning models. By offering a unified framework,
SHAP quantifies the individual contributions of each fea-
ture to the prediction, whether positive or negative, thereby
enhancing themodel’s explainability and transparency [22].
Overfitting, a common issue in machine learning, can un-
dermine the predictive accuracy of models [23,24]. It typ-
ically arises when a model becomes overly complex [25],
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Fig. 3. The calibration curves of models. (A) The calibration curves of Fit.LR model; (B) the calibration curves of Fit.RF model; (C)
the calibration curves of Fit.Dtree model; (D) the calibration curves of Fit.XGBoost model; (E) the calibration curves of Fit.SVMmodel.
ROC, receiver operating characteristic; R2, coefficient of complex determination; D, discrimination index; U, unreliability index; Q,
quality index; LR, logistic regression analysis; RF, random forest; Dtree, decision tree; XGBoost, eXtreme Gradient Boosting; SVM,
support vector machine; Dxy, the magnitude of the rank correlation between the predicted probability and the observed value; Emax,
the maximum absolute difference between the predicted value and the actual value; E90, the 90th percentile of the difference between
the predicted value and the true value; Eavg, the average difference between the predicted value and the actual value; S:z, Z-value of
Spiegelhalter Z-test; S:p, p-value of Spiegelhalter Z-test.

resulting in erroneous conclusions that may lead to inappro-
priate clinical decisions. To counteract overfitting, strate-
gies such as reducing noise (irrelevant data), feature selec-
tion, early stopping, and k-fold cross-validation are often

employed [25,26]. In this study, variables with p< 0.05 be-
tween the death and survival groups were selected to min-
imize irrelevant data. Additionally, the optimal subset of
features identified through feature selection was used to re-

12

https://www.imrpress.com


Table 4. Characteristics of low risk group and high risk group.

Variables
Low risk group High risk group

p
(N = 810) (N = 115)

IscCerebral 55 (6.8%) 36 (31.3%) <0.001
IscMesenteric 2 (0.2%) 22 (19.1%) <0.001
Critical preoperative status 34 (4.2%) 59 (51.8%) <0.001
D2 7.7 (3.7–13.8) 18.1 (9.6–32.0) <0.001
Plt 159.0 (130.0–198.3) 134.7 (102.0–180.0) <0.001
CABG 26 (3.2%) 42 (36.5%) <0.001
Transfusion 620 (76.5%) 103 (89.5%) 0.002
CPBT 182.5 (158.0–210.0) 231.0 (179.0–300.0) <0.001
Mortality 37 (4.6%) 47 (40.8%) <0.001
IscCerebral, cerebral malperfusion; IscMesenteric, mesenteric malperfusion; D2, D-
dimer; Plt, platelet count; CABG, coronary artery bypass grafting; CPBT, cardiopul-
monary bypass time; Transfusion, intraoperative blood product transfusion.

Fig. 4. The DCA curves of models. LR, logistic regression anal-
ysis; RF, random forest; Dtree, decision tree; XGBoost, eXtreme
Gradient Boosting; SVM, support vector machine; DCA, decision
curve analysis.

duce the risk of overfitting. Despite these precautions, the
possibility of overfitting cannot be entirely excluded, and it
may have implications for clinical outcomes.

Through univariable and multivariable logistic regres-
sion analyses, cerebral malperfusion, mesenteric malper-
fusion, CPStatus, D2, INR, CPB time, and the need for
CABG were identified as independent risk factors for in-
hospital death following EAR. Using the SVM algorithm,
eight variables from the 108 variables analyzed were se-
lected and incorporated into the Fit.SVM model: cerebral
malperfusion, mesenteric malperfusion, CPStatus, D2, Plt,
CABG, intraoperative blood product transfusion, and CPB
time. The strong predictive performance of the Fit.SVM
model, demonstrated by the ROC curve, calibration curve,
and DCA, suggests that the selected combination of vari-
ables is well-suited for forecasting outcomes in ATAAD pa-
tients. SVM, a machine learning method with exceptional
classification and generalization capabilities [27], proved
to be an effective tool in this context. Additionally, ma-

chine learning algorithms not only identified variables sig-
nificantly associated with mortality in univariate analysis
but also uncovered variables that lacked statistical signifi-
cance in univariate logistic regression. This highlights the
advantages of machine learning over logistic regression,
particularly in capturing non-linear relationships between
variables and outcomes [12,13]. Compared to the Fit.LR
model, which was based on logistic regression analysis, the
Fit.SVM model demonstrated superior prediction accuracy
and overall predictive capability. These findings highlight
the potential of machine learning algorithms in selecting
variables and constructing nomogram-based risk prediction
models.

Factors influencing in-hospital outcomes of ATAAD
repair have been extensively documented in the literature
[28,29]. Previous studies have indicated that ATAAD pa-
tients presenting with cardiac tamponade, shock, conges-
tive heart failure, cerebrovascular accident, stroke, coma,
cerebral malperfusion, coronary malperfusion, or mesen-
teric malperfusion are classified as unstable and have an
in-hospital mortality rate of 35%, compared to stable pa-
tients [1,2]. In this study, cerebral malperfusion, mesenteric
malperfusion, CPStatus, D2, INR, CPB time, and the need
for CABGwere identified as independent risk factors for in-
hospital death following EAR through univariable and mul-
tivariable logistic regression analyses. Patients in the in-
hospital death group exhibited significantly higher rates of
cerebral malperfusion, mesenteric malperfusion, CPStatus,
and the need for CABG compared to those in the survival
group. These findings are consistent with previous research
[2,28–33]. Malperfusion of critical organs such as the brain
and heart, if not promptly relieved from ischemia, often
leads to irreversible damage and postoperative complica-
tions, contributing to increased mortality rates [31,32]. The
mechanism by which organ malperfusion increases mor-
tality is linked to the harmful cascade of inflammatory re-
sponses triggered by ischemia-reperfusion injury, resulting
in metabolic acidosis and organ dysfunction [34]. In par-
ticular, the diagnosis, management, and decision-making
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Fig. 5. The nomogram of Fit.SVM. IscCerebral, cerebral malperfusion; D2, D-dimer; Plt, platelet count; CABG, coronary artery
bypass grafting; IscMesenteric, mesenteric malperfusion; CPStatus, critical preoperative status; Transfusion, intraoperative blood product
transfusion; CPBT, cardiopulmonary bypass time; SVM, support vector machine.

for mesenteric malperfusion remain complex [35]. Pa-
tients with ATAAD and mesenteric malperfusion often suc-
cumb due to delays in diagnosis. The need for concurrent
CABG typically indicates significant coronary malperfu-
sion or hemodynamic instability following cardiac resusci-
tation [36]. These conditions compromise cardiac function,
adversely affecting postoperative survival rates. Numerous
studies corroborate our findings, consistently identifying
cerebral malperfusion, mesenteric malperfusion, CPStatus,
and the need for CABG as predictive factors for in-hospital
mortality in patients with ATAAD [10,37–40].

In this study, patients in the in-hospital death group
exhibited significantly higher levels of D2 and INR, as well
as prolonged CPB times, compared to those in the sur-
vival group. These findings are consistent with previous
research [30,41–44]. Elevated D2 levels in acute aortic dis-
section are strongly associated with activation of the coagu-
lation system within the false lumen [45], reflecting a state
of hypercoagulability and secondary hyperfibrinolysis [46].
Prior studies [43,44] have demonstrated that plasma D2
concentrations correlate with factors such as vessel involve-
ment length, dissection size, and injury characteristics. Pa-
tients with elevated D2 levels are more likely to experi-
ence organ ischemia and more extensive dissections [47].
Increased D2 levels have also been linked to reduced Plt,
higher transfusion requirements during surgery, prolonged
operative times, and a greater likelihood of in-hospital mor-

tality. The prognostic significance of preoperative D2 ele-
vation in ATAADhas been widely reported [43,45,48]. Pre-
operative elevation in INR indicates severe coagulopathy,
which exacerbates bleeding tendencies. Emergency aortic
repair for ATAAD presents a particularly high risk of bleed-
ing due to prolonged CPB time, the induction of moder-
ate to severe hypothermia, and the fragility of the dissected
aorta [42]. Patients with elevated preoperative INR face a
markedly increased risk of perioperative bleeding, which
can lead to in-hospital mortality. Prolonged CPB time has
been identified as an independent risk factor for poor out-
comes following EAR for ATAAD, consistent with the find-
ings of Macrina et al. [30] and Zhang et al. [41]. The
complexity of EAR often necessitates extended CPB dura-
tions, which cannot fully replicate the body’s physiological
blood supply. Prolonged CPB activates inflammatory re-
sponses, disrupts coagulation mechanisms, and causes sig-
nificant damage to critical organs [48]. It may result in pul-
monary dysfunction, systemic inflammatory responses, cy-
totoxin production, embolism, and reperfusion injury [49],
all of which contribute to higher in-hospital mortality rates.

The combination of cerebral malperfusion, mesenteric
malperfusion, CPStatus, D2, Plt, CABG, intraoperative
blood product transfusion, and CPB time demonstrated sig-
nificant predictive power for in-hospital mortality. Smith
et al. [50] reported a link between massive plasma trans-
fusion and adverse outcomes after cardiac surgery, likely
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due to complications associated with transfusion. These
complications include transfusion-related acute lung injury,
transfusion-associated circulatory overload, febrile and al-
lergic reactions, infections, andmulti-organ dysfunction, all
of which are strongly associated with increased in-hospital
mortality risk [51–53]. The prognostic importance of Plt
in predicting mortality from aortic dissection has been ex-
tensively studied [54–57], showing that decreased preoper-
ative platelet levels are correlated with bleeding complica-
tions and increased fatality risk. In this study, the SVM al-
gorithm effectively identified platelets as a significant pre-
dictor, consistent with previous findings.

This study developed a simple, effective, accurate,
and practical model to predict the risk of in-hospital mor-
tality following EAR. Our model offers several advan-
tages over other predictive models [6,8,10,11]. First, we
compared multiple modeling approaches and selected the
model with the best predictive performance. Second, our
model incorporated a wide range of factors, including de-
mographic characteristics, comorbidities, preoperative con-
ditions, laboratory values, TTE data, and surgical details,
making it comprehensive in assessing in-hospital mortality
risk. Third, it was constructed using clinical data from a
large cohort of ATAAD patients undergoing EAR at a high-
volume center over an 8-year period. Lastly, we provided
nomograms and a web-based calculator, enabling other re-
searchers and clinicians to input their own data to estimate
in-hospital mortality risk following EAR. This nomogram-
based predictive model empowers surgeons to accurately
assess the risk of in-hospital mortality for ATAAD patients
undergoing EAR. As an effective visualization tool, it fa-
cilitates precise postoperative evaluations and patient risk
stratification. By applying this model, surgeons can im-
prove the quality of postoperative care, develop person-
alized treatment plans, and implement effective surgical
strategies, ultimately enhancing survival rates and overall
therapeutic outcomes.

Although some of the selected factors in this study are
not novel, their combination was employed to develop a
nomogram capable of predicting the risks of adverse events.
However, external validation using larger sample sizes re-
mains necessary before clinical implementation. This can
be achieved through multi-center and/or multinational col-
laborative efforts. To promote reproducibility and support
further validation, the code and model equations have been
provided in this paper. By refining parameters such as re-
gression coefficients using multi-center data, potential bi-
ases in the model could be minimized, and its predictive
performance optimized. Further validation with external
datasets will also enhance the model’s interpretability and
reliability. To assist clinicians, an online calculator has
been developed to support postoperative management.

This study has several limitations. First, it was a retro-
spective single-center analysis, which may have introduced
selection bias. Second, procedures were performed by up
to five surgeons, and variations in surgical experience and

technique may have contributed to uncertainty in the re-
sults. Third, the study cohort included 84 patients aged
70 years or older, accounting for only 9% of the popula-
tion, with a mortality rate of 11.9%. This suggests that
the model may have limited predictive value for elderly pa-
tients. Fourth, among the cohort, 71.1% of patients had hy-
pertension, whereas the prevalence of other comorbidities
was less than 5%. As a result, the predictive value of this
model for patients with multiple comorbidities may be re-
stricted. Fifth, despite the measures taken to prevent it, ma-
chine learning algorithmsmay still be susceptible to overfit-
ting. Finally, external validation with independent cohorts
has yet to be conducted.

5. Conclusions
We developed a novel nomogram-based risk predic-

tion model using the SVM algorithm to predict in-hospital
mortality following extended aortic arch repair for ATAAD.
The model demonstrated good discrimination and accu-
racy. The combination of cerebral malperfusion, mesen-
teric malperfusion, CPStatus, MFS, D2, Plt, CABG, and
CPB timewas identified as having significant predictive ca-
pability.
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