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Abstract

Background: Diuretic resistance (DR) is characterized by insufficient fluid and sodium excretion enhancement despite maximum loop
diuretic doses, indicating a phenotype of refractory heart failure (HF). Recently, metabolomics has emerged as a crucial tool for diagnos-
ing and understanding the pathogenesis of various diseases. This study aimed to differentiate diuretic-resistant patients from non-resistant
HF to identify biomarkers linked to the emergence of DR.Methods: Serum samples from HF patients, both with and without DR, were
subjected to non-targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry. Metabolite variations between
groups were identified using principal component analysis and orthogonal partial least-square discriminant analysis. Metabolic pathways
were assessed through the Kyoto Encyclopedia of Genes and Genomes database enrichment analysis, and potential biomarkers were de-
termined using receiver operating characteristic curves (ROCs). Results: In total, 192metabolites exhibited significant differences across
the two sample groups. Among these, up-regulation was observed in 164 metabolites, while 28 metabolites were down-regulated. A total
of 28 pathways involving neuroactive ligand-receptor interaction and amino acid biosynthesis were affected. The top five metabolites
identified by ROC analysis as potential DR biomarkers were hydroxykynurenine, perillic acid, adrenic acid, 5-acetamidovalerate, and
adipic acid. Conclusions: Significant differences in metabolite profiles were observed between the diuretic-resistant and non-diuretic-
resistant groups among patients with HF. The top five differentially expressed endogenous metabolites were hydroxykynurenine, perillic
acid, adrenic acid, 5-acetamidovalerate, and adipic acid. The metabolic primary pathways implicated in DR were noted as amino acid,
energy, and nucleotide metabolism. Clinical Trial Registration: This study was registered with the China Clinical Trials Registry
(https://www.chictr.org.cn/hvshowproject.html?id=197183&v=1.7, ChiCTR2100053587).
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1. Introduction

Heart failure (HF) is a complex clinical syndrome
caused by structural and/or functional abnormalities within
the heart, characterized by the heart’s inability to pump suf-
ficient blood and oxygen to meet the metabolic demands
of other organs. The World Health Organization estimates
that approximately 64.3 million individuals, constituting
1% to 2% of the global population, are afflicted by HF.
Overactivation of the sympathetic and renin-angiotensin-
aldosterone systems (RAAS) leads to water and sodium re-
tention, resulting in extracellular volume expansion and a
significant deterioration in a patient’s condition [1,2]. Key
symptoms such as lung congestion, peripheral oedema, and
elevated jugular venous pressure are commonly seen in pa-
tients with HF [3]. Consequently, diuretics serve as fun-
damental therapeutic agents aimed at alleviating symptoms
and signs attributable to water and sodium retention [4–6].

As the frequency and dosage of diuretic administration
increase, the effectiveness of diuresis diminishes, leading to
the development of diuretic resistance (DR). DR can be suc-
cinctly defined as either a diminished or complete absence
of response to loop diuretics [7]. Specifically, a commonly
used measure is the fractional excretion of sodium. The
fractional excretion of sodium refers to the proportion of
the filtered sodium load that is excreted from the body in the
form of sodium (mmol/time) [8]. DR is present when this
fraction is less than 0.2. Under normal physiological con-
ditions, the kidneys filter the sodium in the blood, reabsorb
part of the filtered sodium as needed, and excrete the rest in
the urine. When loop diuretics are used, they normally pro-
mote sodium excretion and increase the fractional excretion
of sodium. However, in the case of DR, even if loop di-
uretics are administered, the fractional excretion of sodium
remains below 0.2%, indicating that the diuretic’s effect of
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promoting sodium excretion has not been effective. Ap-
proximately one-third of patients experience DR [9], char-
acterised by an inability to enhance renal sodium and water
excretion through diuretic therapy, resulting in persistent
symptoms of volume overload and edema [5,10,11]. The
DR is a refractory phenotype in the progression of HF, of-
ten necessitating frequent hospital admissions and stays in
the intensive care unit. It is independently associated with
worsening renal function and death [12–14]. Diagnosis of
DR typically occurs after a patient’s non-responsiveness to
escalated diuretic doses, often with a considerable time lag.
Therefore, identifying reliable biomarkers for the timely de-
tection of DR is crucial. This could facilitate prompt inter-
vention and potentially improve the prognosis.

Introduced by Professor Nicolson in 1999,
metabolomics has emerged as a crucial element within
the realm of systems biology. The primary objective of
this analysis is to discern the relative associations be-
tween metabolites and pathological alterations [15]. With
advancements in technology and metabolic databases,
metabolomics can uncover insights into cardiovascular
disease and identify potential new biomarkers [16–18].
In patients with HF, changes in circulating metabolites
reflect metabolic alterations in both the heart and pe-
ripheral tissues, with these peripheral metabolic changes
being an integral part of the pathogenesis and disease
progression of HF [19,20]. Therefore, this prospective
study used metabolomics techniques to identify differential
metabolites as biomarkers for diagnosing DR in HF.

2. Methods
2.1 Population

Participants were recruited from the First Affiliated
Hospital of Hunan University of Chinese Medicine and
the Changsha Hospital of Chinese Medicine between De-
cember 2021 to December 2022. The study was ap-
proved by the Ethics Committee of The First Affili-
ated Hospital of Hunan University of Chinese Medicine
under the ethical approval number HN-LL-SZR-2021-
10. It was registered with the China Clinical Trials
Registry (https://www.chictr.org.cn/hvshowproject.html?i
d=197183&v=1.7, ChiCTR2100053587), and written in-
formed consent was obtained from all participants prior to
their involvement in the study.

2.2 Inclusion and Exclusion Criteria
Inclusion criteria included individuals aged between

50 and 85 years who met the diagnostic criteria [21] for
HF according to the 2018 Guidelines for the Diagnosis and
Treatment of HF in China, along with having a New York
Heart Association (NYHA) functional class of ≥Grade III.

Exclusion criteria included individuals eligible for
hemodialysis, those with a systolic blood pressure of ≤80
mmHg, a glomerular filtration rate of ≤15 mL/min, serum
albumin levels of ≤2.5 g/dL, serum potassium levels of

≥5.5 mEq/L, serum sodium levels of >145 mEq/L, and
anuric patients with a urine volume of≤100mL per 24 hour
(h). In addition, individuals with a history of myocardial in-
farction or unstable angina within the past 3months or those
who underwent coronary revascularization (either surgical
bypass surgery or angioplasty) were excluded. Individu-
als with severe primary diseases such as those affecting the
hematopoietic system or malignant tumours were also ex-
cluded.

2.3 Identification of DR and Baseline Characteristics
To elucidate the crucial physiological process of the

diuretic response, the initial treatment with loop diuret-
ics was initiated immediately upon the patients’ admis-
sion. The changes in urine volume and body weight, which
can effectively reflect the diuretic effect, were examined.
The drug were standardized, with dosages equivalent to 48
h/40 mg of furosemide [13,22]. After treatment, the pa-
tient’s urine volume change of <+1000 mL/48 h/40 mg of
furosemide or a weight change of ≥+0 kg/48 h/40 mg of
furosemide, indicated the presence of DR if either condi-
tion was met [23]. This definition is based on the fact that
if the urine volume does not change, it indicates that the
diuretic fails to effectively promote urine excretion. Addi-
tionally, if the body weight does not decrease or even in-
creases, it indicates that the fluid retention in the body has
not improved. Both situations imply that the patient has not
shown the expected response to the treatment. Finally, 60
patients, comprising 30 with DR and 30 without DR, met
the inclusion criteria and were enrolled in the study.

The baseline characteristics of the patients were the
first valid values recorded after hospital admission. In-
formation such as coronary heart disease, cardiomyopathy,
and atrial fibrillation were obtained from the history diag-
nosis results in the electronic medical record system. The
body mass index (BMI) was calculated using the following
formula: BMI = weight (kg)/height (m2). The estimated
glomerular filtration rate (eGFR) was calculated using the
2021 Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) formula [24]: eGFR [mL/(min × 1.73 m2)] =
142× (Scr/A)B × (0.9938)age × C (Scr: serum creatinine).
For females: The value of C is 1.012.

When Scr ≤0.7 mg/dL, A = 0.7 and B = –0.241.
When Scr >0.7 mg/dL, A = 0.7 and B = –1.2.

For males: The value of C is 1.
When Scr ≤0.9 mg/dL, A = 0.9 and B = –0.302.
When Scr >0.9 mg/dL, A = 0.9 and B = –1.2.

2.4 Sample Size Estimation
Statistical efficacy and sample size for the t-tests were

calculated using https://www.statskingdom.com/sample_si
ze_t_z.html. The results indicated that a minimum of 26
samples per group were necessary (with α = 0.05 and effect
size = 0.8), as depicted in the Supplementary File 1.
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Fig. 1. Case inclusion flowchart. NYHA, New York Heart Association.

2.5 Sample Collection
Blood samples were collected in the morning after de-

termining whether the patients were diuretic-resistant or
non-diuretic-resistant. Subsequently, they were allowed
to stand at room temperature for 1 h before undergoing
centrifugation at 3000 rpm for 15 min (HT230R, Xiangyi
Experiment Equipment Co., Ltd., Changsha, China). The
resulting clear supernatant was transferred into a 1.5 mL
Eppendorf tube and refrigerated at –80 °C (DW-86W100,
Haier, Qingdao, China) until further analysis.

2.6 Metabolomics Analysis

2.6.1 Sample Preparation
The samples were taken out from the –80 °C freezer

and thawed at 4 °C. After thawing, each sample was vor-
texed for 1 minute to ensure complete mixing (BE-2600,
Kylin-bell Lab Instruments Co., Ltd., Haimen, China).
Then, an accurate volume of the sample was transferred into
a 2 mL centrifuge tube. Subsequently, 400 µL of methanol
(67-56-1, Fisher Scientific, Loughborough, UK) (stored at
–20 °C) was added to the tube, and the mixture was vor-
texed again for 1 minute. Next, the sample was centrifuged
at 12,000 rpm and 4 °C for 10 minutes. The resulting su-
pernatant was carefully transferred to a new 2 mL cen-
trifuge tube, concentrated, and dried. Finally, 150 µL of
a 2-chloro-l-phenylalanine (103616-89-3, Aladdin, Shang-
hai, China) (4 ppm) solution, which was prepared with 80%
methanol - water (stored at 4 °C), was added to redissolve
the sample. The supernatant was filtered through a 0.22 µm
membranem (Tianjin Jinteng Experiment Equipment Co.,

Ltd., Tianjin, China) and transferred into a detection bottle
for liquid chromatography (LC) - mass spectrometry (MS)
analysis [25].

2.6.2 Liquid Chromatography
The LC analysis was performed using a Vanquish

UHPLC System (Thermo Fisher Scientific, Waltham, MA  ,
USA). For LC-electrospray ionization (ESI) (+)-MS anal-
ysis, the mobile phases consisted of formic acid (64-18-
6, TCI, Shanghai, China) in acetonitrile ((75-05-8, Fisher
Scientific, Loughborough, UK) and formic acid (64-18-6,
TCI, Shanghai, China) in water (Millipore, Bedford, MA,
USA)). LC-electrospray ionization (ESI) (-)-MS analysis
involved the use of acetonitrile (75-05-8, Fisher Scientific,
Loughborough, UK) and ammonium formate (540-69-2,
Sigma-Aldrich, Shanghai, China) (5 mM). Detailed infor-
mation is included in the supplementary methods [26].

2.6.3 Mass Spectrometry
Metabolite detection via MS was performed using Or-

bitrap Exploris 120 (Thermo Fisher Scientific, Waltham,
MA  , USA) with an ESI ion source. The acquisition
method employed simultaneous MS1 and MS/MS (full
MS-ddMS2mode, data-dependentMS/MS). Parameters in-
cluded MS/MS resolving power set at 15,000 FWHM, nor-
malised collision energy at 30%, and dynamic exclusion
time set to automatic. Detailed information is included in
the supplementary methods [27].
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Table 1. Baseline characteristics of the patients.
Diuretic-resistant Non-diuretic-resistant p value

No. of case 30 30
Age, years 72.0 ± 5.1 72.7 ± 4.0 0.577
Male, n/% 17/56.7 18/60.0 0.793
Heart rate, beats/min 79.9 ± 12.7 83.5 ± 21.7 0.435
Temperature, °C 36.47 (0.23) 36.46 (0.30) 0.861
Blood pressure, mm Hg

Systolic 123.8 ± 23.6 133.1 ± 25.5 0.150
Diastolic 77.3 (17.0) 79.3 (18.0) 0.544

BMI (18.5–24.9), n/% 21/70.0 23/76.7 0.559
NYHA III, n/% 13/43.3 16/53.3 0.438
NT-proBNP, pg/mL 5666.1 (5446.1) 3233.2 (3594.7) 0.014
Smoke, n/% 11/36.7 9/30.0 0.584
Comorbidity

Coronary heart disease, n/% 21/70.0 16/53.3 0.184
Cardiomyopathy, n/% 8/26.7 8/26.7 >0.999
Atrial fibrillation, n/% 2/6.7 2/6.7 >0.999

History of cardiac surgery, n/% 6/20.0 1/3.3 0.108
Hypertension, n/% 21/70.0 20/66.7 0.781
Diabetes, n/% 14/46.7 12/40.0 0.602
Creatinine (umol/L) 106.84 ± 41.22 95.32 ± 32.10 0.232
eGFR (min × 1.73 m2) 62.35 ± 28.22 78.57 ± 33.40 0.047
BMI, body mass index; NT-proBNP, N-terminal prohormone of brain natriuretic peptide;
eGFR, estimated glomerular filtration rate.

2.7 Data Analysis
2.7.1 Data Processing and Annotation

The raw data underwent initial conversion to the
mzXML format using MSConvert within the ProteoWizard
software package (v3.0.8789) [28], followed by processing
using XCMS [29] for feature detection, retention time cor-
rection, and alignment. Metabolite identification relied on
accurate mass (<30 ppm) and MS/MS data, which were
matched with databases such as the Human Metabolome
Database [30], MassBank [31], LipidMaps [32], mzcloud
[33], and the Kyoto Encyclopaedia of Genes and Genomes
(KEGG) [34]. To ensure accuracy, robust locally estimated
scatterplot smoothing signal correction [35] was employed
for data normalisation, effectively correcting for any sys-
tematic bias. Following normalisation, only ion peaks with
relative standard deviations <30% in quality control (QC)
were retained to ensure accurate metabolite identification.

2.7.2 Statistical Analysis and Visualisation
R software (ver. 4.2.1, The R Foundation, Vi-

enna, Austria) was used for statistical analysis. The sample
data was analysed for dimension reduction through princi-
pal component analysis (PCA) and orthogonal partial least-
square discriminant analysis (OPLS-DA) with the Ropls
package [36]. The data was scaled to show the differences
in metabolite composition among samples (Q2 >0.5; R2
>0.5). All models were checked for overfitting through
permutation tests. OPLS-DA helped to identify discrimina-

tive metabolites by using the variable importance on projec-
tion (VIP) metric. The p-value, VIP score, and fold change
were used to identify contributing variables for classifica-
tion. Pathway analysis of differential metabolites was car-
ried out using MetaboAnalyst (McGill University, Quebec,
Canada) [37], which combines robust pathway enrichment
analysis with pathway topology analysis. The identified
metabolites in metabolomics were mapped to the KEGG
pathway for the biological interpretation of higher-level
systemic functions. Finally, metabolites were considered
statistically significant when their p-value was <0.05 and
VIP value was >1.

All statistical analyses were conducted using SPSS
software (version 26.0, IBM, Armonk, NY, USA). Cate-
gorical variables are described using percentages [n/(%)],
and between-group comparisons were assessed using the x2
test. The measurement data require a prior normality test.
For the measurement data that conform to the normal dis-
tribution, they are described in terms of mean ± standard
deviation, and the comparison between the two groups was
carried out using the t-test. In the case of data with a skewed
distribution, they are denoted by the median (interquartile
range), and the comparison between the two groups was
implemented through the Mann-Whitney U test. Statisti-
cal significance was set at p < 0.05. Receiver operating
characteristic (ROC) curves were employed to evaluate di-
agnostic accuracy.
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Fig. 2. PCA score chart for QC samples. (A) Positive ion mode: graph of PCA scores for QC samples. (B) Negative ion mode: graph
of PCA scores for QC samples. CG, non-diuretic-resistant group; EG, diuretic-resistant group; PCA, principal component analysis; QC,
quality control; PC1, the first principal component; PC2, the second principal component.

3. Results
3.1 Characteristics of The Patients

This study included 60 participants, with 30 cases in
the diuretic-resistant group and 30 cases in the non-diuretic-
resistant group. From these participants, 57 serum samples
were collected. Hemolysis occurred in two blood samples,
and one patient died on the same day of blood collection
due to severe electrolyte disturbances and multi-organ fail-
ure. This resulted in a total of 28 cases in the diuretic-
resistant group and 29 cases in the non-diuretic-resistant
group. The sampling procedure is illustrated in Fig. 1. The
baseline characteristics of the 60 patients are summarised
in Table 1. There were no significant differences in sex,
age, heart rate, temperature, blood pressure, body mass in-
dex, NYHA functional class, smoking status, comorbidities
or creatine between the diuretic-resistant and non-diuretic-
resistant groups (p > 0.05). However, there were signifi-
cant differences in N-terminal prohormone of brain natri-
uretic peptide (NT-proBNP) (p = 0.014) and eGFR (p =
0.047) between the two groups. The NT-proBNP level in
the diuretic-resistant group was significantly higher than
that in the non-diuretic-resistant group. Moreover, eGFR
was negatively correlated with DR. The smaller the eGFR
value, the greater the likelihood of DR occurrence.

3.2 Metabolomic Analysis
3.2.1 Quality Control

In both ESI+ and ESI- modes, the PCA plot displayed
tight clustering of QC samples across all samples (Fig. 2).
This clustering suggests excellent analytical reproducibility
and underscores the reliability of the findings in the current
metabolomics study.

Table 2. Major difference metabolites between
diuretic-resistant and non-diuretic-resistant groups.

Name log2(FC) p value VIP Tendency

Hydroxykynurenine –1.16 3.75 × 10−8 2.758019 ↓
Perillic acid 1.43 1.85 × 10−7 2.576167 ↓
Adrenic acid –1.29 7.19 × 10−8 2.565477 ↓
5-acetamidovalerate 1.15 3.68 × 10−7 2.517805 ↓
Adipic acid 2.04 2.88 × 10−6 2.242457 ↓

VIP, variable importance on projection; FC, fold change.

3.2.2 Analysis of Differences between Groups
Supervised metabolomics analysis was conducted us-

ing OPLS-DA. The score plot (Fig. 3A,B) depicted distinct
clustering of samples within respective groups and disper-
sion of samples between groups, indicating reliable find-
ings. Additionally, the permutation test plots (Fig. 3C,D)
revealed that all blue Q2 points were situated below the
original blue Q2 point on the far right, indicating the va-
lidity of the analysis.

3.2.3 Correlation Analysis of Differentially Expressed
Metabolites

Differential metabolites were identified from the list
of sample-level substances and screened using a prede-
fined threshold of p-value < 0.05 and VIP >1.0 in the
statistical analysis. A total of 192 differential metabo-
lites were detected, comprising 164 up-regulated and 28
down-regulated differential metabolites. Among them,
the five most significant differential endogenous metabo-
lites were Hydroxykynurenine, Perillic acid, Adrenic acid,
5-Acetamidovalerate, and Adipic acid (Table 2). These
metabolites are presented in a hierarchical clustering heat
map (Fig. 4) and volcanic plot (Fig. 5).
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Fig. 3. Orthogonal partial least-squares discriminant analysis OPLS-DA scores and replacement test results for serum samples
from both groups. (A) Positive ion mode: OPLS-DA scores. (B) Negative ion mode, OPLS-DA scores. (C) Positive ion mode: OPLS-
DA replacement inspection chart. (D) Negative ion mode: OPLS-DA replacement inspection. OPLS-DA, orthogonal partial least-square
discriminant analysis; R2 and Q2 respectively refer to the values of the intersection points of the two regression lines R and Q with the
y-axis.

3.2.4 Defining Potential Biomarkers for the Early
Diagnosis of DR

To explore the predictive potential of these differen-
tial metabolites for DR, the top five metabolites showing
significant differences, namely Hydroxykynurenine, Per-
illic acid, Adrenic acid, 5-Acetamidovalerate, and Adipic
acid, were subjected to ROC analysis (Fig. 6). The area un-
der the ROC curve was 0.975. These findings indicate that
the top five significantly different metabolites hold the po-
tential for early prediction of DR with favorable sensitivity
and specificity.

3.2.5 The Enriched Metabolic Pathways

The KEGG database serves as a valuable resource for
the systematic analysis of gene function and genomic infor-
mation [34]. To determine the most important biochemical
metabolic pathways and signal transduction pathways asso-
ciated with the metabolites, the KEGG pathway enrichment
analysis was performed on 192 different metabolites.

Under the criteria of p < 0.05 and pathway impact
>0.1, indicative of significant pathway involvement, a total
of 28 pathways were significantly affected (Table 3). The
differential metabolites between the two groups were pre-
dominantly enriched in various pathways, including neu-
roactive ligand-receptor interaction, biosynthesis of amino
acids, central carbon metabolism in cancer, alanine as-
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Fig. 4. Hierarchical clustering heat map of differential metabolites. The color difference in the graph indicates the relative content.
A redder color represents a higher expression, while a bluer color indicates a lower expression. The columns stand for the samples, and
the rows represent the names of metabolites. The differential metabolite clustering tree is located on the left side of the graph. When the
number of metabolites exceeds 150, their names will not be displayed.

partate and glutamate metabolism, protein digestion and
absorption, tyrosine metabolism, beta-alanine metabolism,
phenylalanine metabolism, aminoacyl-transfer ribonucleic
acid (tRNA) biosynthesis, glycine serine and threonine
metabolism, arginine biosynthesis, valine/leucine and
isoleucine biosynthesis, monobactam biosynthesis, min-
eral absorption, axon regeneration, cocaine addiction, ly-
sine degradation, lysine biosynthesis, γ-aminobutyric acid
(GABA) ergic synapse, amphetamine addiction, serotonin
receptor agonists/antagonists, carbon fixation in photosyn-
thetic organisms, cholesterol metabolism, alcoholism, in-
sect hormone biosynthesis, cyclic adenosine monophos-
phate signalling pathway, phospholipase D signalling path-
way, and prolactin signalling pathway.

The KEGG enrichment histogram (Fig. 7) depicted
the associated metabolic pathways. The most significantly
different pathways between the diuretic-resistant and non-
diuretic-resistant groups are neuroactive ligand-receptor in-
teraction, biosynthesis of amino acids, and central carbon
metabolism in cancer.

Fig. 8 presents the metabolic pathway network dia-
gram. The diagram highlights the pathways most enriched,
including neuroactive ligand-receptor interactions, amino
acid biosynthesis, and central carbon metabolism in cancer.

4. Discussion
This study employed untargeted metabolomics analy-

sis via LC-MS/MS to identify 192 differential metabolites

distinguishing between diuretic-resistant and non-diuretic-
resistant groups. Among them, 164 metabolites were
up-regulated and 28 were down-regulated. Notably, the
top five significant differential endogenous metabolites
were Hydroxykynurenine, Perillic acid, Adrenic acid, 5-
Acetamidovalerate, and Adipic acid. The diagnostic po-
tential of these five key metabolites was evaluated through
ROC curve analysis, suggesting their promising utility as
early markers for diagnosing the DR phynotype of HF.
For example, in routine blood tests of patients, if the lev-
els of these biomarkers can be monitored, when abnormal
changes are detected, even if the patient has not yet exhib-
ited traditional symptoms of DR, doctors can preliminarily
determine that the patient is at a high risk of developing
DR based on the changes in these biomarkers. During the
treatment process, continuous monitoring of the levels of
these biomarkers can reflect the effectiveness of the treat-
ment plan in real time, enabling timely adjustment of the
treatment plan.

In the KEGG analysis, the pathway demonstrating the
most pronounced disparities was the neuroactive ligand-
receptor interaction. This pathway exhibited a notable con-
centration of ligands and receptors on the plasma mem-
brane, indicating a potential close association between the
pathogenesis of DR and intracellular as well as extracellular
ionic pathways and signal transduction.

Imbalances in various amino acids have been observed
in diuretic-resistant and non-diuretic-resistant groups.
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Table 3. Significant differences in metabolic pathways between the diuretic-resistant group and the non-diuretic-resistant group.
Pathway_name Total p value Impact

Neuroactive ligand-receptor interaction 52 3.333 × 10−6 0.912
Biosynthesis of amino acids 128 8.364 × 10−6 0.117
Central carbon metabolism in cancer 37 1.325 × 10−5 0.216
Alanine, aspartate and glutamate metabolism 28 1.691 × 10−5 0.250
Protein digestion and absorption 47 8.269 × 10−5 0.170
Tyrosine metabolism 78 1.314 × 10−4 0.128
beta-Alanine metabolism 32 3.815 × 10−4 0.189
Phenylalanine metabolism 60 4.765 × 10−4 0.133
Aminoacyl-tRNA biosynthesis 52 0.001 0.135
Glycine, serine and threonine metabolism 50 0.004 0.120
Arginine biosynthesis 23 0.005 0.174
Valine, leucine and isoleucine biosynthesis 23 0.005 0.174
Monobactam biosynthesis 39 0.007 0.128
Mineral absorption 29 0.012 0.138
Axon regeneration 7 0.018 0.286
Cocaine addiction 7 0.018 0.286
Lysine degradation 50 0.019 0.10
Lysine biosynthesis 35 0.022 0.114
GABAergic synapse 9 0.030 0.222
Amphetamine addiction 9 0.030 0.222
Serotonin receptor agonists/antagonists 1 0.031 1.00
Carbon fixation in photosynthetic organisms 23 0.033 0.130
Cholesterol metabolism 10 0.037 0.20
Alcoholism 10 0.037 0.20
Insect hormone biosynthesis 25 0.041 0.120
cAMP signaling pathway 25 0.041 0.120
Phospholipase D signaling pathway 11 0.044 0.182
Prolactin signaling pathway 11 0.044 0.182
tRNA, transfer ribonucleic acid; GABA, γ-aminobutyric acid; cAMP, cyclicadenosine
monophosphate.

Amino acids play vital roles in numerous cellular biosyn-
thetic and metabolic processes, some of which have been
linked to HF [38]. Additionally, amino acid metabolism is
closely associated with the progression of DR. Among the
dysregulated metabolites identified in metabolomics analy-
ses, certain compounds exhibit neurotransmitter properties
or neuroactive functions. For instance, GABA, a prominent
inhibitory neurotransmitter in the nervous system, acts by
binding to specific transmembrane receptors on the plasma
membrane of both pre- and postsynaptic neurons. Alter-
ations in GABAergic input to the paraventricular nucleus
in patients with chronic HF maintain a sympathetic va-
sodilatory tone. Elevated GABA levels might offer novel
insights into the neurological influences on disease pro-
gression in HF [39]. However, further biological experi-
ments are warranted to elucidate the detailed mechanisms
involved. Furthermore, several metabolites categorised as
dipeptides have been identified as dysregulated from the
stage of HF to DR. Examples include prolylhydroxypro-
line, glutamylphenylalanine, and threonylleucine. These
compounds are typically regarded as breakdown products

of protein digestion or proteolytic metabolism, with some
dipeptides serving physiological or cellular signalling func-
tions [40]. Given the presence of cardiac structural alter-
ations spanning from HF to DR, these dipeptides might
stem from protein digestion within abnormal cardiac cells,
holding promise as potential diagnostic biomarkers.

Differences were also observed in central carbon
metabolism in cancer between the two groups, suggesting
a potential link between severe HF and cancer. First, fac-
tors such as heightened oxidative stress, low-level inflam-
matory response, activation of the neurohormonal system,
and immune system dysregulation might collectively con-
tribute to the development of HF and cancer. Second, alter-
ations in the cardiac extracellular matrix influence tumour
stroma. As HF progresses, the stroma undergoes signifi-
cant changes, becoming more fibrotic [41,42]. This shift
in the microenvironment not only precipitates pathological
changes such as cardiomyocyte hypertrophy and abnormal
energy metabolism but also indirectly stimulates other or-
gans, including tumor tissues, via the bloodstream. This
stimulation occurs through the release of paracrine or en-
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Fig. 5. Volcanic plot. In the figure, each point stands for a
metabolite. The x-axis represents the log2 value of the quanti-
tative difference of a metabolite between two samples, while the
y-axis represents the log10 value of the p value. A larger absolute
value of the x-axis indicates a greater difference in the expression
multiplicity of a metabolite between the two samples. A larger y-
axis value indicates more significant differential expression, and
the differentially expressed metabolites obtained through screen-
ing are more reliable. By default, the names of the top 5 metabo-
lites with the smallest p values are displayed. ns refers to sub-
stances that have no significant difference.

docrine growth factors, cytokines, and chemokines. There-
fore, future studies can explore HF biomarkers based on
those associated with cancer.

There are differences in the pathways associated with
protein digestion and absorption between the two groups.
Patients with HF often experience concomitant digestive
and absorption dysfunction, resulting in inadequate pro-
tein intake and various adverse effects such as hypopro-
teinaemia [43,44]. Consequently, hypoproteinaemia lim-
its the ability of diuretics by impeding their ability to
reach appropriate concentrations at their target sites, includ-
ing distal tubular adaptation, among others. Aminoacyl-
tRNA plays a pivotal role in shuttling amino acids to ribo-
somes for protein synthesis [45,46]. Aminoacyl-tRNA syn-
thetases (ARSs) are widely distributed in organisms. Dis-
turbances in aminoacyl-tRNA biosynthesis observed in pa-
tients with DR might be associated with disturbances in
the metabolism of numerous amino acids. Several muta-
tions might result in compromised aminoacylation or edit-
ing activity or altered gene expression levels of ARSs [47].
The adenosine triphosphate-binding cassette (ABC) trans-
porter protein family comprises crucial efflux-type trans-
porter proteins in the human body, with P-glycoprotein,
breast cancer resistance protein, and multidrug resistance
protein representing prominent members [48]. The admin-

Fig. 6. Receiver operating characteristic analysis of the top
five differentialmetabolites (hydroxykynurenine, perillic acid,
adrenic acid, 5-acetamidovalerate, and adipic acid). AUC, area
under curve.

istration of diuretics in various clinical diseases can impact
the function or expression of ABC transporter proteins, sub-
sequently affecting the in vivo dynamic processes and effi-
cacy of co-administered chemotherapeutic drugs.

Apart from these identified differential metabolites
and metabolic pathways, traditional markers are of great
significance in DR. The pathophysiological mechanism un-
derlying DR involves complex interactions at multiple lev-
els. From the perspective of the cardiorenal axis, a reduc-
tion in cardiac output leads to insufficient renal perfusion
and a gradual impairment of renal function. Some clinical
guidelines recommend continuous measurement of natri-
uresis in patients with acute heart failure (AHF) to monitor
DR [49]. A previous study has shown that long-term use of
loop diuretics leads to a weakened natriuretic response [50].
The reasons are as follows: first, the relative or absolute re-
duction in extracellular fluid volume reduces the transport
of solutes to the proximal renal tubules through the mecha-
nisms mediated by the RAAS and the sympathetic nervous
system; second, long-term exposure to loop diuretics in-
duces adaptive epithelial hypertrophy and hyperfunction in
the distal renal units, manifested as hypertrophy of distal
tubular cells [51]. This structural change in cells leads to
a compensatory increase in sodium reabsorption, alters the
renal response to diuretics, and ultimately results in a de-
crease in blood sodium levels during chronic loop diuretic
treatment [52]. Clinicians should closely monitor the renal
function of long-term users and adjust the use of diuretics
accordingly.
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Fig. 7. Metabolic pathways influencing the factor histograms. The vertical axis represents metabolic pathways, and the horizontal
axis represents the Impact values enriched in different metabolic pathways. The higher the value, the greater the contribution of the
metabolites detected under that pathway. The color is related to the p-value; the redder the color, the smaller the p-value, and the bluer
the color, the larger the p-value. A smaller p-value indicates that the detected differential metabolites have a more significant impact on
the pathway. ABC, adenosine triphosphate-binding cassette.

In the in-depth study of metabolic changes in HF pa-
tients, the liver dysfunction in AHF and its metabolic im-
pact are significant. Research [53] indicates that AHF pa-
tients’ hepatorenal dysfunction is complex. At admission,
82% had an elevated Model of End-Stage Liver Dysfunc-
tion (MELD)-XI score, with the prevalence of different
levels of dysfunction changing over time. Hepatorenal-
dysfunction patients have unique clinical features, and the
MELD-XI score-prognosis correlation shows the impor-
tance of liver function in disease progression. Pathophysio-
logically, liver congestion causes liver dysfunction, affect-
ing drug metabolism, disrupting metabolic balance via ab-

noral kidney interactions, and potentially impacting amino
acid, nucleotide, and energy metabolism. MELD-XI in
AHF is crucial for risk stratification and treatment decisions
related to liver and kidney function, and is predictive of
treatment response. In view of this, the differential metabo-
lites in our study may be affected by liver dysfunction, so
their specificity and accuracy as DR biomarkers need fur-
ther verification. Future research should more comprehen-
sively assess liver function.

In patients with HF, accurately assessing mortality
risk and assessing disease severity are crucial for effective
clinical management and targeted interventions. DR fre-
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Fig. 8. Network diagram for the KEGG pathway enrichment analysis. Circles in blue denote the pathways, whereas the other circles
symbolize the metabolites. The magnitude of the pathway circles corresponds to the quantity of associated metabolites; the greater the
number of metabolites, the larger the circle appears. The metabolite circles are shaded with a gradient to reflect the extent of the log2(FC)
values, with no log2(FC) data presented for multiple comparisons. KEGG, kyoto encyclopaedia of genes and genomes.

quently precipitates hospitalisation due to congestion and
exacerbation of symptoms, although it is sometimes pre-
ventable or reversible. A recent study suggests that urine
sodium can be used to identify patients with DR, and it
may play an important role in guiding individual treatment
[54,55]. However, the real clinical value for patients with
DR remains to be investigated. Hence, the development of
novel diuretics, strategies, or combinations is imperative to
overcome DR.

Study Limitations

Our study has some limitations. First, the sample size
of patients with HF in this study was small, and all par-
ticipants were from Changsha, China, potentially introduc-
ing geographical biases in the results. Second, our study is
exploratory and preliminary, a larger cohort to exclude pa-
tients undergoing other treatments is necessary before its
applicability in clinical practice can be ascertained. Ad-
ditionally, this study did not provide detailed information
on the medications taken by patients, making it impossible
to estimate the impact of these medications on the metabo-
lite levels in HF patients. Furthermore, we did not exclude
metabolic diseases related to HF, which might have a cer-
tain influence on the metabolomics results. Finally, it can-

not be conclusively determined whether the identified dif-
ferential metabolites in this study are specific to DR pa-
tients. In the future, animal and clinical validation are still
required to render the entire research more comprehensive.

5. Conclusions
We used an untargeted LC-MS/MS metabolomics ap-

proach to analyze blood metabolites from HF patients and
identify metabolic differences between diuretic-resistant
and non-diuretic-resistant cases. Key differential metabo-
lites included Hydroxykynurenine, Perillic acid, Adrenic
acid, 5-Acetamidovalerate, and Adipic acid. Significant
metabolic pathways that were affected included amino acid,
energy, and nucleotide metabolism. Further evidence-
based diagnostic testing is needed to fully understand the
roles of these pathways in DR. This study highlights the po-
tential of non-targeted metabolomics in improving the iden-
tification and management of DR in patients with HF.
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