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Abstract

Background: To assess the precision of artificial intelligence (AI) in aiding the diagnostic process of congenital heart disease (CHD).
Methods: PubMed, Embase, Cochrane, and Web of Science databases were searched for clinical studies published in English up to
March 2024. Studies using AI-assisted ultrasound for diagnosing CHD were included. To evaluate the quality of the studies included in
the analysis, the Quality Assessment Tool for Diagnostic Accuracy Studies-2 scale was employed. The overall accuracy of AI-assisted
imaging in the diagnosis of CHD was determined using Stata15.0 software. Subgroup analyses were conducted based on region and
model architecture. Results: The analysis encompassed a total of 7 studies, yielding 19 datasets. The combined sensitivity was 0.93
(95% confidence interval (CI): 0.88–0.96), and the specificity was 0.93 (95% CI: 0.88–0.96). The positive likelihood ratio was calculated
as 13.0 (95% CI: 7.7–21.9), and the negative likelihood ratio was 0.08 (95% CI: 0.04–0.13). The diagnostic odds ratio was 171 (95%
CI: 62–472). The summary receiver operating characteristic (SROC) curve analysis revealed an area under the curve of 0.98 (95% CI:
0.96–0.99). Subgroup analysis found that the ResNet and DenNet architecture models had better diagnostic performance than other
models. Conclusions: AI demonstrates considerable value in aiding the diagnostic process of CHD. However, further prospective
studies are required to establish its utility in real-world clinical practice. The PROSPERO registration: CRD42024540525, https:
//www.crd.york.ac.uk/prospero/display_record.php?RecordID=540525.
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1. Introduction

Congenital heart disease (CHD) is the most common
congenital anomaly, affecting approximately 0.8% of the
general population [1]. Despite significant advancements
in diagnosis and treatment, CHD remains a common cause
of infant mortality in the first year of life, accounting for ap-
proximately 30% of deaths due to congenital malformations
[2,3]. Early diagnosis and timely intervention have been
shown to improve postnatal outcomes [4,5]. Therefore, dis-
tinguishing normal fetal hearts from CHD is important. Fe-
tal heart assessment is the primary method for detecting fe-
tal CHD [6]. However, ultrasonographers still face signifi-
cant challenges in obtaining high-standard, high-quality fe-
tal heart images as required by guidelines due to ultrasound
imaging artifacts, speckle noise, changes in fetal position
and scanning angle, blurred image boundaries, and varia-
tions in the quality of images [7]. Although routine mid-
pregnancy fetal heart ultrasound screening using the five
heart views recommended by guidelines can detect approx-
imately 90% of complex CHD [8,9], in practice, the detec-
tion rate of CHD is only 30%–50%, with a sensitivity of ap-
proximately 40%–50% [10,11], and largely depends on the
personal experience of the ultrasonographer [12,13]. Addi-
tionally, there are significant differences in the identifica-

tion of normal fetal hearts and detection of abnormalities in
health care systems amongst various regions [8,14].

In recent years, a computer-aided approach that assists
fetal operators in automatically identifying and interpreting
the anatomical structures of the fetal heart has gained sig-
nificant interest to address these challenges [15,16]. Artifi-
cial intelligence (AI) methods, exemplified by deep learn-
ing (DL) [17], have found extensive applications in the
field of medical image analysis, including tasks such as im-
age classification, recognition, segmentation, registration,
and computer-aided diagnosis. There is a computer-based
method for fetal echocardiography. DL has found its most
significant application in fetal ultrasound for pre-diagnostic
purposes, such as detecting standard planes [18], classify-
ing and identifying CHD [19–21], and evaluating the de-
velopment of the fetal heart [22]. Studies have used AI in
fetal echocardiography to improve the diagnostic accuracy
of fetal CHD [23] and have shown that some AI models
equal the performance level of experts [24,25]. Recently,
Arnaout et al. [26] retrospectively collected 107,823 ul-
trasound images from 1326 mid-pregnancy fetal screening
cardiac videos and trained a neural network ensemble us-
ing the five views recommended in guidelines, including
the three-vessel trachea view, three-vessel view, left ven-
tricular outflow tract view, right ventricular outflow tract
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view, and abdominal view, to identify normal fetal hearts
and CHD. The findings demonstrated that on an internal test
dataset of 4108 fetal examinations, the model exhibited an
area under the curve of 0.99 in distinguishing normal heart
conditions from CHD. Its sensitivity reached 95%, while
the specificity was 96%. Notably, the negative predictive
value attained was 100%, accurately identifying cases with-
out CHD. Gong et al. [20] proposed a new DGACNN
model for the identification of fetal CHD by training 2655
normal hearts and 541 CHD cases. The model demon-
strated good performance in identifying CHD, with an ac-
curacy of 84%, surpassing cardiac experts. Additionally,
the model addressed the problem of insufficient training
datasets to train a stable model. Deep learning, the most ad-
vanced type of machine learning, has been applied to adult
echocardiography and has been shown to outperform clin-
icians in judging images when the images are too small or
have poor resolution.

Currently, there are several clinical studies on AI
for the diagnosis of CHD. However, these studies are
mainly single-center studies with small sample sizes and
are limited to clinical research, with no available relevant
evidence-based medicine. Therefore, this study aims to re-
trieve published relevant literature through systematic re-
view and meta-analysis methods, scientifically synthesize
and analyze the data, and obtain comprehensive and reli-
able evidence-basedmedicine evidence to comprehensively
evaluate the accuracy of AI in diagnosing CHD.

2. Methods
2.1 Literature Retrieval and Inclusion

To gather relevant literature, a comprehensive search
was performed across multiple databases, including
PubMed, Embase, Cochrane, and Web of Science. The
search focused on identifying English-language clinical
studies published up until March 2024. This broad search
strategy aimed to capture a comprehensive set of publica-
tions. In the PubMed database, we formulated our search
approach using a combination of keywords and Medical
Subject Headings (MeSH) terms originating from four es-
sential concepts. The four key concepts included: artifi-
cial intelligence, imaging, fetal, and congenital heart dis-
ease. The specific search strategy is shown in Supplemen-
tary Table 1. All included studies had to meet the follow-
ing criteria: (1) the researchers reported the values of true
positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) for the AI diagnosis of CHD, or
values that could be calculated based on sensitivity (Se)
and specificity (Sp); (2) the AI model was able to distin-
guish normal fetal hearts from CHD. Studies irrelevant to
the topic, unpublished studies, case reports, abstracts, con-
ference abstracts, non-English articles, and literature with-
out complete diagnostic four-grid table data were not in-
cluded. The current meta-analysis study was registered in
the International Prospective Register of Systematic Re-

views (PROSPERO) online database, under the registration
number CRD42024540525.

2.2 Literature Screening and Data Extraction
Two reviewers independently conducted the literature

screening and data extraction process after eliminating du-
plicate publications using EndNoteX9 (Clarivate, Philadel-
phia, PA, USA). First, titles and abstracts were read for ini-
tial screening to exclude literature unrelated to AI-assisted
ultrasound diagnosis of CHD, reviews, or case reports.
Then, the full text was read to exclude literature with incom-
plete information. Any discrepancies arising between the
two reviewers were settled through deliberation or, when
needed, resolved by a third reviewer’s adjudication. For
the finally included articles, the full text and relevant ref-
erences were thoroughly reviewed. A data extraction table
was used to extract information, including: (1) basic infor-
mation of the included studies, such as study title, corre-
sponding author or first author, publication year, and study
region; (2) study design type, reference standard, and type
of CHD studied; (3) the AI model used in the study, with
separate extraction of diagnostic accuracy for multiple AI
models in one study. If amodel’s dataset was validatedmul-
tiple times, the highest Se and Sp were selected; (4) study
outcome indicators, including basic information such as the
number of positive results, TP, FP, FN, TN, as well as con-
cordance rate, sensitivity, specificity, diagnostic odds ratio,
positive likelihood ratio, negative likelihood ratio.

2.3 Quality Assessment of Included Studies
Adhering to the Cochrane Handbook guidelines, the

quality assessment was conducted utilizing the quality as-
sessment of diagnostic accuracy studies (QUADAS-2) tool.
Subsequently, the ReviewManager 5.4.1 software (Version
5.4.1, The Cochrane Collaboration, The Nordic Cochrane
Centre, Copenhagen, Denmark) was employed to present
the final evaluation findings in a comprehensive manner
[27]. Literature quality assessment was conducted by two
reviewers independently, and disagreements were resolved
by discussion or adjudicated by a third author. Risk of bias
and clinical applicability were evaluated by the QUADAS-
2 tool. Patient selection, index test, reference standard, and
flow and timing were used to assess risk of bias. Patient
selection, index test, and reference standard were used to
assess clinical applicability questions. Each question has
three answer options, “yes/no/unclear”, for risk of bias. If
the answers are “yes”, then the risk of bias is considered
low. If the answers is “no”, there is a possibility of bias.
There are no signaling questions for clinical applicability,
only an overall assessment, with answer options including
“high risk/low risk/unclear”. The “unclear” option could
only be selected when the information provided in the liter-
ature was incomplete during the assessment process.
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Fig. 1. The flowchart of the literature screening process.

2.4 Data Analysis

The Stata15.0 software (Version 15.0, StataCorp, Col-
lege Station, TX, USA) was used for statistical analyses.
Calculations were performed to determine the pooled sen-
sitivity, pooled specificity, positive likelihood ratio, nega-
tive likelihood ratio, and diagnostic odds ratio. The sum-
mary receiver operating characteristic (SROC) curve was
plotted, and the corresponding area under the curve (AUC)
value was computed. To assess potential publication bias,
Deek’s test was employed as part of the analysis process.
A p < 0.05 was considered to indicate publication bias in
the included literature. We performed subgroup analyses
based on the region and AI model to evaluate the individ-
ual performance of each index test and compare it with the
diagnostic accuracy of all the combined modalities.

3. Results
3.1 Literature Screening Results and Process

A total of 312 articles were obtained. After remov-
ing duplicates using EndNote, 288 articles remained. After
reading titles and abstracts, 273 articles were excluded, re-
sulting in 15 articles for initial screening. Among the 15
articles, 8 articles were excluded after reading the full text

due to incomplete information and not meeting the require-
ments. The study ultimately included a total of 7 articles.
The database format in the articles used grayscale images or
selected frames from retained videos. Each frame required
a uniform pixel. Fig. 1 illustrates the flowchart of the lit-
erature screening process, while Table 1 (Ref. [23,26,28–
32]) presents the fundamental characteristics of the studies
included in the analysis. If there were multiple models in
the same study, they were extracted separately and distin-
guished by adding the letters “abcd” after the author.

3.2 Quality Assessment of Included Studies
The QUADAS-2 tool was employed for the assess-

ment of the risk of bias. Fig. 2 displays the results of the
methodological quality evaluation for the studies included
in the analysis. In general, the included studies demon-
strated high quality, with the majority exhibiting either a
low or unclear risk of bias. In two studies, not all cases
were included in the analysis due to unclear images, with
one frame of images [28] and two cases [29] not included
in the analysis, respectively.
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Table 1. Fundamental characteristics of the studies included.

Authors Study period Country Study design
Sample size

Type of CHD Models
positive/negative

Wang et al. a [28] 2012–2022 China retrospective 19/82 TAPVC DeepLabv3+
Wang et al. b [28] 2012–2022 China retrospective 19/82 TAPVC FastFCN
Wang et al. c [28] 2012–2022 China retrospective 19/82 TAPVC PSPNet
Wang et al. d [28] 2012–2022 China retrospective 19/82 TAPVC DenseASPP
Athalye et al. [29] 2015–2016 Netherlands retrospective 66/44 CHD DL
Nurmaini et al. a [30] 2021 Indonesia retrospective 952/177 CHD DenseNet201
Nurmaini et al. b [30] 2021 Indonesia retrospective 952/177 CHD DenseNet121
Nurmaini et al. c [30] 2021 Indonesia retrospective 952/177 CHD ResNet50
Nurmaini et al. d [30] 2021 Indonesia retrospective 952/177 CHD ResNet101
Arnaout et al. a [26] 2000–2019 USA retrospective 37/88 CHD Ensemble
Arnaout et al. b [26] 2000–2019 USA retrospective 37/4071 CHD Ensemble
Day et al. a [23] NA UK retrospective 250/250 AVSD ResNet50
Day et al. b [23] NA UK retrospective 250/250 AVSD ResNet50
Day et al. c [23] NA UK retrospective 250/250 AVSD ResNet50
Day et al. a [31] 2014–2019 UK retrospective 3960/6288 HLHS ResNet50
Day et al. b [31] 2014–2019 UK retrospective 59/102 HLHS ResNet50
Day et al. c [31] 2014–2019 UK retrospective 59/102 HLHS ResNet50
Taksøe-Vester et al. a [32] 2008–2018 Denmark retrospective 73/7300 COA U-Net
Taksøe-Vester et al. b [32] 2008–2018 Denmark retrospective 73/7300 COA U-Net

HLHS, hypoplastic left heart syndrome; TAPVC, total anomalous pulmonary venous connection; AVSD, atrioventricular septal
defect; COA, coarctation of aorta; CHD, congenital heart disease; DL, deep learning. If there were multiple models in the same
study, they were extracted separately and distinguished by adding the letters “abcd” after the author; NA, not available.

Table 2. Subgroup analyses based on region and model architecture.
Subgroup Study Sensitivity Specificity AUC

Total 19 0.93 (0.88, 0.96) 0.93 (0.88, 0.96) 0.98 (0.96–0.99)
Region

Asia 8 0.95 (0.85, 0.98) 0.96 (0.84, 0.99) 0.99 (0.97–0.99)
America 2 0.95 (0.85, 0.98) 0.96 (0.95, 0.97) 0.99 (0.97–0.99)
Europe 9 0.90 (0.84, 0.94) 0.90 (0.84, 0.93) 0.96 (0.93–0.97)

Models
ResNet/DenNet 11 0.94 (0.87, 0.98) 0.96 (0.90, 0.98) 0.99 (0.97–0.99)
Others 8 0.91 (0.88, 0.94) 0.88 (0.82, 0.92) 0.92 (0.90–0.94)

AUC, area under the curve.

3.3 Meta-Analysis Results of the Accuracy of AI-Assisted
Diagnosis of CHD

A total of 7 studies and 19 sets of data were included,
with a pooled sensitivity of 0.93 (95% confidence interval
(CI): 0.88–0.96), specificity of 0.93 (95% CI: 0.88–0.96),
positive likelihood ratio of 13.0 (95% CI: 7.7–21.9), neg-
ative likelihood ratio of 0.08 (95% CI: 0.04–0.13), and di-
agnostic odds ratio of 171 (95% CI: 62–472). The I2 het-
erogeneity of sensitivity and specificity in this study was
97.46% and 99.31%, respectively. This heterogeneity was
expected because differences in models, sample sizes, and
regions among the included studies could all lead to large
heterogeneity. Fig. 3 illustrates the forest plot depicting
sensitivity and specificity. As demonstrated in Fig. 4, the

area under the SROC curve was found to be 0.98, with a
95% confidence interval ranging from 0.96 to 0.99.

3.4 Publication Bias

Deek’s test was employed to assess publication bias
in the included studies, yielding a value of 0.18. Since the
p value exceeded 0.05, this implies that this meta-analysis
was not affected by publication bias.

3.5 Subgroup Analysis

Subgroup analyses were conducted based on region
and model architecture, and the results are shown in Ta-
ble 2. The findings revealed that the performance of AI-
aided CHD diagnosis exhibited no substantial variations
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Fig. 2. Quality assessment using quality assessment of diagnostic accuracy studies (QUADAS-2) for included studies.

across different geographic regions. The diagnostic effi-
cacy demonstrated by these AI systems remained consis-
tent, irrespective of the specific location or context in which
they were deployed. The ResNet and DenNet architec-
ture models had better diagnostic performance than other
models, with areas under the SROC curve of 0.99 (95%
CI: 0.97–0.99) and 0.92 (0.90–0.94), respectively. Since
there were only three sets of data on the DenNet architec-
ture model, it was not independently analyzed.

4. Discussion

With the development of AI, various network models
have been applied to CHD image recognition in the field of
deep learning, among which convolutional neural networks
(CNN) [33] are representative of deep learning structure
models. CNNs can autonomously extract features from raw
image data and learn complex feature information, demon-
strating good performance in medical image recognition
and classification [26]. The models included in this study
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Fig. 3. Forest plot of combined sensitivity and specificity for the assessment of artificial intelligence (AI)-assisted diagnosis of
congenital heart disease (CHD). CI, confidence interval.

were all deep learning models, and except for one study that
did not specify the model, the rest were all CNN architec-
tures. In recent years, Xu et al. [34] developed a DW-NET
cascaded convolutional neural network for segmenting fetal
echocardiographic four-chamber view images, which can
correctly locate different structures and accurately delin-
eate the boundaries of anatomical structures, effectively ex-
tracting image indicators to assist in early prenatal diagno-
sis. The study tested the DW-NET on a dataset of 895 fetal
four-chamber view echocardiographic images and showed
that it had better segmentation performance compared to
other mainstream image segmentation methods. Nurmaini
et al. [30] compared four CNNarchitectures, DenseNet121,
DenseNet201, ResNet50, and ResNet101, and selected the
optimal CNN architecture as DenseNet201. The DenseNet
201 architecture classified seven types of CHD, including
ventricular septal defect, atrial septal defect, atrioventric-
ular septal defect, Ebstein’s anomaly, tetralogy of Fallot,
transposition of the great arteries, and hypoplastic left heart
syndrome, alongwith normal controls. Themodel achieved
a sensitivity, specificity, and accuracy of 100%, 100%, and
100% within patients, and a sensitivity, specificity, and ac-
curacy of 99%, 97%, and 98% between patients, respec-
tively.

This study included a total of 7 studies and extracted
19 sets of data, with a pooled sensitivity of 0.93 and speci-
ficity of 0.93, indicating that AI models have a low rate
of misdiagnosis and missed diagnosis in diagnosing CHD.
The area under the SROC curve was 0.98, suggesting high
accuracy of AI models in diagnosing CHD. In this study,
the positive likelihood ratio was 13.0, indicating that when
an AI model diagnoses CHD, the probability of diagnosing
CHD is high. The negative likelihood ratio was 0.08, in-
dicating that when an AI model diagnoses a normal heart,
the probability of CHD is low. The results of this study
are consistent with the study by Taksøe-Vester et al. [32],
who used logistic regression and backward feature selec-
tion in subjects diagnosed with CoA after birth (n = 73) and
healthy controls (n = 7300). The AUC of the ROC curve
generated by the predictive model was 0.96, with a speci-
ficity of 88.9% and sensitivity of 90.4%.

In this study, subgroup analyses were conducted based
on region and model. The subgroup analysis by Asia, Eu-
rope, and the United States showed that AI models had
high diagnostic performance for CHD in different popula-
tions, with no significant differences. Most deep learning-
based methods are implemented on pioneering backbone
networks, the two most notable are ResNet and DenseNet,
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Fig. 4. Summary receiver operating characteristic curve of AI-assisted diagnosis of CHD. SENS, sensitivity; SPEC, specificity;
SROC, summary receiver operating characteristic; AUC, area under the curve; AI, artificial intelligence; CHD, congenital heart disease.

as these two architectures have a simple design strategy and
good performance [35]. Layers in conventional CNN archi-
tectures are progressively linked. In contrast, the ResNet ar-
chitecture employs shortcut connections, bypassing a mini-
mum of two layers. Conversely, the DenseNet architecture
offers connections originating from all feature maps in the
preceding layer. This implies that all feature maps are prop-
agated to the following layers and linked to the newly pro-
duced feature maps [30,35]. Therefore, this study selected
ResNet, DenseNet, and other models for subgroup analysis.
The results showed that the area under the ROC curve for
ResNet and DenseNet models in diagnosing CHDwas 0.98,
while the area under the ROC curve for other models was
0.92, indicating that the diagnostic performance of ResNet
and DenseNet models was superior to other models.

AI application can overcome the problem of opera-
tor experience, and improve physician work flow in the
analysis of fetal echocardiographic images. AI has been
proven to be more reproducible and consistent than hu-
man performance [31,36]. However, the application of
AI in fetal echocardiography is still in its infancy. The
database format in articles uses grayscale images or se-
lected frames from standard videos in.avi or.mov format.
Each frame needs to be labeled and unified in pixels to cre-
ate a standardized data set. Currently, deep learning mod-
els used for echocardiographic diagnosis are only used to
predict two-dimensional plane images. However, the in-
formation from two-dimensional planes is limited and can-
not fully display the lesions. Deep learning models trained
on three-dimensional ultrasound data, with ultrasound dy-

7

https://www.imrpress.com


namic videos or spatiotemporal volumetric data of multi-
view lesions, can potentially improve the diagnostic accu-
racy of the model while fully displaying the lesions. In
addition, developing deep learning models based on multi-
modal ultrasound, including two-dimensional grayscale ul-
trasound, Doppler ultrasound, and contrast-enhanced ultra-
sound, can provide complementary ultrasound information
and also improve the diagnostic accuracy of deep learning
models [37]. Supervised learning of fetal echocardiography
is most widely used in the ultrasound field, and the model
training process requires big data. However, unlike photog-
raphy, electrocardiogram, or chest X-ray [38–40], each ul-
trasound examination includes thousands of image frames.
Therefore, designing a model that can handle a large num-
ber of non-independent images from datasets with relatively
few individuals is an important challenge to overcome. Un-
supervised learning uses unlabeled data and is used as an
exploratory method. When faced with the classification of
complex small-sample ultrasound data, it significantly im-
proves the accuracy of image recognition and may become
a new focus for AI application in fetal echocardiography.

This study is the latest and the first meta-analysis to
investigate the value of AI-assisted diagnosis of CHD, fur-
ther confirming that AI has high accuracy in diagnosing
CHD, consistent with previous studies. This provides the
latest evidence-based data for the clinical application of AI-
assisted diagnosis for CHD. The subgroup analysis showed
that the diagnostic performance of ResNet and DenseNet
models was superior to other models.

This study has several limitations. First, we only re-
trieved literature from the English language, and important
data published in non-English languages may have been
missed. Due to data limitations, we were unable to conduct
subgroup analyses for each model and only selected two
currently more focused models and other models for sub-
group analysis. We were also unable to assess their perfor-
mance with larger sample sizes and greater confidence. The
studies included in this study were all retrospective studies,
as few prospective studies have incorporated the diagnos-
tic accuracy of AI into clinical work. Finally, the included
studies only analyzed a single congenital heart disease, or
only distinguished normal heart disease from normal heart
disease, and few studies distinguished fetal congenital heart
disease from normal heart disease and classified specific
congenital heart disease. Going forward, we plan to ex-
pand the classification ofAImodels to cover the entire CHD
spectrum. Additional studies are needed to examine how
the results of the current study apply to different fetal con-
ditions.

5. Conclusions
AI has significant diagnostic value in assisting the di-

agnosis of CHD. ResNet and DenseNet models having the
best diagnostic efficacy. In view of the small number of
studies included in this meta-analysis, and the fact that they

were retrospective, further multicenter studies with larger
sample sizes are needed to confirm the diagnostic efficacy
of AI-assisted diagnosis of CHD.With advances in AI tech-
nology, the diagnosis of fetal diseases will become increas-
ingly accurate. We look forward to testing and improving
integrated learning models in larger populations, making
the expertise of fetal cardiologists available to patients in
all regions, obtaining homogeneous medical resources, and
applying similar techniques to other diagnoses in medical
imaging.
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