

Revieu

Induced Pluripotent Stem Cells in Congenital Long QT Syndrome: Research Progress and Clinical Applications

Qing Li^{1,†}, Yi-Fei Wang^{1,†}, Bin Wang^{1,†}, Ting-Ting Lv^{2,*}, Ping Zhang^{1,2,*}

Academic Editor: Alessandro Zorzi

Submitted: 15 November 2024 Revised: 26 December 2024 Accepted: 2 January 2025 Published: 22 April 2025

Abstract

Congenital long QT syndrome (LQTS) is a potentially life-threatening hereditary arrhythmia characterized by a prolonged QT interval on electrocardiogram (ECG) due to delayed ventricular repolarization. This condition predisposes individuals to severe arrhythmic events, including ventricular tachycardia and sudden cardiac death. Traditional approaches to LQTS research and treatment are limited by an incomplete understanding of its gene-specific pathophysiology, variable clinical presentation, and the challenges associated with developing effective, personalized therapies. Recent advances in human induced pluripotent stem cell (iPSC) technology have opened new avenues for elucidating LQTS mechanisms and testing therapeutic strategies. By generating cardiomyocytes from patient-specific iPSCs (iPSC-CMs), it is now possible to recreate the patient's genetic context and study LQTS in a controlled environment. This comprehensive review describes how iPSC technology deepens our understanding of LQTS and accelerates the development of tailored treatments, as well as ongoing challenges such as incomplete cell maturation and cellular heterogeneity.

Keywords: congenital long QT syndrome; induced pluripotent stem cells; precision medicine

1. Introduction

Congenital long QT syndrome (LQTS) is a rare hereditary ion channelopathy characterized by a prolonged QT interval and abnormal T wave morphologies on electrocardiogram (ECG). The prolongation of repolarization increases the risk of torsade de pointes (Tdp) ventricular tachycardia, which can result in syncope, cardiac arrest, and sudden cardiac death (SCD) [1,2]. The estimated incidence of LQTS is approximately 1 in 2000 individuals [3], with a slight predominance in females. It accounts for 5% to 10% of SCD cases among young individuals [4]. The electrophysiological abnormalities are caused by gene mutations that disrupt the function of ion channels involved in action potential dynamics. These mainly include loss of function in the slow delayed rectifier potassium current (I_{Ks}) and the rapid delayed rectifier potassium current (I_{Kr}) , and gain of function in the late sodium current $(I_{Na,L})$ and the L-type calcium current ($I_{Ca,L}$).

In terms of diagnosis, mutations in at least 17 genes have been associated with LQTS [5]. The Clinical Genome Resource (ClinGen) has recently reclassified these genes based on gene- and disease-specific criteria [6] (Table 1, Ref. [7–22]). Seven genes were classified as definitive or strong evidence for causality. Among them, *KCNQ1*, potassium voltage-gated channel subfamily H member 2 (*KCNH2*), and sodium voltage-gated channel alpha subunit 5 (*SCN5A*) account for approximately 75% of cases. However, 25% of LQTS remains unexplained by known genes,

suggesting the presence of undiscovered pathogenic genes [23-25]. LQTS shows incomplete penetrance, ranging from corrected QT interval (QTc) prolongation detectable as early as in utero, to lifelong asymptomatic carriers of pathogenic mutations. Moreover, family members carrying the same mutation may show variability in phenotype, with some experiencing sudden death while others remain asymptomatic throughout their lives. LQTS also exhibits significant genotypic heterogeneity, with distinct genetic subtypes that differ in age of onset, gender-specific risks, arrhythmogenic triggers, and therapeutic responses. Due to the lack of specific clinical manifestations, most LQTS cases cannot be classified based on clinical presentation or auxiliary examination alone (Schwartz score). Since precision treatment requires an accurate diagnosis, further interpretation of high-throughput sequencing results is needed to reveal genetic variation effects and to identify additional modifier factors.

Comprehensive treatment of LQTS emphasizes β -blocker therapy (particularly nadolol and propranolol) as the cornerstone of management [26]. This is supplemented by sodium channel blockers (e.g., Mexiletine) for long QT syndrome type 3 (LQT3) [27], as well as more invasive interventions such as left cardiac sympathetic denervation (LCSD) [28] and implantable cardioverter-defibrillators (ICDs) for high-risk or treatment-resistant patients [29]. However, several challenges remain, such as elucidating the mechanisms of drug resistance, reducing drug side-

¹School of Clinical Medicine, Tsinghua University, 100084 Beijing, China

²Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218 Beijing, China

^{*}Correspondence: lvtingting0616@163.com (Ting-Ting Lv); zhpdoc@126.com (Ping Zhang)

[†]These authors contributed equally.

effects to improve patient adherence, evaluating genespecific novel drug development, and assessing biological therapy outcomes. In addition, the safety of drugs causing QTc prolongation must still be evaluated.

Traditional research models, including in vivo, ex vivo, and in vitro systems, have played an important role in elucidating gene-phenotype relationships and drug testing in LQTS [4,30]. However, these models have significant limitations. Animal models have species-specific cardiac electrophysiological differences (e.g., mice lack specific I_{Kr} , I_{Ks}), making it difficult to accurately simulate human LQTS phenotypes. Cell models (e.g., human embryonic kidney 293 cells (HEK293)) often lack the intricate regulatory mechanisms present in cardiomyocytes. Moreover, obtaining primary human cardiomyocytes and maintaining them in vitro is challenging, which limits their use in disease modeling. Takahashi and Yamanaka [31] first reported induced pluripotent stem cells (iPSCs) in 2006, which have since become a transformative tool in LQTS research. By expressing specific transcription factors (e.g., Oct3/4, Sox2, c-Myc, Klf4), somatic cells (e.g., skin fibroblasts, peripheral blood mononuclear cells) can be reprogrammed into a pluripotent state. iPSCs are capable of differentiating into various cardiac cell types, including cardiomyocytes (iPSC-CMs), cardiac fibroblasts, endothelial cells (ECs), and smooth muscle cells (SMCs) [32]. This pluripotency provides a unique research platform for disease modeling, mechanistic studies, drug testing, and therapeutic development [33].

Patient-derived iPSC-CMs, or the introduction of mutations into healthy individual-derived iPSC-CMs through genome editing, offer several specific advantages compared to traditional models. These cells retain patient-specific genetic backgrounds, maintain the intrinsic cellular environment of human cardiomyocytes, and exhibit comparable ion current densities to native cells, thus accurately reproducing the action potential prolongation and arrhythmogenic susceptibility observed in LQTS patients [34,35]. Moreover, the integration of gene editing technologies (e.g., CRISPR/Cas9) with iPSC-CMs enables the creation of isogenic cell lines, which eliminates confounding genetic factors and allows precise investigation of mutation-specific effects [36]. This advanced cellular model facilitates highthroughput drug screening and the development of targeted therapeutic strategies, thereby advancing precision medicine for LOTS patients.

Although significant progress has been made, challenges remain in the use of iPSC-CMs for LQTS research, including incomplete maturation of cardiomyocytes and the heterogeneity of differentiated cell types. Current iPSC-CMs often exhibit immature structural and functional phenotypes compared to adult cardiomyocytes, which may affect the interpretation of drug responses and the prediction of clinical outcomes. Additionally, differentiated cardiomyocytes are heterogeneous and comprise various sub-

types, such as ventricular-like cells, atrial-like cells, and pacemaker cells, thus complicating the establishment of specific disease models. Advances in chemical, physical, and spatial techniques, as well as the development of engineered heart tissues (EHTs) or organoids, have improved cardiomyocyte maturation and subtype specificity. However, the development of unified evaluation standards are needed to improve the clinical predictive ability of iPSC-CMs. This review aims to deepen our understanding of LQTS and provide a comprehensive reference for the application of iPSCs in future research on precision medicine.

2. Recapitulation of Patient Clinical Phenotypes

IPSC-CMs have become essential tools for modeling LQTS by faithfully replicating patient-specific phenotypes. These models retain patient-specific genetic mutations and altered ion channel functions (e.g., reduced I_{Ks}/I_{Kr} or enhanced $I_{\text{Na,L}}$), effectively capturing clinical features of LQTS such as prolonged action potential duration/field potential duration (APD/FPD), arrhythmia susceptibility, and abnormal responses to beta-adrenergic stimulation, reflecting the complex pathophysiology of LQTS. An early study by Moretti et al. (2010) [37] reported an LQT1 model with the KCNQ1-p. R190Q mutation, replicating prolonged APD, reduced I_{Ks} current, and heightened catecholamine sensitivity. Building on this, Itzhaki et al. (2011) [38] created an LQT2 model with the KCNH2-p. A614V mutation, demonstrating reduced I_{Kr} , early afterdepolarizations (EADs), and ventricular arrhythmias. Davis et al. (2012) [39] further extended these studies by developing an overlap syndrome model (LQT3 overlap) with the SCN5A-p. 1795insD mutation that showed prolonged APD and increased persistent $I_{\text{Na,L}}$. Ma et al. (2013) [40] constructed an LQT3 model with the SCN5A-p.V1763M, successfully replicating the significantly prolonged APD and increased $l_{\text{Na,L}}$ that are characteristic of LQT3.

Advances in iPSC technology have significantly improved model construction and phenotyping. Efficient differentiation protocols now yield more mature iPSC-CMs that resemble adult cardiomyocytes. Gene editing techniques, such as CRISPR/Cas9, enable the precise introduction and correction of mutations, while isogenic controls allow direct comparison with wild-type cells. A variety of electrophysiological techniques have been widely applied in the study of iPSC-CMs. These include Patch Clamp technology, which can detect cell membrane potential (e.g., resting membrane potential, action potentials), ion currents (e.g., IKs, IKr, INa, ICa), and current-voltage relationships (I-V curves). Patch Clamp also allows the analysis of ion channel dynamics and cell signal transduction processes. In particular, Automated Patch Clamp (APC) systems can significantly increase the throughput of single-cell iPSC-CMs electrophysiological analyses. Multi-Electrode Array (MEA) technology can record the electrical activity of

Table 1. Classification of genetic evidence by the Clinical Genome Resource (ClinGen) for genes previously associated with LQTS subtypes.

Gene (Genotype)	Chromosomal Location	Protein	Functional effect	ClinGen evidence	Frequency	Reference
Long QT syndrome (M	ajor)					
KCNQ1 (LQTS1)	11p15.5-p15.4	Potassium voltage-gated channel subfamily Q member 1	Reduced I_{Ks}	Definitive	30-35%	Giudicessi et al. 2013 [7]
KCNH2 (LQTS2)	7q36.1	Potassium voltage-gated channel subfamily H member 2	Reduced I_{Kr}	Definitive	25-30%	Curran et al. 1995 [8]
SCN5A (LQTS3)	3p22.2	Sodium voltage-gated channel alpha subunit 5	Increased $I_{\mathrm{Na,L}}$	Definitive	5-10%	Wang et al. 1995 [9]
Long QT syndrome (M	inor)					
CALM1	14q32.11	Calmodulin-1	Abnormal Ca ²⁺ signaling	Definitive*	<1%	Crotti et al. 2013 [10]
CALM2	2p21	Calmodulin-2	Abnormal Ca ²⁺ signaling	Definitive*	<1%	Crotti et al. 2013 [10]
CALM3	19q13.32	Calmodulin-3	Abnormal Ca ²⁺ signalling	Definitive*	<1%	Chaix et al. 2016 [11]
TRDN	6q22.31	Triadin	N/A	Strong	Very rare	Altmann et al. 2015 [12]
CACNA1C	12p13.33	Calcium voltage-gated channel subunit alpha1 C	Increased $I_{Ca,L}$	Moderate/Definitive†	Very rare	Boczek et al. 2013 [13]
CAV3	3p25.3	Caveolin-3	Increased I_{Na}	Limited	<1%	Vatta et al. 2006 [14]
KCNE1	21q22.12	Potassium voltage-gated channel subfamily E regulatory subunit 1	Reduced I_{Ks}	Limited	<1%	Splawski et al. 1997 [15]
KCNJ2	17q24.3	Potassium voltage-gated channel subfamily J member 2	Reduced I_{K1}	Limited/Definitive#	<1%	Plaster et al. 2001 [16]
AKAP9	7q21.2	A-kinase anchor protein 9	Reduced I_{Ks}	Disputed	<1%	Chen et al. 2007 [17]
ANK2	4q25-q26	Ankyrin-2	Abnormal ion channel localization	Disputed	<1%	Ichikawa et al. 2016 [18]
KCNE2	21q22.11	Potassium voltage-gated channel subfamily E regulatory subunit 2	Reduced I_{Kr}	Disputed/Definitive‡	Very rare	Abbott et al. 1999 [19]
KCNJ5	11q24.3	Potassium voltage-gated channel subfamily J member 5	Reduced $I_{K,ACh}$	Disputed	<1%	Yang et al. 2010 [20]
SCN4B	11q23.3	Sodium voltage-gated channel beta subunit 4	Increased I_{Na}	Disputed	<1%	Medeiros-Domingo et al. 2007 [21]
SNTA1	20q11.21	Syntrophin alpha 1	Increased I_{Na}	Disputed	<1%	Ueda et al. 2008 [22]

Notes: * Definitive (recurrent infantile cardiac arrest syndrome); † Definitive (Timothy syndrome); # Definitive (acquired LQTS); ‡ Definitive (Andersen-Tawil syndrome). LQTS, long QT syndrome; I_{Ks} , slow delayed rectifier potassium current; I_{Kr} , rapid delayed rectifier potassium current; I_{Kn} , late sodium current; I_{Kn} , L-type calcium current; I_{Kn} , acetylcholine-activated potassium current; I_{Kn} , inward rectifier potassium current; I_{Nn} , sodium current.

cell populations (field potentials), monitor intercellular conduction (e.g., propagation patterns and conduction velocity), while observing the effects of drugs on electrical activity. Optical imaging using voltage-sensitive dyes and calcium indicators enables the measurement of membrane potential changes (e.g., action potentials and electrical signal propagation) and intracellular calcium dynamics (e.g., calcium transients and excitationcontraction coupling) in cardiac tissues. Such technological advances have allowed iPSC-CMs to model various LQTS subtypes, including LQTS types 1~3 and multisystem LQTS gene types (Table 2, Ref. [15,37–45]). Recent research has increasingly focused on calcium abnormalities, including impaired calcium release, calciumdependent inactivation, and altered excitation-contraction coupling. These have been identified as core features in many LQTS subtypes, such as calmodulinopathy, triadin knockout syndrome (TKOS), Jervell and Lange-Nielsen syndrome (JLNS), and Andersen-Tawil syndrome (ATS). Wren et al. (2019) [41] created several calmodulin mutation models (CALM1-p.E141V, CALM3-p.E141K, CALM3p.D130G) and reported prolonged APD, calcium dysregulation, and mosaicism, highlighting the role of calmodulin in arrhythmogenesis. Similarly, Clemens et al. (2023) [43] used iPSC-CMs to replicate TKOS with triadin (TRDN)c.22+29A>G and TRDN-c.484+1189G>A, demonstrating impaired excitation-contraction coupling. et al. (2017) [44] employed iPSC-CMs to study ATS with potassium voltage-gated channel subfamily J member 2 (KCNJ2)-p. R218W, KCNJ2-p.R67W and KCNJ2p.R218Q, finding abnormal Ca2+ release and ventricular tachycardia. Zhang et al. (2014) [45] modeled JLNS with the potassium voltage-gated channel subfamily Q member 1 (KCNQ1)-p.G160fs+138X and KCNQ1-p.R594Q homozygous mutations, thereby replicating prolonged APD and enhanced catecholamine sensitivity. Wang et al. (2022) [46] constructed a dual mutation model (KCNQ1-p.A219T and TRPM4-p.479C>T), revealing complex genetic interactions. These studies provide key insights into the pathophysiology of LQTS and its complex genetic background.

3. Functional Validation of Mutations and Mechanistic Research

3.1 Validation of Variants of Uncertain Significance

The validation of Variants of Uncertain Significance (VUS) in LQTS using iPSC-CMs is a critical step towards gaining a better understanding of their pathogenicity. CRISPR/Cas9 gene editing is used to insert the variant into iPSCs derived from healthy individuals in order to determine whether it causes disease symptoms. Alternatively, gene editing can be used to correct the variant in patient-derived iPSCs to determine whether this reverses the disease phenotype. This approach allows investigation of the sufficiency and necessity of mutations for causing disease, while maintaining the same genetic background.

For example, Garg et al. (2018) [47] found that patientderived iPSC-CMs carrying the KCNH2-p.T983I variant exhibited significantly prolonged APD. Although 12.9% of the cells displayed arrhythmic activity such as EADs, the iPSC model demonstrated that even mild arrhythmias can be captured in LQTS studies. Treatment with a human ether-a-go-go-related gene (hERG) channel activator normalized APD, confirming the accuracy of the iPSC-CMs in reflecting patient responses. After introducing the same KCNH2-p.T983I variant into healthy control cells, the researchers observed an even more severe LQTS phenotype, further supporting the role of this mutation in LQTS. Conversely, correcting the variant in patient-derived cells restored normal phenotypes, including typical APD, and reduced arrhythmic activity. Interestingly, previous studies conducted using heterologous systems with gene editing may have led to incorrect conclusions regarding the pathogenicity of certain variants. For instance, the KCNQ1p.A341V variant exhibited mild effects in vitro, but severe clinical symptoms [48], whereas the KCNQ1-p.Y111C variant showed severe loss of function in vitro, despite a low clinical risk of cardiac events [49]. These discrepancies can often be explained by differences in post-translational modifications or variations in the expression level of regulatory proteins in native human myocardium.

With the increasing use of next-generation sequencing (NGS), the number of identified gene variants linked to specific clinical phenotypes has grown exponentially, leading to an increase in uncharacterized VUS [50,51]. The proportion of VUS varies across LQTS subtypes, ranging from 15-20% in LOT1, to over 30% in LOT3 due to the complexity of the SCN5A gene. For less common subtypes such as those involving the CACNA1C and CALM genes, VUS can account for up to 40-50% of the variants. By leveraging iPSC models and gene editing, researchers have been able to reclassify many VUS from uncertain to pathogenic or benign. For example, Chavali et al. (2019) [52] introduced the CACNA1C-p.N639T variant into a healthy iPSC line, resulting in significantly prolonged repolarization time and impaired calcium current inactivation, hence leading to its reclassification as likely pathogenic. Similarly, Yamamoto et al. (2017) [53] used patient-derived iPSC models to study the impact of the CALM2-p.N98S mutation on L-type calcium channel function, finding that it prolonged APD. Allele-specific silencing using CRISPR/Cas9 further demonstrated that removing the mutant allele could restore normal function, thereby providing key insights into the reclassification of VUS. iPSCs have also been used for functional validation of newly discovered LQTS genes. For example, Zhou et al. (2023) [54] combined genome sequencing and patient-specific sparagine-linked glycosylation 10B gene (ALG10B)-p.G6S iPSC-CMs. Compared to isogenic controls, these exhibited significantly prolonged APD and notable retention of hERG protein in the endoplasmic reticulum. Moreover, Lumacaftor rescue experiments system-

Table 2. Summary of studies using iPSC-CMs to recapitulate clinical phenotypes of LQTS patients.

LQTS subtype	Gene mutation	Cell phenotype	Experimental approaches	Reference	
KCNQ1 (LQTS1)	p.R190Q	Reduced I _{Ks} current Prolonged APD	Patch clamp	Moretti et al., 2010 [37]	
KCNH2 (LQTS2)	p.A614V	Reduced I_{Kr} current	Patch clamp	Itzhaki et al., 2011 [38]	
		Prolonged APD, arrhythmias			
SCN5A (LQTS3)	p.V1763M	Increased $I_{Na,L}$ current	Patch clamp	Ma et al., 2013 [40]	
		Prolonged APD, arrhythmias			
SCN5A overlap	p.1795insD	Persistent I _{Na,L} current Prolonged APD	Patch clamp	Davis et al., 2012 [39]	
CALM1	p.E141V	Impaired CDI of L-type calcium current, prolonged APD, arrhythmias Patch clamp; Ca ²⁺ imaging		Wren et al., 2019 [41]	
CALM2	p.N98S	Impaired CDI of L-type calcium current, prolonged APD, arrhythmias Patch clamp; Ca ²⁺ imaging		Limpitikul et al., 2017 [42]	
CALM3	p. E141K	Prolonged APD interval, Impaired Ca ²⁺ binding	Patch clamp; Ca ²⁺ imaging	Wren et al., 2019 [41]	
TM	CACNA1C	Prolonged APD, Abnormal calcium handling	Patch clamp; Ca ²⁺ imaging	Splawski et al., 1997 [15]	
	p.G406R				
TKOS	TRDN	Prolonged APD, complete loss of Triadin protein	Patch clamp; Ca ²⁺ imaging; MEA	Clemens et al., 2023 [43]	
	p.D18fs*13				
ATS	KCNJ2	Abnormal calcium handling	Patch clamp; Ca ²⁺ imaging; MEA	Kuroda et al., 2017 [44]	
	p.R218W				
	p.R67W				
	p.R218Q				
JLNS	KCNE1	APD/FPD prolongation with homozygous mutations	Patch clamp; MEA	Zhang et al., 2014 [45]	
	p.G160fs+138X, p.R594Q				

APD, Action Potential Duration; FPD, Field Potential Duration; iPSC-CMs, Patient-specific induced pluripotent stem cell-derived cardiomyocytes; MEA, Multi-Electrode Array; CDI, Calcium-Dependent Inactivation.

atically verified that ALG10B-p.G6S mutation leads to the LQTS phenotype by affecting hERG trafficking, suggesting that ALG10B may be a novel LQTS gene. These experiments demonstrate the importance of iPSC models used in combination with genome editing as a robust platform for understanding the functional impact of VUS and of new genes, thus improving the accuracy of LQTS diagnosis.

3.2 Evaluation of Modifier Genes

Modifier genes significantly influence the severity and clinical presentation of LQTS. While not directly causing LQTS, they modify how the disease manifests in individuals with pathogenic mutations. Modifier genes help to explain why patients with the same primary LQTS mutation can have different symptoms and outcomes. The identification of modifier genes typically involves three main approaches [55]: (1) Candidate gene approach. This targeted approach focuses on genes and genetic variants that are already known to be associated with QT interval and arrhythmias. For example, the NOSIAP gene is linked to QT interval prolongation and is considered to be a key modifier gene for LQTS [48]. (2) Genome-wide association studies (GWAS). This unbiased approach scans the entire genome for genetic variants linked to disease risk, thus helping to identify novel genetic markers or modifiers without relying on prior knowledge. (3) Family and founder population studies. The investigation of family members with the same pathogenic mutation but different clinical outcomes can reveal potential modifier genes.

iPSC-CMs provide a valuable platform for studying modifier genes. For example, Chai et al. (2018) [56] combined electrophysiological measurements of iPSC-CMs with whole-exome sequencing (WES) to identify two modifier genes associated with the LQT2 phenotype: KCNK17 and REM2. KCNK17 encodes a two-pore potassium channel that may counteract the repolarization defects caused by KCNH2 mutations by increasing the potassium current, thereby providing a protective effect. REM2 encodes a GTP-binding protein that regulates calcium channels. The REM2-p.G96A variant was found only in severe cases and was linked to increased $I_{Ca,L}$. Correcting this variant with CRISPR/Cas9 successfully restored the normal phenotype in patient cells. In addition, Lee et al. (2021) [49] identified two single nucleotide variants (SNVs) of the MTMR4 gene in asymptomatic LQTS iPSC-CMs that weakened Nedd4L activity and prevented excessive degradation of ion channels. After correcting these SNVs with CRISPR/Cas9, the ion channel degradation and electrophysiological characteristics of these cells were similar to those of symptomatic patients, thus confirming their protective role. It should be noted that each method for identifying modifier genes has its strengths and limitations, and they are often used in combination to enhance the accuracy of the findings.

3.3 Exploration of Pathological Mechanisms

The primary pathological mechanism of LQTS involves dysfunction of multiple ion channels, particularly potassium and sodium, and abnormal calcium handling which leads to abnormalities in cardiac action potentials [57,58].

The KCNQ1 gene encodes for the alpha subunit of a potassium channel that generates the I_{Ks} during cardiac repolarization. When KCNQ1 is mutated (e.g., the KCNQ1p.Y111C mutation [49]), the folding and transport functions of this channel are impaired and it is prevented from reaching the cell membrane. In patient-derived iPSC-CMs models, KCNQ1 mutations have been associated with reduced potassium ion flow, delayed repolarization, and QT interval prolongation. These abnormalities make cardiomyocytes more unstable during repolarization, increasing the risk of ventricular arrhythmias. Recent studies have highlighted the role of complex splicing events and protein degradation pathways in LQTS pathology. For example, Wuriyanghai et al. (2018) [59] reported that the KCNQ1-p.A344Aspl mutation led to aberrant splicing, potassium channel dysfunction, and increased EADs. These observations enhance our understanding of how splicing abnormalities can exacerbate LQTS. At the cellular level, the mutated KCNQ1 protein was either misfolded or failed to properly localize to the cardiomyocyte membrane, causing a significant reduction in I_{Ks} current density. This reduction results in prolonged action potential repolarization, which directly manifests as QT interval prolongation on an ECG.

The KCNH2 gene encodes a voltage-gated potassium channel that generates the $I_{\rm Kr}$ and mutations that cause incorrect folding or intracellular retention of the channel prevent its proper insertion into the cardiomyocyte membrane [60]. iPSC-CMs models have shown that hERG channel dysfunctions lead to reduced IKr currents, further impairing cardiac repolarization and prolonging the QT interval. Studies have also shown that KCNQ1 mutations may indirectly affect I_{Kr} through enhanced degradation. For example, some KCNQ1 mutations may increase the degradation of both KCNQ1 and hERG proteins through the upregulation of regulatory proteins such as Nedd4L, further weakening repolarization and worsening the LQTS phenotype. Additionally, research by Feng et al. (2021) [61] on the KCNH2 mutation hERG1-p.H70R in iPSC-CMs models suggests these mutations lead to decreased I_{Kr} currents and accelerated deactivation in cardiomyocytes, directly contributing to prolonged APD and consistent with the LQTS phenotype. The main molecular mechanism involves a reduction in the complex glycosylation forms of hERG1a protein, while the expression of hERG1b remains unaffected. This imbalance of subunits weakens I_{Kr} currents, with abnormal folding and trafficking defects in hERG1a leading to endoplasmic reticulum-associated degradation that reduces the expression of functional channels. The complexity of this molecular mechanism was further revealed by analy-

sis of mRNA splicing and post-translational regulation, emphasizing the impact of subunit ratios on channel function.

SCN5A gene mutations delay inactivation of the NaV1.5 sodium channel and increase $I_{Na,L}$, causing persistent sodium influx. This prolongs APD and ventricular repolarization, contributing to inherited arrhythmias like LQT3 and Brugada syndrome. Kroncke et al. (2019) [62] found that iPSC-CMs with the p.R1193Q variant exhibited significant late sodium current, leading to prolonged action potentials and triggered activity in cardiomyocytes. These features could be reversed by the addition of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), suggesting that the pathogenic mechanism of the p.R1193Q variant may involve PIP3-related regulatory pathways rather than mechanisms of direct channel inactivation. Additionally, Nieto-Marin et al. (2022) [63] used iPSC-CMs with Tbx5 gene mutations (p. D111Y and p. F206L) to examine changes in SCN5A gene expression and the resulting functional effects on the cardiac sodium channel NaV1.5. These authors found the Tbx5-p.D111Y variant increased the expression of CaMKII and its anchoring proteins, leading to an increase in the $I_{\text{Na,L}}$ of Nav1.5 and thus prolonging the action potential duration.

Calcium homeostasis also plays an important role in the pathophysiology of LQTS. Mutations in CALM impair calcium binding, resulting in abnormal calcium transients, prolonged APD, and an increased risk of arrhythmias such as EADs and delayed afterdepolarizations (DADs). Ledford et al. (2020) [64] showed that LQTS-related mutations such as CALM-p.D96V and CALM-p.D130G significantly reduce small-conductance Ca²⁺-activated K⁺ channel currents through a dominant-negative effect. These CALM mutations may therefore worsen LQTS pathology by impairing Ca²⁺-dependent repolarization currents. The CALM-p. D96V mutation led to a significant reduction in apamin-sensitive currents in iPSC-CMs, whereas the inhibitory effect of CALM-p.F90L was weaker, indicating that different CALM mutations may affect smallconductance Ca²⁺-activated K⁺ channel function through distinct mechanisms. The CALM-p.D96V mutation, in particular, severely affected channel function by impairing Ca²⁺ binding.

In summary, understanding the pathophysiology of LQTS involves exploration of how various ion channel dysfunctions and abnormal calcium handling produce the LQTS clinical phenotype. The resulting knowledge framework provides a scientific basis to support targeted therapeutic strategies and personalized management of this lifethreatening disorder.

4. Therapeutic Strategies

4.1 Valuation Genotype-Specific Drug

Genotype-specific treatments have shown significant progress for congenital LQTS. In particular, beta-blockers can effectively reduce cardiac events by over 95% for LQT1, 75% for LQT2, and 60% for LQT3. Propranolol, atenolol, and nadolol have shown efficacy, whereas metoprolol is less effective. Chockalingam et al. (2012) [26] suggested that in addition to their membrane stabilizing effect, propranolol and nadolol block peak I_{Na} , and affect non-inactivating $I_{Na,L}$, thus further contributing to APD shortening. Sodium channel blockers may also be required for symptomatic LQT3 patients. Ma et al. (2013) [40] reported that mexiletine reduces $I_{Na,L}$, restores peak I_{Na} , and improves electrophysiological properties. However, limitations remain with the current treatments. Despite advances in genetics, around 25% of LQTS cases lack an identified causative gene, thereby complicating precise risk assessment and targeted treatment. Furthermore, even within the same family, individuals with the same mutation can exhibit different disease severities, making risk assessment and treatment planning challenging. In severe cases, such as newborns with certain SCN5A, CALM, or TRDN mutations, current therapies often fail, highlighting the need for more effective drugs. Additionally, the side-effects of betablockers can impair patient adherence, particularly in those with no or mild symptoms, increasing the risk of arrhythmic events. Although effective for some LQTS types, sodium channel blockers can have off-target effects that add to the complexity of treatment. Mutation-specific therapies, such as lumacaftor, are only effective for specific cases and are not broadly applicable across all LQTS types. These challenges highlight the need to better understand the genetic complexity of LQTS, improve risk assessment, and develop more effective therapies that target the diverse presentations of this condition.

iPSCs hold significant value in the study of genespecific drug therapies because they provide a patientspecific cellular environment that enables the evaluation of drug efficacy, ion channel specificity, off-target effects, and potential side-effects. Comollo et al. (2022) [65] demonstrated that propranolol effectively inhibited late sodium current $(I_{Na,L})$ in LQT3 cardiomyocytes with LQT3-associated a three amino acid deletion (p. Δ KPQ, Δ =deletion, K=Lysine, P=Proline, Q=Glutamine) and p.E1784K mutations. The inhibitory effect was more pronounced for the latter mutation, and the action of propranolol on $I_{\text{Na,L}}$ was stronger than its effect on the I_{Kr} channel. These observations indicate that propranolol may have minimal off-target effects and potentially fewer side-effects for the treatment of LQT3. Stutzman et al. (2023) [66] highlighted the importance of using iPSC-CMs for the functional characterization of new mutations such as SCN5Ap.F1760C, especially after the failure of conventional treatments. They found the p.F1760C mutation led to increased $I_{\text{Na I}}$ and a shift in channel inactivation, which traditional sodium channel blockers such as mexiletine could not manage effectively. However, phenytoin successfully reduced the prolonged APD in these cells, suggesting it may be an alternative therapy for LQT3 patients who are resistant to

standard treatments. These examples demonstrate the utility of iPSC-CMs in understanding the impact of specific mutations and identifying targeted therapies, allowing for personalized treatment strategies in challenging cases. The success of phenytoin in restoring normal electrophysiological function in p.F1760C mutant cells suggests that repurposing anti-epileptic drugs could be an effective approach for treating variants that interfere with traditional drug binding. This case underscores the role of patient-specific cell models in bridging the gap between genetic diagnosis and effective therapy for channelopathies.

4.2 Drug Screening and Discovery

The comprehensive in vitro proarrhythmia assay (CiPA) is a new framework that integrates human-based computational models, in vitro assays, and iPSC-CMs. Due to their human origin and functional characteristics, iPSC-CMs are an effective platform for assessing drug-induced arrhythmias and other cardiac toxicities. Using multiparametric evaluations including electrophysiology, calcium signaling, cellular structure, and metabolic activity, in combination with high-content screening, iPSC-CMs are able to detect both arrhythmic and structural toxicities. When tested with drugs that are known to have arrhythmic risks. such as dofetilide and sotalol, iPSC-CMs accurately predicted the drugs' potential to prolong APD and trigger arrhythmic activity, demonstrating their value in evaluating early toxicity to identify high-risk compounds. Therefore, iPSC-CMs serve as a powerful platform for testing drug efficacy against specific mutations and for uncovering potential anti-arrhythmic effects (Table 3, Ref. [40,46,67-73]). For example, Mehta et al. (2018) [72] used iPSC-CMs from LQT2 patients to evaluate the effect of Lumacaftor, a drug originally designed for cystic fibrosis. LQT2 is primarily caused by mutations in the KCNH2 gene, resulting in reduced IKr current due to hERG potassium channel misfolding and defective trafficking to the cell membrane. The authors showed that Lumacaftor successfully corrected these defects in iPSC-CMs to restore the normal function of hERG channels. Further validation of these findings were provided by Schwartz et al. (2019) [74], who conducted a clinical trial using a combination of Lumacaftor and Ivacaftor (LUM+IVA) in two LQT2 patients. Consistent with in vitro results, both patients showed a significant reduction in OTc interval, albeit to a smaller degree compared to the cell studies. Although side-effects such as diarrhea were observed, the reduction in QTc interval during treatment, along with its subsequent rebound during drug washout, suggested a promising therapeutic effect. Another significant development was reported by Giannetti et al. (2023) [73], who explored the effects of serum/glucocorticoid-regulated kinase 1 (SGK1) inhibitors. They found that SGK1 inhibition consistently shortened APD in LQT2 models, but showed inconsistent outcomes in LQT1 models. This result suggests that SGK1

inhibitors have potential for genotype-specific therapeutic use, and reinforce the importance of genetic testing in guiding effective treatments. Overall, these advances illustrate how novel screening approaches and iPSC-CMs models are paving the way for more precise, personalized treatment of LQTS.

4.3 Biological Therapy

Biological therapies offer a promising new direction for treating LQTS by targeting the molecular root of the disorder. Suppression and replacement gene therapies have shown potential for addressing genetic mutations associated with LQTS. Dotzler et al. (2021) [75] reported that a novel suppression-replacement gene therapy (KCNQ1-SupRep) for LQT1 was an effective way to address mutant alleles while introducing functional ones. The suppression phase involved short hairpin RNA (shRNA) targeted at KCNQ1 and which reduced the expression of both mutant and wildtype alleles to mitigate harmful gene effects. The replacement phase used an immune-compatible KCNQ1 complementary DNA (cDNA) variant (shIMM) that was resistant to shRNA suppression and restored normal KCNO1 protein function. This combined approach successfully shortened APD in iPSC-CMs and normalized the pathological features in a transgenic rabbit model of LQT1.

Optogenetic therapies have also emerged as potential tools for precise control of cardiac electrophysiology. Gruber et al. (2021) [76] explored the use of light-sensitive ion channels to regulate APD in iPSC-CMs from LQTS patients. Their approach used channelrhodopsin-2 (ChR2), a cation channel activated by blue light, to trigger the influx of sodium and calcium ions and thus cause cellular depolarization. By applying light at specific AP phases, these authors achieved bidirectional APD modulation: activation during phase 3 (repolarization) extended APD, whereas activation during phase 2 (early repolarization) shortened it. They also used anion channelrhodopsin-2 (ACR2), a chloride-selective channel, to shorten APD by promoting hyperpolarization. These optogenetic interventions showed promise in restoring normal APD and lowering arrhythmia risk, indicating that optogenetics may be a potential regulatory strategy for cardiac arrhythmias.

Additionally, monoclonal antibody therapy targeting the *KCNQ1* potassium channel has shown potential for treating LQT3. Kis and Li (2024) [77] demonstrated the effectiveness of a monoclonal antibody (mAB-1) in normalizing the electrophysiological properties of iPSC-CMs. Using standard immunization techniques, they generated hybridoma cells from Balb/c mice spleen cells with high antibody titers, fused these with myeloma cells, and cultured them in HAT-supplemented RPMI 1640 medium. Six specific *KCNQ1*-targeting clones were selected and purified, with mAB-1 showing optimal function. In ATX-II-induced iPSC-CMs, mAB-1 effectively restored APD90 to baseline levels, suppressing EADs and arrhythmic activity.

Table 3. Overview of published drug discovery in iPSC-CM arrhythmia models.

Drug	Mode of action category		Subtype	Gene mutation	Effect on phenotype	Reference
I_{Kr} activators or modul	lators					
ICA-105574	Activates I_{Kr} , restores Kv11.1 current	LQT2	KCNH2	p.T618S, p.N633S, p.A422T	Reduces FPD, risk of overcorrection	Perry et al., 2020 [67]
NS1643	Activates I_{Kr}	LQT2	KCNH2	p.A561T	Increased I_{Kr} , shortened APD by 20%	Duncan et al., 2017 [68]
PD118057	Activates I_{Kr}	LQT2	KCNH2	p.F617L	Increased I_{Kr} , shortened APD by 17.3%, reduced arrhythmic activity	Matsa et al., 2011 [69]
LUF7346	Activates I_{Kr} , type-1 hERG allosteric modulator	LQT2	KCNH2	p.N996I	Increased I_{Kr} , shortened APD by 15–45%, reduced arrhythmic activity	Sala et al., 2016 [70]
Sodium channel blocke	ers					
Mexiletine	Sodium channel blocker	LQT3	SCN5A	p.V1763M	$I_{\mathrm{Na,L}}$ inhibition and shortened APD by 20%	Ma et al., 2013 [40]
Mexiletine analogues Sodium channel blocker		LQT3	SCN5A	p.P1473C p.A406L	$I_{\mathrm{Na,L}}$ inhibition and APD shortening at lower doses; analogues 'MexA20' and 'MexA50' more potent and selective, resulting in APD shortening and arrhythmia suppression	Cashman <i>et al.</i> , 2021 [71]
Calcium channel block	ters					
Verapamil	Calcium channel blocker	LQT1	KCNQ1/TRPM	74 p.G219E/p.T160M	Significantly shortened APD, reduced the risk of arrhythmias	Wang et al., 2022 [46]
PPAR-δ agonists						
Telmisartan, GW0742	PPAR-δ agonists, reduce repolarization abnormalities	LQT2	KCNH2	p.A561T	Reduction in repolarization abnormalities, shortened APD by 19%, suppressed arrhythmic events	Duncan et al., 2017 [68]
ATP-sensitive potassiu	m channel K_ATP activators					
Nicorandil	Vicorandil Activates ATP-sensitive potassium channels K ATP		KCNH2	p.A561T	Shortened APD by up to 21%	Duncan et al., 2017 [68]
Minoxidil	_		KCNH2	p.A561T	Shortened APD by up to 17%, some significant reductions in triangularization	Duncan et al., 2017 [68]
Protein trafficking pote	entiators					
Lumacaftor	Acts as a chaperone for hERG protein, correcting trafficking defects and stabilizing calcium handling	LQT2	KCNH2	p.A561V, p.IVS9-28A/G	Shortened FPD by 30–40%, improved hERG trafficking to the cell membrane and reduced calcium-handling irregularities	Mehta et al., 2018 [72]
Serum/Glucocortmpm-	-requlated kinase (SGK1) inhibitors (SC	K1-I)				
SGK1-Inh	Inhibits serum/ glucocorticoid-regulated kinase 1	LQT1, LQT2	KCNH2 KCNQ1	p.A561V, p.R594Q	Dose-dependent shortening of FPD and APD by 20–45% in LQT2, variable effects in LQT1 models, with significant FPD/APD shortening only at higher concentrations	Giannetti et al., 2023 [73]

PPAR-δ, peroxisome proliferator-activated receptor; LQT1, long QT syndrome type 1; hERG, human ether-a-go-go-related gene; PD, pfizer discovery; LUF, leiden university; NS, NeuroSearch; ICA, icagen.

Together, these findings suggest that biological approaches have strong therapeutic potential in LQTS management.

5. Challenges and Prospects

5.1 Immaturity of Cells

iPSC-CMs often exhibit limited maturity, displaying embryonic-like electrophysiological characteristics. They lack the stability of adult cardiomyocytes, such as a stable action potential. Additionally, the absence of a Ttubule system restricts efficient intracellular calcium transfer, which impedes the analysis of calcium handling and triggered activity [78]. The resting membrane potential in iPSC-CMs is also less stable due to insufficient I_{K1} expression and an elevated "funny current" (If), affecting their ability to accurately replicate adult cardiomyocyte electrophysiology [79]. Furthermore, discrepancies in ion channel kinetics, such as those observed with I_{Ks} , result in variable electrophysiological responses compared to mature heart cells. Several strategies have been explored to improve the maturity of iPSC-CMs. Gene transduction and current injection [80,81], specifically through Kir2.1 transduction or simulated I_{K1} injection, enhance I_{K1} density, thereby promoting a more stable resting membrane potential and physiologically accurate AP morphology. Hormonal treatment, including thyroid hormone exposure, can induce features more similar to adult cardiomyocytes. Additionally, the culturing of cells on nano-structured or biomimetic substrates also supports structural and functional maturation by providing a more physiologically relevant environment. The optimization of differentiation conditions facilitates the generation of cells with predominantly atrial or ventricular characteristics, further increasing their specificity and maturity. Lastly, three-dimensional (3D) tissue culture [82– 84] methods, such as microspheres or myocardial tissue strips, fosters stable beating and electrophysiological characteristics that closely resemble actual heart tissue. Collectively, these approaches enhance iPSC-CM maturity, improving their utility for electrophysiological and pharmacological screening studies.

5.2 Cellular Heterogeneity

The heterogeneity of iPSC-CMs primarily arises from molecular variations during differentiation that are shaped by specific signaling pathways, growth factors, and cytokine responses. Differentiating cardiomyocyte subtypes, such as ventricular, atrial, and nodal cells, rely on precisely regulated signaling pathways such as the Wnt and BMP pathways. Even minor differences in the timing and strength of these signals can produce mixed populations with diverse phenotypes, thereby reducing iPSC-CMs homogeneity. For example, Wnt activates progenitor formation, whereas its inhibition promotes differentiation. BMP2 contributes to myocardial differentiation, while Notch and fibroblast growth factor (FGF) regulate cell fate and proliferation, ensuring coordinated cardiac development. Ad-

ditionally, transcription factors such as NK2 homeobox 5 (NKX2.5), T-box transcription factor 5 (TBX5), and short stature homeobox 2 (SHOX2) play crucial roles in cell fate during differentiation. Variation in the expression of these factors leads to mixed ventricular and atrial phenotypes within the same culture, impacting the consistency of the generated iPSC-CMs. Culture conditions, whether two-dimensional (2D) or 3D, also affect cell-cell interactions and phenotypic stability.

To address these challenges, several strategies have been developed to increase the homogeneity of iPSC-CMs: (1) Optimization of the differentiation protocols through modulation of the Wnt and BMP pathways can lead to more specific iPSC-CM subtypes [85]. Small molecule inhibitors can be used to refine the timing and strength of pathway activation, resulting in more uniform cell populations. (2) Advanced co-culture systems with supportive cardiac cells, such as endothelial cells and fibroblasts, help to create a more physiological environment. This promotes stable differentiation and phenotypic consistency by mimicking natural cardiac signals. (3) Gene editing tools such as CRISPR/Cas9 can further improve iPSC-CM stability by reducing spontaneous gene expression changes, facilitating the development of more uniform cell lines suitable for disease modeling. (4) Defined culture media containing specific fatty acids and supplements that mimic the metabolic profile of the human heart contribute to more consistent maturation across iPSC-CMs populations. (5) Expanding iPSC-CMs in 3D bioreactors provides a controlled environment for dynamic cell growth and reduces heterogeneity compared to static cultures. Such bioreactor systems allow real-time adjustments of the growth conditions and support reproducible, large-scale differentiation. Standardization and scalability is essential to ensure that iPSC-CMs can be produced at the scale required for widespread clinical and research use. Lee et al. (2020) [86] recently developed a primordial 3D heart-like structure using mouse embryonic stem cells (ESCs) and FGF signaling. This structure included defined atrium, ventricle, pacemaker cells, smooth muscle cells (SMCs), and endothelial cells (ECs). Similarly, Hofbauer et al. (2021) [87] generated self-organizing "cardioids" using human iPSCs. These contained cells from the myocardium, epicardium, and endocardium, successfully mimicking the early development of heart chambers. However, integrating multicellular coupling models to study intercellular coupling properties and synchrony, and exploring the propagation of electrical signals and repolarization of iPSC-CMs in 3D tissue cultures or engineered heart tissues, remains a significant challenge.

5.3 Computational Models

Computational models are widely used to study mechanisms of cardiac automaticity and arrhythmias [88]. They offer precise control over parameters so that the compensatory effects seen in genetic animal models can be over-

come, while also allowing simultaneous and detailed analysis of multiple components, including ion currents, membrane potentials, and intracellular concentrations. Consequently, these models have significant value in the CiPA initiative, which aims to predict the proarrhythmic risk of new drugs. However, the models are becoming increasingly complex as our understanding of cardiac electrophysiology deepens, since they integrate molecular ion channel dynamics, localized calcium handling changes, and post-translational regulation through signaling cascades [89].

Standard iPSC-CMs AP models typically encompass detailed dynamics of sodium (Na⁺), calcium (Ca²⁺), and potassium (K⁺) channels, which are used to study voltage changes under normal and pathological conditions. Many models are based on the AP models of mature cardiomyocytes, with parameter adjustments to accommodate the unique characteristics of iPSC-CMs. For example, the Paci model aims to replicate the dynamic characteristics of AP and calcium handling. This makes it suitable for simulating the effects of drugs on ion channels, and in particular for evaluating the proarrhythmic risk of new drugs. Additionally, this model can be adjusted to simulate different cardiomyocyte subtypes. However, iPSC-CMs often retain embryonic-like phenotypes, and hence the Paci model may not accurately reflect the structure and function of mature cardiomyocytes. Another model developed by Koivumäki et al. (2018) [90] focuses on the impact of the immature characteristics of iPSC-CMs on cellular function. It provides a detailed description of calcium handling and action potential properties, and offers a virtual platform for simulating disease mechanisms. This model is particularly suitable for studying differences in electrophysiological characteristics between iPSC-CMs and mature cardiomyocytes. It effectively simulates the impact of the lack of mature Ttubule structures in iPSC-CMs, allowing for an in-depth analysis of calcium handling abnormalities and their potential contribution to arrhythmias. It is useful for disease modeling and drug screening, helping to predict the specific effects of drugs on immature cardiomyocytes.

6. Conclusion

The application of iPSC technology in LQTS research represents a paradigm shift towards personalized medicine. iPSC-CMs provide unique insights into disease mechanisms, drug response, and genetic contributions, offering a robust platform for both basic and translational research. However, challenges remain in achieving full cardiomyocyte maturation and consistent cell differentiation. Continued advances in gene editing, 3D culture systems, and computational modeling will further bridge the gap between *in vitro* models and clinical practice, enhancing the predictive value of iPSC-derived models in LQTS research.

Abbreviations

LQTS, Congenital Long QT Syndrome; iPSC, Human-Induced Pluripotent Stem Cells; iPSC-CMs, Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes; SCD, Sudden Cardiac Death; TdP, Torsade de Pointes; ICD, Implantable Cardioverter Defibrillator; LCSD, Left Cardiac Sympathetic Denervation; I_{Ks} , Slow Delayed Rectifier Potassium Current; I_{Kr} , Rapid Delayed Rectifier Potassium Current; $I_{Na,L}$, Late Sodium Current; APC, Automated Patch Clamp; MEA, Multielectrode Array; APD, Action Potential Duration; FPD, Field Potential Duration; CDI, Calcium-Dependent Inactivation; WES, Whole Exome Sequencing; WGS, Whole Genome Sequencing; NGS, Next Generation Sequencing; VUS, Variants of Uncertain Significance; SNV, Single Nucleotide Variants; CiPA, Comprehensive in Vitro Proarrhythmia Assay; PBMBs, Peripheral Blood Mononuclear Cells; KI, Knock In; GM, Gene Modification; ATS, Andersen-Tawil Syndrome; JLNS, Jervell and Lange-Nielsen Syndrome; TM, Timothy Syndrome; TKOS, Triadin Knockout Syndrome; PPAR-δ, Peroxisome Proliferator-Activated Receptor Delta; BMP, Bone Morphogenetic Protein; FGF, Fibroblast Growth Factor; ESCs, Embryonic Stem Cells; SMCs, Smooth Muscle Cells; ECs, Endothelial Cells.

Author Contributions

QL: Conceived the review, wrote the manuscript, and drew a graphical abstract using FigDraw. Y-FW: Analyzed and interpreted key findings, revised the manuscript for intellectual content. BW: Analyzed and interpreted key findings, reviewed the manuscript for accuracy and consistency. T-TL: Designed the research scope and objectives, supervised the interpretation of critical findings, and revised the manuscript for structural and intellectual rigor. PZ: Conceived the project vision, secured funding, designed the collaborative work flow, and critically revised the manuscript for scientific coherence and impact. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript. All authors have participated sufficiently in the work and agreed to be accountable for all aspects of the work.

Ethics Approval and Consent to Participate

Not applicable.

Acknowledgment

Not applicable.

Funding

This work was supported by Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support [Grant/Award Number: ZLRK202518], Beijing Municipal Natural Science Foundation [Grant/Award

Number: 7244450]; National Key Research and Development Program of China [Grant/Award Number: 2021YFF1200902].

Conflict of Interest

The authors declare no conflict of interest.

References

- [1] Wilde AAM, Amin AS, Postema PG. Diagnosis, management and therapeutic strategies for congenital long QT syndrome. Heart (British Cardiac Society). 2022; 108: 332–338. https://doi.org/10.1136/heartjnl-2020-318259.
- [2] Krahn AD, Laksman Z, Sy RW, Postema PG, Ackerman MJ, Wilde AAM, et al. Congenital Long QT Syndrome. JACC. Clinical Electrophysiology. 2022; 8: 687–706. https://doi.org/10. 1016/j.jacep.2022.02.017.
- [3] Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, *et al.* Prevalence of the congenital long-QT syndrome. Circulation. 2009; 120: 1761–1767. https://doi.org/10.1161/CIRCULATIONAHA.109.863209.
- [4] Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, et al. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiological Reviews. 2021; 101: 1083–1176. https://doi.org/10.1152/phys rev.00024.2019.
- [5] Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology. 2022; 24: 1307–1367. https://doi.org/10.1093/europace/euac030.
- [6] Adler A, Novelli V, Amin AS, Abiusi E, Care M, Nannenberg EA, et al. An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome. Circulation. 2020; 141: 418–428. https://doi.org/10. 1161/CIRCULATIONAHA.119.043132.
- [7] Giudicessi JR, Ackerman MJ. Prevalence and potential genetic determinants of sensorineural deafness in KCNQ1 homozygosity and compound heterozygosity. Circulation. Cardiovascular Genetics. 2013; 6: 193–200. https://doi.org/10.1161/CIRCGE NETICS.112.964684.
- [8] Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995; 80: 795–803. https://doi.org/10.1016/0092-8674(95)90358-5.
- [9] Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995; 80: 805–811. https: //doi.org/10.1016/0092-867(95)90359-3.
- [10] Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013; 127: 1009–1017. https://doi.org/10.1161/CIRCULATIONAHA.112.001216.
- [11] Chaix MA, Koopmann TT, Goyette P, Alikashani A, Latour F, Fatah M, et al. Novel CALM3 mutations in pediatric long QT syndrome patients support a CALM3-specific calmodulinopathy. HeartRhythm Case Reports. 2016; 2: 250–254. https://doi.org/10.1016/j.hrcr.2016.02.002.
- [12] Altmann HM, Tester DJ, Will ML, Middha S, Evans JM,

- Eckloff BW, et al. Homozygous/Compound Heterozygous Triadin Mutations Associated With Autosomal-Recessive Long-QT Syndrome and Pediatric Sudden Cardiac Arrest: Elucidation of the Triadin Knockout Syndrome. Circulation. 2015; 131: 2051–2060. https://doi.org/10.1161/CIRCULATIONAHA.115.015397.
- [13] Boczek NJ, Best JM, Tester DJ, Giudicessi JR, Middha S, Evans JM, et al. Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. Circulation. Cardiovascular Genetics. 2013; 6: 279–289. https://doi.org/10.1161/CIRCGENETICS.113.000138.
- [14] Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW, et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation. 2006; 114: 2104–2112. https://doi.org/10.1161/CIRCULATIO NAHA.106.635268.
- [15] Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nature Genetics. 1997; 17: 338–340. https://doi.org/10.1038/ng1197-338.
- [16] Plaster NM, Tawil R, Tristani-Firouzi M, Canún S, Bendah-hou S, Tsunoda A, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell. 2001; 105: 511–519. https://doi.org/10.1016/s0092-8674(01)00342-7.
- [17] Chen L, Marquardt ML, Tester DJ, Sampson KJ, Ackerman MJ, Kass RS. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104: 20990– 20995. https://doi.org/10.1073/pnas.0710527105.
- [18] Ichikawa M, Aiba T, Ohno S, Shigemizu D, Ozawa J, Sonoda K, et al. Phenotypic Variability of ANK2 Mutations in Patients With Inherited Primary Arrhythmia Syndromes. Circulation Journal: Official Journal of the Japanese Circulation Society. 2016; 80: 2435–2442. https://doi.org/10.1253/circj.CJ-16-0486.
- [19] Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, *et al.* MiRP1 forms $I_{\rm Kr}$ potassium channels with HERG and is associated with cardiac arrhythmia. Cell. 1999; 97: 175–187. https://doi.org/10.1016/s0092-8674(00)80728-x.
- [20] Yang Y, Yang Y, Liang B, Liu J, Li J, Grunnet M, et al. Identification of a Kir3.4 mutation in congenital long QT syndrome. American Journal of Human Genetics. 2010; 86: 872–880. https://doi.org/10.1016/j.ajhg.2010.04.017.
- [21] Medeiros-Domingo A, Kaku T, Tester DJ, Iturralde-Torres P, Itty A, Ye B, et al. SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation. 2007; 116: 134–142. https://doi.org/10.1161/CIRCULATIONAHA.106.659086.
- [22] Ueda K, Valdivia C, Medeiros-Domingo A, Tester DJ, Vatta M, Farrugia G, et al. Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proceedings of the National Academy of Sciences of the United States of America. 2008; 105: 9355–9360. https://doi.org/10.1073/pnas.0801294105.
- [23] Schwartz PJ. 1970-2020: 50 years of research on the long QT syndrome-from almost zero knowledge to precision medicine. European Heart Journal. 2021; 42: 1063–1072. https://doi.org/10.1093/eurheartj/ehaa769.
- [24] Gnecchi M, Sala L, Schwartz PJ. Precision Medicine and cardiac channelopathies: when dreams meet reality. European Heart Journal. 2021; 42: 1661–1675. https://doi.org/10.1093/eurheart j/ehab007.
- [25] Schwartz PJ, Sala L. The impact of genetics on the long QT syndrome: myth or reality? Current Opinion in Car-

- diology. 2023; 38: 149–156. https://doi.org/10.1097/HCO.0000000000001027.
- [26] Chockalingam P, Crotti L, Girardengo G, Johnson JN, Harris KM, Van Der Heijden JF, et al. Not all beta-blockers are equal in the management of long QT syndrome types 1 and 2: higher recurrence of events under metoprolol. Journal of the American College of Cardiology. 2012; 60: 2092–2099. https://doi.org/10.1016/j.jacc.2012.07.046.
- [27] Yang Y, Lv TT, Li SY, Zhang P. Sodium channel blockers in the management of long QT syndrome types 3 and 2: A system review and meta-analysis. Journal of Cardiovascular Electrophysiology. 2021; 32: 3057–3067. https://doi.org/10.1111/jce.15223.
- [28] Schwartz PJ, Ackerman MJ. Cardiac sympathetic denervation in the prevention of genetically mediated life-threatening ventricular arrhythmias. European Heart Journal. 2022; 43: 2096–2102. https://doi.org/10.1093/eurheartj/ehac134.
- [29] Corrado D, Link MS, Schwartz PJ. Implantable defibrillators in primary prevention of genetic arrhythmias. A shocking choice? European Heart Journal. 2022; 43: 3029–3040. https://doi.org/ 10.1093/eurhearti/ehac298.
- [30] Odening KE, Gomez AM, Dobrev D, Fabritz L, Heinzel FR, Mangoni ME, et al. ESC working group on cardiac cellular electrophysiology position paper: relevance, opportunities, and limitations of experimental models for cardiac electrophysiology research. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology. 2021; 23: 1795–1814. https://doi.org/10.1093/europace/euab142.
- [31] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663–676. https://doi.org/10.1016/j.cell .2006.07.024.
- [32] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, To-moda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861–872. https://doi.org/10.1016/j.cell.2007.11.019.
- [33] Yoshida Y, Yamanaka S. Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications. Circulation Research. 2017; 120: 1958–1968. https://doi.org/10.1161/CIRCRESAHA .117.311080.
- [34] Yu Y, Deschenes I, Zhao MT. Precision medicine for long QT syndrome: patient-specific iPSCs take the lead. Expert Reviews in Molecular Medicine. 2023; 25: e5. https://doi.org/10.1017/er m 2022 43.
- [35] Cai D, Zheng Z, Jin X, Fu Y, Cen L, Ye J, et al. The Advantages, Challenges, and Future of Human-Induced Pluripotent Stem Cell Lines in Type 2 Long QT Syndrome. Journal of Cardiovascular Translational Research. 2023; 16: 209–220. https://doi.org/10.1007/s12265-022-10298-x.
- [36] Clancy CE, Santana LF. Advances in induced pluripotent stem cell-derived cardiac myocytes: technological breakthroughs, key discoveries and new applications. The Journal of Physiology. 2024; 602: 3871–3892. https://doi.org/10.1113/JP282562.
- [37] Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flügel L, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. The New England Journal of Medicine. 2010; 363: 1397–1409. https://doi.org/10.1056/NE JMoa0908679.
- [38] Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, *et al.* Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011; 471: 225–229. https://doi.org/10.1038/nature09747.
- [39] Davis RP, Casini S, van den Berg CW, Hoekstra M, Remme CA, Dambrot C, et al. Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics

- of an overlap syndrome of cardiac sodium channel disease. Circulation. 2012; 125: 3079–3091. https://doi.org/10.1161/CIRC ULATIONAHA.111.066092.
- [40] Ma D, Wei H, Zhao Y, Lu J, Li G, Sahib NBE, et al. Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. International Journal of Cardiology. 2013; 168: 5277–5286. https://doi.org/10.1016/j.ijcard.2013.08.015.
- [41] Wren LM, Jiménez-Jáimez J, Al-Ghamdi S, Al-Aama JY, Bdeir A, Al-Hassnan ZN, et al. Genetic Mosaicism in Calmodulinopathy. Circulation. Genomic and Precision Medicine. 2019; 12: 375–385. https://doi.org/10.1161/CIRCGEN.119.002581.
- [42] Limpitikul WB, Dick IE, Tester DJ, Boczek NJ, Limphong P, Yang W, et al. A Precision Medicine Approach to the Rescue of Function on Malignant Calmodulinopathic Long-QT Syndrome. Circulation Research. 2017; 120: 39–48. https://doi.org/10.1161/CIRCRESAHA.116.309283.
- [43] Clemens DJ, Ye D, Wang L, Kim CSJ, Zhou W, Dotzler SM, et al. Cellular and electrophysiological characterization of triadin knockout syndrome using induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports. 2023; 18: 1075–1089. https://doi.org/10.1016/j.stemcr.2023.04.005.
- [44] Kuroda Y, Yuasa S, Watanabe Y, Ito S, Egashira T, Seki T, *et al.* Flecainide ameliorates arrhythmogenicity through NCX flux in Andersen-Tawil syndrome-iPS cell-derived cardiomyocytes. Biochemistry and Biophysics Reports. 2017; 9: 245–256. https://doi.org/10.1016/j.bbrep.2017.01.002.
- [45] Zhang M, D'Aniello C, Verkerk AO, Wrobel E, Frank S, Wardvan Oostwaard D, et al. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue. Proceedings of the National Academy of Sciences of the United States of America. 2014; 111: E5383–92. https://doi.org/10.1073/pnas.1419553111.
- [46] Wang F, Han Y, Sang W, Wang L, Liang X, Wang L, et al. In Vitro Drug Screening Using iPSC-Derived Cardiomyocytes of a Long QT-Syndrome Patient Carrying KCNQ1 & TRPM4 Dual Mutation: An Experimental Personalized Treatment. Cells. 2022; 11: 2495. https://doi.org/10.3390/cells11162495.
- [47] Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circulation Research. 2018; 123: 224– 243. https://doi.org/10.1161/CIRCRESAHA.118.311209.
- [48] Ronchi C, Bernardi J, Mura M, Stefanello M, Badone B, Rocchetti M, et al. NOS1AP polymorphisms reduce NOS1 activity and interact with prolonged repolarization in arrhythmogenesis. Cardiovascular Research. 2021; 117: 472–483. https://doi.org/10.1093/cyr/cyaa036.
- [49] Lee YK, Sala L, Mura M, Rocchetti M, Pedrazzini M, Ran X, et al. MTMR4 SNVs modulate ion channel degradation and clinical severity in congenital long QT syndrome: insights in the mechanism of action of protective modifier genes. Cardiovascular Research. 2021; 117: 767–779. https://doi.org/10.1093/cvr/cvaa019.
- [50] Kapplinger JD, Tester DJ, Salisbury BA, Carr JL, Harris-Kerr C, Pollevick GD, et al. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm. 2009; 6: 1297–1303. https://doi.org/10.1016/j.hrthm.2009.05.021.
- [51] Ackerman MJ. Genetic purgatory and the cardiac channelopathies: Exposing the variants of uncertain/unknown significance issue. Heart Rhythm. 2015; 12: 2325–2331. https://doi.org/10.1016/j.hrthm.2015.07.002.
- [52] Chavali NV, Kryshtal DO, Parikh SS, Wang L, Glazer

- AM, Blackwell DJ, *et al.* Patient-independent human induced pluripotent stem cell model: A new tool for rapid determination of genetic variant pathogenicity in long QT syndrome. Heart Rhythm. 2019; 16: 1686–1695. https://doi.org/10.1016/j.hrthm. 2019.04.031.
- [53] Yamamoto Y, Makiyama T, Harita T, Sasaki K, Wuriyanghai Y, Hayano M, et al. Allele-specific ablation rescues electrophysiological abnormalities in a human iPS cell model of long-QT syndrome with a CALM2 mutation. Human Molecular Genetics. 2017; 26: 1670–1677. https://doi.org/10.1093/hmg/ddx073.
- [54] Zhou W, Ye D, Tester DJ, Bains S, Giudicessi JR, Haglund-Turnquist CM, et al. Elucidation of ALG10B as a Novel Long-QT Syndrome-Susceptibility Gene. Circulation. Genomic and Precision Medicine. 2023; 16: e003726. https://doi.org/10.1161/CIRCGEN.122.003726.
- [55] Schwartz PJ, Crotti L, George AL, Jr. Modifier genes for sudden cardiac death. European Heart Journal. 2018; 39: 3925–3931. https://doi.org/10.1093/eurheartj/ehy502.
- [56] Chai S, Wan X, Ramirez-Navarro A, Tesar PJ, Kaufman ES, Ficker E, et al. Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of Clinical Investigation. 2018; 128: 1043–1056. https://doi.org/10.1172/JCI94996.
- [57] Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iP-SCs): molecular mechanisms of induction and applications. Signal Transduction and Targeted Therapy. 2024; 9: 112. https://doi.org/10.1038/s41392-024-01809-0.
- [58] Sebastian SA, Panthangi V, Sethi Y, Padda I, Khan U, Affas ZR, et al. Precision Medicine and Cardiac Channelopathies: Human iPSCs Take the Lead. Current Problems in Cardiology. 2023; 48: 101990. https://doi.org/10.1016/j.cpcardiol.2023.101990.
- [59] Wuriyanghai Y, Makiyama T, Sasaki K, Kamakura T, Yamamoto Y, Hayano M, et al. Complex aberrant splicing in the induced pluripotent stem cell-derived cardiomyocytes from a patient with long QT syndrome carrying KCNQ1-A344Aspl mutation. Heart Rhythm. 2018; 15: 1566–1574. https://doi.org/10.1016/j.hrthm.2018.05.028.
- [60] Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K(+) channels: structure, function, and clinical significance. Physiological Reviews. 2012; 92: 1393–1478. https://doi.org/10.1152/physrev.00036.2011.
- [61] Feng L, Zhang J, Lee C, Kim G, Liu F, Petersen AJ, et al. Long QT Syndrome KCNH2 Variant Induces hERG1a/1b Subunit Imbalance in Patient-Specific Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circulation. Arrhythmia and Electrophysiology. 2021; 14: e009343. https://doi.org/10.1161/CIRC EP.120.009343.
- [62] Kroncke BM, Yang T, Roden DM. Multiple mechanisms underlie increased cardiac late sodium current. Heart Rhythm. 2019; 16: 1091–1097. https://doi.org/10.1016/j.hrthm.2019.01.018.
- [63] Nieto-Marín P, Tinaquero D, Utrilla RG, Cebrián J, González-Guerra A, Crespo-García T, et al. Tbx5 variants disrupt Nav1.5 function differently in patients diagnosed with Brugada or Long QT Syndrome. Cardiovascular Research. 2022; 118: 1046–1060. https://doi.org/10.1093/cvr/cvab045.
- [64] Ledford HA, Park S, Muir D, Woltz RL, Ren L, Nguyen PT, et al. Different arrhythmia-associated calmodulin mutations have distinct effects on cardiac SK channel regulation. The Journal of General Physiology. 2020; 152: e202012667. https://doi.org/10.1085/jgp.202012667.
- [65] Comollo TW, Zou X, Zhang C, Kesters D, Hof T, Sampson KJ, et al. Exploring mutation specific beta blocker pharmacology of the pathogenic late sodium channel current from patient-specific pluripotent stem cell myocytes derived from long QT syndrome mutation carriers. Channels (Austin, Tex.). 2022; 16: 173–184. https://doi.org/10.1080/19336950.2022.2106025.

- [66] Stutzman MJ, Gao X, Kim M, Ye D, Zhou W, Tester DJ, et al. Functional characterization and identification of a therapeutic for a novel SCN5A-F1760C variant causing type 3 long QT syndrome refractory to all guideline-directed therapies. Heart Rhythm. 2023; 20: 709–717. https://doi.org/10.1016/j.hrthm. 2023.01.032.
- [67] Perry MD, Ng CA, Mangala MM, Ng TYM, Hines AD, Liang W, et al. Pharmacological activation of I_{Kr} in models of long QT Type 2 risks overcorrection of repolarization. Cardiovascular Research. 2020; 116: 1434–1445. https://doi.org/10.1093/cvr/cvr247.
- [68] Duncan G, Firth K, George V, Hoang MD, Staniforth A, Smith G, et al. Drug-Mediated Shortening of Action Potentials in LQTS2 Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells and Development. 2017; 26: 1695–1705. https://doi.org/10.1089/scd.2017.0172.
- [69] Matsa E, Rajamohan D, Dick E, Young L, Mellor I, Staniforth A, et al. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. European Heart Journal. 2011; 32: 952–962. https://doi.org/10.1093/eurheartj/ehr073.
- [70] Sala L, Yu Z, Ward-van Oostwaard D, van Veldhoven JP, Moretti A, Laugwitz KL, et al. A new hERG allosteric modulator rescues genetic and drug-induced long-QT syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells. EMBO Molecular Medicine. 2016; 8: 1065–1081. https://doi.org/10.15252/emmm.201606260.
- [71] Cashman JR, Ryan D, McKeithan WL, Okolotowicz K, Gomez-Galeno J, Johnson M, et al. Antiarrhythmic Hit to Lead Refinement in a Dish Using Patient-Derived iPSC Cardiomyocytes. Journal of Medicinal Chemistry. 2021; 64: 5384–5403. https://doi.org/10.1021/acs.jmedchem.0c01545.
- [72] Mehta A, Ramachandra CJA, Singh P, Chitre A, Lua CH, Mura M, et al. Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. European Heart Journal. 2018; 39: 1446–1455. https://doi.org/10.1093/eurheartj/ehx394.
- [73] Giannetti F, Barbieri M, Shiti A, Casini S, Sager PT, Das S, et al. Gene- and variant-specific efficacy of serum/glucocorticoid-regulated kinase 1 inhibition in long QT syndrome types 1 and 2. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology. 2023; 25: euad094. https://doi.org/10.1093/europace/euad094.
- [74] Schwartz PJ, Gnecchi M, Dagradi F, Castelletti S, Parati G, Spazzolini C, et al. From patient-specific induced pluripotent stem cells to clinical translation in long QT syndrome Type 2. European Heart Journal. 2019; 40: 1832–1836. https://doi.org/10.1093/eurheartj/ehz023.
- [75] Dotzler SM, Kim CSJ, Gendron WAC, Zhou W, Ye D, Bos JM, et al. Suppression-Replacement KCNQ1 Gene Therapy for Type 1 Long QT Syndrome. Circulation. 2021; 143: 1411–1425. https://doi.org/10.1161/CIRCULATIONAHA.120.051836.
- [76] Gruber A, Edri O, Huber I, Arbel G, Gepstein A, Shiti A, et al. Optogenetic modulation of cardiac action potential properties may prevent arrhythmogenesis in short and long QT syndromes. JCI Insight. 2021; 6: e147470. https://doi.org/10.1172/jci.insight.147470.
- [77] Kis L, Li J. Proof of concept for monoclonal antibody therapy in a cellular model of acquired long QT syndrome type 3. American Journal of Physiology. Heart and Circulatory Physiology. 2024; 326: H89–H95. https://doi.org/10.1152/ajpheart.00628.2023.
- [78] Thomas D, Cunningham NJ, Shenoy S, Wu JC. Human-induced pluripotent stem cells in cardiovascular research: current approaches in cardiac differentiation, maturation strategies, and

- scalable production. Cardiovascular Research. 2022; 118: 20–36. https://doi.org/10.1093/cvr/cvab115.
- [79] Clark AP, Krogh-Madsen T, Christini DJ. Stem cell-derived cardiomyocyte heterogeneity confounds electrophysiological insights. The Journal of Physiology. 2024; 602: 5155–5162. https://doi.org/10.1113/JP284618.
- [80] Herron TJ, Rocha AMD, Campbell KF, Ponce-Balbuena D, Willis BC, Guerrero-Serna G, et al. Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function. Circulation. Arrhythmia and Electrophysiology. 2016; 9: e003638. https://doi.org/10.1161/CIRCEP.113.003638.
- [81] Reilly L, Eckhardt LL. Cardiac potassium inward rectifier Kir2: Review of structure, regulation, pharmacology, and arrhythmogenesis. Heart Rhythm. 2021; 18: 1423–1434. https://doi.org/ 10.1016/j.hrthm.2021.04.008.
- [82] Min S, Kim S, Sim WS, Choi YS, Joo H, Park JH, et al. Versatile human cardiac tissues engineered with perfusable heart extracellular microenvironment for biomedical applications. Nature Communications. 2024; 15: 2564. https://doi.org/10.1038/s41467-024-46928-y.
- [83] Giacomelli E, Meraviglia V, Campostrini G, Cochrane A, Cao X, van Helden RWJ, et al. Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell. 2020; 26: 862–879.e811. https://doi.org/10.1016/j.stem.2020.05.004.
- [84] Ma Z, Koo S, Finnegan MA, Loskill P, Huebsch N, Marks NC, et al. Three-dimensional filamentous human diseased cardiac tissue model. Biomaterials. 2014; 35: 1367–1377. https:

- //doi.org/10.1016/j.biomaterials.2013.10.052.
- [85] Jeziorowska D, Fontaine V, Jouve C, Villard E, Dussaud S, Akbar D, et al. Differential Sarcomere and Electrophysiological Maturation of Human iPSC-Derived Cardiac Myocytes in Monolayer vs. Aggregation-Based Differentiation Protocols. International Journal of Molecular Sciences. 2017; 18: 1173. https://doi.org/10.3390/ijms18061173.
- [86] Lee J, Sutani A, Kaneko R, Takeuchi J, Sasano T, Kohda T, et al. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nature Communications. 2020; 11: 4283. https://doi.org/10.1038/s41467-020-18031-5.
- [87] Hofbauer P, Jahnel SM, Papai N, Giesshammer M, Deyett A, Schmidt C, et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell. 2021; 184: 3299–3317.e3322. https://doi.org/10.1016/j.cell.2021.04.034.
- [88] Park JS, Jeon JY, Yang JH, Kim MG. Introduction to in silico model for proarrhythmic risk assessment under the CiPA initiative. Translational and Clinical Pharmacology. 2019; 27: 12–18. https://doi.org/10.12793/tcp.2019.27.1.12.
- [89] Kopańska K, Rodríguez-Belenguer P, Llopis-Lorente J, Trenor B, Saiz J, Pastor M. Uncertainty assessment of proarrhythmia predictions derived from multi-level in silico models. Archives of Toxicology. 2023; 97: 2721–2740. https://doi.org/10.1007/s00204-023-03557-6.
- [90] Koivumäki JT, Naumenko N, Tuomainen T, Takalo J, Oksanen M, Puttonen KA, et al. Structural Immaturity of Human iPSC-Derived Cardiomyocytes: In Silico Investigation of Effects on Function and Disease Modeling. Frontiers in Physiology. 2018; 9: 80. https://doi.org/10.3389/fphys.2018.00080.

