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Abstract

Background: The study aimed to develop an interpretable machine learning (ML) model to assess and stratify the risk of long-term
major adverse cardiovascular events (MACEs) in patients with premature myocardial infarction (PMI) and to analyze the key variables
affecting prognosis. Methods: This prospective study consecutively included patients (male ≤50 years, female ≤55 years) diagnosed
with acute myocardial infarction (AMI) at Tianjin Chest Hospital between January 2017 and December 2022. The study endpoint
was the occurrence of MACEs during the follow-up period, which was defined as cardiac death, nonfatal stroke, readmission for heart
failure, nonfatal recurrent myocardial infarction, and unplanned coronary revascularization. Four machine learning models were built:
COX proportional hazards model (COX) regression, random survival forest (RSF), extreme gradient boosting (XGBoost), and DeepSurv.
Models were evaluated using concordance index (C-index), Brier score, and decision curve analysis to select the best model for prediction
and risk stratification. Results: A total of 1202 patients with PMI were included, with a median follow-up of 26 months, and MACEs
occurred in 200 (16.6%) patients. The RSF model demonstrated the best predictive performance (C-index, 0.815; Brier, 0.125) and could
effectively discriminate between high- and low-risk patients. The Kaplan-Meier curve demonstrated that patients categorized as low risk
showed a better prognosis (p< 0.0001). Conclusions: The prognostic model constructed based on RSF can accurately assess and stratify
the risk of long-term MACEs in PMI patients. This can help clinicians make more targeted decisions and treatments, thus delaying and
reducing the occurrence of poor prognoses.

Keywords: acute myocardial infarction; premature myocardial infarction; machine learning; major adverse cardiovascular events; pre-
diction model

1. Introduction

In recent years, the prevalence and mortality of acute
myocardial infarction (AMI) have tended to be younger and
are the leading cause of premature death worldwide [1],
with about 4%–10% of AMI patients reported to be aged
≤40 or 45 years [2,3]. The increase of metabolic risk fac-
tors in young people, such as obesity, diabetes, high uric
acid, and hypertension, has increased the incidence of pre-
mature myocardial infarction (PMI) and major adverse car-
diovascular events (MACEs) [4], which seriously affect the
workability and quality of life of patients, causing a cer-
tain burden on families and social economy. Obtaining ac-
curate risk prediction of long-term MACEs after PMI, and
therefore early intervention to improve patient prognosis as
much as possible, is of utmost importance in clinical man-
agement [5–8].

Machine learning (ML) algorithms provide powerful
tools for researchers to learn rules in data and make data-
driven outcome predictions by capturing high-dimensional,
linear, or non-linear relationships between clinical variables
[9]. ML has been used in many medical-related fields, such
as diagnosis, outcome prediction, treatment, and medical
image interpretation, and is superior to proven traditional
risk stratification tools [10–14]. For example, a study us-
ing the American College of Cardiology Chest Pain-MI reg-
istry that used an ML model to predict death after AMI re-
ported an area under the curve (AUC) value of close to 0.9
for each ML model, with extreme gradient boosting (XG-
Boost) provide better risk solutions for high-risk individ-
uals [15]. Another ML-based study of adverse event pre-
diction in acute coronary syndrome (apolipoprotein A1/B,
ApoA1/B) showed that different machine learning models
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Fig. 1. Flowchart. PMI, premature myocardial infarction; RSF, random survival forest; LASSO, least absolute shrinkage and selection
operator; DCA, decision curve analysis; XGBoost, extreme gradient boosting; RCS, restricted cubic spline; COX, COX proportional
hazards model; K-M, Kaplan-Meier; C-index, concordance index.

showed good predictive performance in predicting all-cause
death, myocardial infarction, and major bleeding in acute
coronary syndrome (ACS) patients at 1 year after discharge,
and compared with traditional risk prediction tools, ML al-
gorithm has advantages in predicting MACEs [16].

Compared with elderly MI patients, young myocar-
dial infarction (MI) patients may have a different risk fac-
tor spectrum, and PMI patients often have other unique
metabolic risk factors [17]. There are still few studies on the
related risk factors affecting the occurrence of AMI adverse
events in young adults, and the previous studies using ma-
chine learning algorithms to establish MACEs prediction
models in young MI patients are also limited. Therefore,
the development of machine learning predictive models for
these patients to guide early clinical intervention has certain
research value. In summary, the purpose of this study was
to use machine learning algorithms to assess and stratify the
risk of long-term MACEs in PMI patients, and to analyze
key clinical variables affecting the occurrence of MACEs.

2. Materials and Methods
2.1 Study Cohort

The flow of the study is shown in Fig. 1. This is
a single-center, prospective, observational cohort study.
Consecutive patients admitted to Tianjin Chest Hospital for
AMI between January 2017 and December 2022, meeting
the PMI age threshold, were included in the PMI cohort.

Inclusion criteria:
(1) Age >18 years old, female age ≤55 years old,

male age ≤50 years old;

(2) Meet the diagnostic criteria of AMI. The diagno-
sis of AMI in this study was based on the fourth Global
Definition of Myocardial Infarction [18]. That is, elevation
of serum myocardial markers (primarily troponin) above at
least 99% of the reference limit, accompanied by at least
one of the following clinical symptoms:

¬ Typical symptoms of myocardial ischemia (persis-
tent chest pain >30 minutes, not relieved by taking 1–2 ni-
troglycerin tablets, accompanied by sweating, nausea, vom-
iting, pallor, and other symptoms);

­ New ischemic electrocardiogram (ECG) changes
(including increased T wave width, new ST segment and
T wave (ST-T) changes, or left bundle branch block), ECG
pathological Q-wave formation;

® Imaging evidence showed new local wall motion
abnormalities;

¯ Coronary angiography confirmed thrombus in the
coronary artery.

Coronary angiography (CAG) was performed by two
or more cardiologists qualified in coronary diagnosis and
treatment at our center.

Exclusion criteria:
(1) Patients with severe liver and/or renal failure;
(2) Patients with congenital heart disease and/or

valvular heart disease;
(3) Patients with severe inflammatory diseases and/or

malignant tumors;
(4) Patients with missing transthoracic echocardiogra-

phy and/or other data;
(5) Patients without signed informed consent.
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The study followed the Declaration of Helsinki, was
approved by the Ethics Committee of Tianjin Chest Hos-
pital (No. 2017KY-007-01), and written informed consent
was obtained from all participants.

2.2 Data Collection

Establish the electronic medical record database of
PMI patients in our center. The Epidata data entry system
uses a two-person entry method, and to ensure data quality,
all event diagnoses are further verified by the review of the
medical records by two cardiologists. The lead researcher,
statistician, and other team members collaborate to review
the data to ensure accuracy, completeness, and reliability.

Data collected included general characteristics, in-
cluding gender, age, body mass index (BMI), personal his-
tory (smoking and drinking history), previous medical his-
tory [diabetes, hypertension, hyperlipidemia, chronic kid-
ney disease (CKD), and stroke history], family history of
coronary artery disease (CAD), and type of AMI; admission
vital signs (heart rate, blood pressure, shock index); labo-
ratory tests [blood routine, liver and kidney function, coag-
ulation function, fasting blood glucose, lipids, brain natri-
uretic peptide (BNP), peak creatine kinase MB (CK-MB),
peak value cardiac troponin T (TNT)], CAG including dis-
eased vessels, number of diseased vessels, coronary throm-
bosis, percutaneous coronary intervention (PCI), complete
occlusion, Syntax score, and transthoracic echocardiogra-
phy (TTE) parameters (left atrial diameter, left ventricu-
lar diameter, left ventricular ejection fraction). Peak CK-
MB and TNT levels were recorded, and remaining labo-
ratory parameters were measured after a rapid overnight
stay (≥8 hours) on the day of admission. The Syntax score
[19] was used to assess the severity of CAD and to assist
CAD patients with risk stratification and revascularization
strategies. It is calculated using online software version
2.28 (https://syntaxscore.org/). Using Killip≥II as the cut-
off value, Killip ≥II indicates clear evidence of heart fail-
ure (e.g., pulmonary rales or elevated jugular venous pres-
sure). Compared to Killip I patients, these patients have
significantly worse prognoses and receive greater attention
in clinical management and interventions. In addition, we
documented patients’ medication during hospitalization, in-
cluding antiplatelet drugs, statins, diuretics, angiotensin-
converting enzyme inhibitors (ACEIs), angiotensin recep-
tor blockers (ARBs), and beta blockers.

2.3 Study Endpoint

The endpoint of the study was the occurrence of
MACEs during follow-up, including cardiac death, nonfa-
tal stroke, readmission for heart failure, nonfatal recurrent
myocardial infarction, and unplanned coronary revascular-
ization. All patients were followed up after discharge by
a trained specialist on an outpatient basis or by telephone
to record the occurrence of MACEs in PMI patients dur-
ing the follow-up period. Cardiac death was mainly caused

by sudden cardiac death, acute congestive heart failure,
acute myocardial infarction, severe arrhythmia, and other
structural/functional heart disease. Stroke is defined based
on imaging findings or typical symptoms. According to
the guidelines of the European Society of Cardiology, the
diagnosis of heart failure refers to the ventricular filling
and/or ejection function impairment caused by various car-
diac structural or functional diseases, and the cardiac output
cannot meet the metabolic needs of the body tissues, result-
ing in clinical manifestations such as dyspnea, limited phys-
ical activity, and fluid retention. AMI was diagnosed com-
prehensively based on the results of chest pain, myocardial
enzyme pattern changes, and electrocardiogram [18]. Un-
planned coronary revascularization is defined as revascu-
larization driven by ischemic symptoms or any pathological
event, including unplanned PCI and coronary artery bypass
grafting (CABG).

2.4 Model Construction and Evaluation
2.4.1 Data Preprocessing

The study initially included 75 clinical variables. The
variables with a deletion rate of more than 10% were
deleted, the variables with a deletion rate of less than 10%
were filled with multiple imputation methods, and 70 clin-
ical variables were finally included. Multiple imputation
was performed using the R 4.4.1 software (R Core Team,
Auckland, New Zealand) (mice package). The number of
imputations was set to 5 (m = 5), with amaximum of 10 iter-
ations (maxit = 10). The predictive mean matching (PMM)
method was used to impute missing values. To ensure re-
producibility, a random seed (seed = 123) was set during
the imputation process. Since the value ranges of differ-
ent variables are very different, and some algorithms used
need to perform quantitative normalization of data, Z-score
is used for data normalization.

2.4.2 Variables Screening
Univariate COX proportional hazards model (COX)

regression analysis was used to conduct preliminary screen-
ing of all clinical variables in the training set, and vari-
ance inflation factor (VIF) was used to test whether mul-
ticollinearity existed among clinical variables after screen-
ing. In this study, variables with VIF>5 were deleted. The
VIF threshold was set to 5, which is a commonly accepted
indicator of moderate multicollinearity. This threshold was
selected to strike a balance between retaining enough vari-
ables and reducing the impact of multicollinearity. To avoid
overfitting the model, we use the least absolute shrink-
age and selection operator (LASSO) to filter the variables.
LASSO regression compresses the coefficients of some
unimportant or redundant variables to zero by applying L1
regularization to the coefficients, thereby reducing model
complexity and reducing the risk of overfitting. For LASSO
regression, the COX proportional hazards model (family
= ‘cox’) was used to identify important predictors. The
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optimal regularization parameter was selected using the
(cv.glmnet) function from the glmnet package in R, with 10-
fold cross-validation. The maximum number of iterations
(maxit) was set to 1000, and a fixed random seed (seed =
1234) was applied to ensure reproducibility. Random sur-
vival forest (RSF) was also used to screen clinical variables,
selecting the top 15 variables in order of importance. In this
study, after using LASSO and RSF to screen variables, the
intersection of the two is taken as the target variable for
modeling. The relationship between the selected variables
and the outcome was analyzed by restricted cubic spline
(RCS).

2.4.3 Model Development
In this study, four ML models were developed to pre-

dict the risk of long-term MACEs in PMI patients. They
are COX regression, RSF, extreme gradient boosting (XG-
Boost), and DeepSurv. RSF and XGBoost models are de-
cision tree-based integrated models for classification and
regression problems, both of which can efficiently han-
dle high-dimensional datasets with millions of rows and
columns. DeepSurv uses deep learning techniques to pro-
cess survival data, capturing complex non-linear relation-
ships and interaction effects. This makes it more effec-
tive than traditional survival analysis methods when dealing
with high-dimensional data and complex risk patterns.

According to whether the endpoint appeared or not,
1202 patients were divided into the training set and the
testing set according to the ratio of 3:1 by stratified ran-
dom sampling. The hyperparameters of ML models are
optimized by using a grid search method with 5-fold
cross-validation. We used the “surv.coxph”, “surv.rfsrc”,
“surv.xgboost.cox”, and “surv.deepsurv” learners from the
“mlr3extralearners” package to construct the COX propor-
tional hazards model, RSF, XGBoost, and DeepSurv mod-
els, respectively. We have included the final selected hyper-
parameter results in Supplementary Table 1 for reference.

2.4.4 Model Performance Evaluation
The concordance index (C-index) or time-dependent

AUC was used to evaluate the discrimination of the model,
that is, the ability to correctly classify the occurrence of
MACEs. Discrimination is an important indicator for eval-
uating prediction models, especially when screening high-
risk populations. The model correction was evaluated us-
ing the Brier score. Brier score measures the degree of cal-
ibration in a quantitative way and is an indicator used to
evaluate the performance of the calibration curve. If the
model’s predicted probability is close to the frequency of
actual events, the Brier score value will be low, indicat-
ing that the model is well calibrated. The predictive ben-
efits of the models were evaluated using the decision curve
analysis (DCA). Finally, the best performance model was
selected from the four models for the prediction and risk
stratification of PMI patients. Using the maximum approx-

imate boarding index calculated by the optimal model as the
optimal critical value, PMI patients were divided into high-
risk group and low-risk group, and then Log-rank test was
used to evaluate whether there were differences in Kaplan-
Meier curve between the two groups. To visualize the re-
sults of the RSF model, a risk calculator for distant MACEs
in PMI patients was developed using the “shiny” package.
The SHapley Additive exPlanations (SHAP) value of in-
dividual samples is calculated using the “survex” package.
The goal of SHAP is to explain the prediction of an instance
by calculating the contribution of each feature to the pre-
diction, quantifying the contribution of each feature to the
prediction made by the model.

2.4.5 Statistical Analysis
All analyses and calculations were performed using R

4.4.1 and SPSS 26.0 (IBM Corp., Armonk, NY, USA). The
continuous data of normal distribution were expressed as
mean ± standard deviation (SD), the comparison between
the two groups was performed by independent student t-
test, the continuous data of skewness distribution were ex-
pressed by median and quartile [M (Q1, Q3)], and the com-
parison between the two groups was performed by Mann
Whitney U test. The categorical data were expressed as
frequency and percentage (n, %), and the comparison be-
tween the two groups was made by the Chi-square test or
Fisher exact probability method (when the theoretical fre-
quency<1 or the number of cases<40). All p-values were
two-sided and if below 0.05 the results were considered sta-
tistically significant.

3. Results
3.1 Baseline Characteristics

A total of 1202 patients were enrolled, of whom 1094
(91.0%) were males and 108 (9.0%) were females, and the
median age of all patients was 42 (37, 44) years. The me-
dian follow-up period was 26 months, ending in June 2023.
During the follow-up, a total of 200 patients (16.6%) de-
veloped MACEs, including 19 cases of all-cause deaths
(9.5%), 8 cases of non-fatal strokes (4.0%), 35 cases of
readmissions due to heart failure (17.5%), 75 cases of non-
fatal recurrent myocardial infarction (37.5%) and 63 cases
of unplanned coronary revascularization (31.5%). Table 1
shows the baseline characteristics and results of 34 clinical
variables after univariate COX regression screening. All
baseline characteristics of the patients are shown in Sup-
plementary Table 2.

3.2 Variables Screening
The multicollinearity analysis of 34 meaningful vari-

ables in the baseline table showed that the VIF of white
blood cell count (WBC), absolute neutrophil count (ANC),
total cholesterol (TC), low-density lipoprotein cholesterol
(LDL-C) were >5. After removing these variables, the re-
maining 30 variables were further screened.
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Table 1. Baseline characteristics of screening variables and results of univariate COX regression analysis.

Variables
Total Non-MACEs MACEs

p
Univariate COX regression

(n = 1202) (n = 1002) (n = 200) HR (95% CI) p

BMI (kg/m2) 26 (24.4, 27.8) 26 (24.2, 27.7) 27.6 (25.3, 28.7) <0.001 1.06 (1.03, 1.10) <0.001
Heart rate (bpm) 75.0 (67.0, 86.0) 75.0 (66.0, 85.0) 77.5 (70.0, 86.0) 0.035 1.01 (1.00, 1.02) 0.024
Diabetes 262 (21.8) 200 (20.0) 62 (31.0) <0.001 1.62 (1.20, 2.19) 0.002
Killip ≥II 51 (4.2) 34 (3.4) 17 (8.5) 0.002 2.61 (1.59, 4.30) <0.001
Cardiac shock 11 (0.9) 5 (0.5) 6 (3.0) 0.004 6.09 (2.70, 13.74) <0.001
IABP 82 (6.8) 60 (6.0) 22 (11.0) 0.016 1.98 (1.27, 3.09) 0.002
Ventilator 17 (1.4) 11 (1.1) 6 (3.0) 0.049 2.42 (1.07, 5.46) 0.033
LAD 947 (78.8) 777 (77.5) 170 (85.0) 0.024 1.60 (1.08, 2.36) 0.018
LM 90 (7.5) 68 (6.8) 22 (11.0) 0.055 1.74 (1.11, 2.71) 0.015
Three diseased vessel 358 (29.8) 281 (28.0) 77 (38.5) 0.004 1.54 (1.16, 2.05) 0.003
PCI therapy 1006 (83.7) 849 (84.7) 157 (78.5) 0.038 0.64 (0.46, 0.90) 0.011
Syntax score 16.0 (11.0, 22.0) 16.0 (11.0, 22.0) 17.5 (12.0, 22.0) 0.021 1.02 (1.00, 1.04) 0.014
WBC (×109/L) 10.2 (8.5, 12.4) 10.1 (8.4, 12.3) 10.6 (8.8, 12.8) 0.037 1.05 (1.01, 1.10) 0.024
ANC (×109/L) 7.5 (5.7, 9.7) 7.4 (5.6, 9.6) 8.0 (5.9, 9.9) 0.059 1.05 (1.01, 1.10) 0.033
ALT (U/L) 42.3 (28.0, 67.8) 42.0 (27.0, 66.0) 43.6 (31.3, 71.6) 0.181 1.11 (1.01, 1.23) 0.038
Urea (mmol/L) 4.3 (3.5, 5.4) 4.3 (3.5, 5.3) 4.7 (3.7, 5.7) 0.008 1.15 (1.07, 1.23) ∗ <0.001
Cr (µmol/L) 75.0 (66.0, 86.0) 75.0 (66.0, 85.0) 76.0 (65.0, 89.0) 0.358 1.18 (1.07, 1.31) ∗ 0.001
UA (µmol/L) 357.0 (295.0, 429.0) 356.0 (295.0, 422.0) 367.0 (297.0, 462.0) 0.047 1.25 (1.10, 1.43) ∗ 0.001
HbA1c (%) 5.8 (5.6, 6.3) 5.8 (5.6, 6.1) 6.0 (5.8, 7.4) <0.001 1.16 (1.08, 1.24) <0.001
Glu (mmol/L) 5.8 (5.1, 7.6) 5.7 (5.0, 7.4) 6.2 (5.1, 9.0) 0.003 1.08 (1.04, 1.12) <0.001
TyG 9.2 (8.8, 9.7) 9.2 (8.8, 9.7) 9.2 (8.8, 10.0) 0.117 1.24 (1.04, 1.48) 0.018
CRP (mg/L) 5.8 (2.5, 14.5) 5.6 (2.4, 13.7) 6.7 (3.2, 19.4) 0.011 1.16 (1.05, 1.28) ∗ 0.002
TC (mmol/L) 4.8 (4.1, 5.5) 4.8 (4.1, 5.4) 5.0 (4.3, 5.7) 0.008 1.17 (1.05, 1.30) 0.003
LDL-C (mmol/) 3.2 (2.5, 3.8) 3.2 (2.5, 3.8) 3.4 (2.7, 4.0) 0.015 1.18 (1.04, 1.33) 0.008
ApoB (g/L) 1.1 (0.9, 1.3) 1.1 (0.9, 1.3) 1.2 (1.0, 1.4) 0.001 2.17 (1.59, 2.97) <0.001
FFA (mmol/L) 0.5 (0.5, 0.6) 0.5 (0.5, 0.6) 0.6 (0.5, 0.7) <0.001 1.84 (1.32, 2.57) <0.001
D-dimer (mg/L) 0.3 (0.2, 0.4) 0.3 (0.2, 0.4) 0.3 (0.2, 0.5) 0.042 1.16 (1.06, 1.26) 0.002
FIB (mg/dL) 3.3 (2.9, 3.9) 3.3 (2.9, 3.9) 3.5 (3.0, 4.0) 0.009 1.17 (1.05, 1.30) 0.006
LDH (U/L) 434.5 (260.0, 771.3) 418.5 (255.3, 745.3) 490.5 (315.5, 834.8) 0.005 1.24 (1.09, 1.41) ∗ 0.001
CK-MB (U/L) 87.0 (33.0, 181.0) 84.0 (33.0, 174.8) 95.5 (36.8, 197.8) 0.216 1.15 (1.01, 1.31) ∗ 0.029
TNT (ng/mL) 2.0 (0.6, 4.6) 1.9 (0.6, 4.3) 2.6 (1.0, 5.5) 0.007 1.18 (1.04, 1.35) ∗ 0.009
BNP (ng/L) 269.2 (107.6, 689.3) 269.2 (104.7, 630.0) 368.1 (146.7, 1112.0) <0.001 1.31 (1.21, 1.43) ∗ <0.001
LVEF (%) 53.0 (46.0, 57.0) 53.0 (47.0, 57.0) 50.0 (43.0, 56.0) <0.001 0.96 (0.94, 0.97) <0.001
Diuretics 129 (10.7) 90 (9.0) 39 (19.5) <0.001 2.33 (1.64, 3.31) <0.001
Notes: Values are Median (Q1, Q3) or n (%).
∗HR and 95% CI calculated from standardized data.
BMI, body mass index; IABP, intra-aortic balloon pump; LAD, left anterior descending coronary artery; LM, left main coronary artery;
PCI, percutaneous coronary intervention; WBC, white blood cell count; ANC, absolute neutrophil count; ALT, alanine aminotransferase; Cr,
creatinine; UA, uric acid; HbA1c, glycated hemoglobin; Glu, glucose; TyG, triglyceride-glucose; CRP, c-reactive protein; TC, total cholesterol;
LDL-C, low-density lipoprotein cholesterol; ApoB, apolipoprotein B; FFA, free fatty acid; FIB, fibrinogen; LDH, lactate dehydrogenase; CK-
MB, creatine kinase MB; TNT, troponin T; BNP, brain natriuretic peptide; LVEF, left ventricular ejection fraction; MACEs, major adverse
cardiovascular events; HR, hazard ratio.

The LASSO coefficient path diagram is drawn to show
how the coefficients of each variable change under dif-
ferent regularization intensities (Fig. 2A), and the cross-
validation diagram (Fig. 2B) shows the performance of the
model under different Log Lambda values. Two lambda
values were reported for LASSO regression: lambda.min
= 0.007193123 and lambda.1se = 0.06112381. After care-
ful consideration, we chose lambda.min because it of-

fers the best predictive performance, even though it re-
tains more variables and results in a slightly more complex
model. A total of 19 variables were screened by LASSO,
namely diabetes, Killip≥II, cardiac shock, intra-aortic bal-
loon pump (IABP), left anterior descending coronary artery
(LAD), PCI Therapy, three diseased vessels, diuretics,
BMI, heart rate, glycated hemoglobin (HbA1c), c-reactive
protein (CRP), uric acid (UA), ApoB, free fatty acid (FFA),

5

https://www.imrpress.com


Fig. 2. The process of variable selection. (A) LASSO coefficient path diagram. The horizontal axis shows the log-transformed
regularization parameter (Log(λ)), and the vertical axis represents variable coefficients. As λ increases, stronger penalties shrink more
coefficients to zero, highlighting the most relevant variables. (B) LASSO cross-validation plot. The horizontal axis shows Log(λ), and
the vertical axis represents the partial likelihood deviance. Red dots represent deviance values from 10-fold cross-validation, with error
bars indicating standard error. The left dashed line marks λ_min (minimum deviance), and the right dashed line marks λ_1se (a simpler
model within one standard error of λ_min). (C) Ranking the importance of variables in the random survival forest (RSF) model. (D)
Venn diagram of the intersection of variables screened by RSF and LASSO. LASSO, least absolute shrinkage and selection operator;
ApoB, apolipoprotein B.

Table 2. Evaluation index of the ML models.
Indicators COX RSF XGBoost DeepSurv

12-month AUC 0.767 0.891 0.868 0.718
24-month AUC 0.680 0.858 0.830 0.698
36-month AUC 0.788 0.827 0.815 0.696
C-index 0.685 0.815 0.803 0.683
Brier 0.149 0.125 0.156 0.388
Notes: AUC, area under the curve; ML, machine learning.

fibrinogen (FIB), CK-MB, BNP, and left ventricular ejec-
tion fraction (LVEF). After RSF selection, the top 15 im-
portant variables were selected, which were FFA, cardiac
shock, creatinine (Cr), HbA1c, urea, diuretics, LVEF, BMI,
BNP, UA, Ventilator, Syntax, ApoB, Killip ≥II, D-dimer
(Fig. 2C).

Finally, the first 15 variables ranked by RSF feature
importance and the 19 variables selected by LASSO were
intersected to obtain 10 variables for modeling (Fig. 2D).
The 10 variables were BMI, ApoB, FFA, UA, HbA1c, BNP,
LVEF, cardiac shock, Diuretics, and Killip ≥II.

3.3 RCS Explores the Relationship between Independent
Variables and MACEs

The RCS graph graphically shows how the indepen-
dent variable affects the hazard ratio value (HR value) and
thus the occurrence of MACEs in different value intervals.
In this study, RCS analysis was carried out on continu-
ous variables among the 10 selected variables (Fig. 3), and
the results showed that BMI, UA and MACEs showed a
roughly J-shaped relationship: When BMI>23.669 kg/m2,
MACEs risk increased with the increase of BMI value, and
the lowest BMI estimate of MACEs risk was 23.669 kg/m2.
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Fig. 3. RCS plot of the final screening variables. (A) BMI; (B) UA; (C) LVEF; (D) HbA1c; (E) FFA; (F) BNP; (G) ApoB. The
relationship between the independent variable and MACEs is shown, as well as the HR and its confidence interval (the red-shaded part
in the figure, when the red-shaded part crosses 1, it means that the HR value is meaningless).
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Fig. 4. Performance evaluation of four models. (A) Receiver operating characteristic (ROC) curves of different models at 12, 24,
and 36 months. From left to right are COX regression, Random Survival Forest, XGBoost, and DeepSurv models. (B) Decision curve
analysis of four models at 12 months, 24 months and 36 months.

When UA >314.087 µmol/L, MACEs risk increased with
the increase of UA value and the lowest UA estimate of
MACEs risk was estimated to be 314.087 µmol/L. The
relationship between the remaining variables ApoB, FFA,
HbA1c, BNP, LVEF and MACEs were roughly linear.

3.4 Model Development and Performance Evaluation

The performance of the four models was comprehen-
sively evaluated using several metrics, including discrim-
ination (AUC and C-index), calibration (Brier Score), and
clinical utility (DCA). First, the discrimination of the four
models was evaluated by AUC and C-index (Fig. 4A). The
RSF model consistently outperforming others across all
time points (12-month: 0.891; 24-month: 0.858; 36-month:
0.827). These high AUC values highlight the RSF model’s
excellent ability to identify high-risk individuals. Addition-
ally, its C-index of 0.815 further confirms strong predic-
tive reliability, with values above 0.8 considered very good
for risk stratification. Second, the RSF model achieved an
average Brier score of 0.125, which was superior to the
other models (Table 2). A lower Brier score indicates bet-
ter overall performance, as it reflects both the accuracy of
the predicted probabilities and their alignment with actual
outcomes. Last, DCA demonstrated that the RSF model
provided the highest net benefit across a range of thresh-
old probabilities at 12 months, 24 months, and 36 months,
outperforming the XGBoost, COX regression, and Deep-
Surv models (Fig. 4B). Particularly in the lower threshold
probability range, where identifying high-risk individuals
is essential for early intervention, the RSF model exhib-
ited significant advantages. This underscores its clinical

utility and potential to guide personalized treatment strate-
gies. The baseline characteristics of the training and testing
sets used for the RSF model are shown in Supplementary
Table 3. Statistical analysis revealed no significant differ-
ences in variable distributions between the two datasets, en-
suring balanced training and testing set. In conclusion, the
RSF model was chosen as the primary tool for risk predic-
tion in this study due to its superior discrimination, calibra-
tion, and clinical utility.

3.5 Risk Stratification Based on the RSF Model

The RSF model was used to predict and stratify the
risk ofMACEs in PMI patients. Taking the risk score (24.90
scores) corresponding to themaximal Youden’s index as the
optimal cut-off value, patients were divided into a high-risk
group and a low-risk group, as shown in the Kaplan-Meier
curve (Fig. 5), in both the training set and the testing set,
the incidence of MACEs was more pronounced in high-risk
patients (the Log-rank test showed a significant difference
between the two groups, p < 0.0001), and special attention
needs to be paid to the management and intervention of pa-
tients in the high-risk group in clinical practice.

3.6 Importance Ranking of Variables and Forest Map

Fig. 6A shows the 10most important clinical variables
in the RSF model, ranked in order of importance, namely
FFA, cardiogenic shock, HbA1c, ApoB, diuretics, LVEF,
BNP, BMI, Killip ≥II, and UA. The bar chart on the left
shows the relative importance of each variable. The forest
plot on the right shows the association between each vari-
able and the risk of MACEs. In Fig. 6B, the temporal con-
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Fig. 5. Survival analysis of high-risk and low-risk populations in the RSF model. Kaplan-Meier curves for the training set (left) and
testing sets (right), and the number of people who did not develop MACEs over time.

tributions of individual variables to survival predictions are
depicted using SurvSHAP(t) values. Among all variables,
FFA exhibits the highest influence on survival predictions,
with a consistent upward trend over time, reaching its peak
contribution at approximately 60 months. In contrast, BNP
and BMI show moderate but stable contributions through-
out the timeline. Variables such as Cardiac_Shock, Di-
uretics, and HbA1c demonstrate smaller contributions with
relatively flat or minimal temporal variations. The results
highlight the dominant role of FFA in the survival predic-
tion of the RSF model for this individual.

3.7 Model Visualization
To facilitate the use of prognostic models in clinical

management, we developed a risk calculator based on the
Shiny program package. The left side of the page (Fig. 6C)
allows the user to enter each clinical characteristic, and the
right side of the page calculates the predicted probability of
distant MACEs and risk stratification based on information
about PMI patients.

4. Discussion
This study developed and validated an interpretable

ML risk prediction model for predicting the risk of long-
term MACEs in PMI patients and analyzed clinical vari-
ables that influence the development of MACEs. The eval-
uation results of comprehensive discrimination, calibration
and clinical utility showed that the RSF model performed
best. Using the risk score (24.90) calculated by the RSF
model as the critical value, patients were divided into high-
risk group and low-risk group, and there was significant dif-
ference in Kaplan-Meier survival analysis curve between
the two groups (p < 0.0001). The ten clinical variables of
feature importance ranking are FFA, cardiac shock, HbA1c,
ApoB, Diuretics, LVEF, BNP, BMI, Killip≥II, and UA. By
calculating the risk of MACEs through a risk calculator and
explaining individual risk sources and possible intervention
directions through SHAP values, it is hoped that personal-
ized and transparent clinical management can be achieved.

The results of this study highlight the superior perfor-
mance of the RSF model in predicting the risk of MACEs
in AMI patients, as evidenced by its discrimination, reliable
calibration, and robust clinical utility. Compared with tradi-
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Fig. 6. Feature importance ranking, SurvSHAP(t) prediction interpretation analysis and risk calculator. (A) Feature importance
ranking of RSF model and forest plot. (B) The figure shows the temporal changes in the SurvSHAP(t) values of the key variables in
the RSF model. The x-axis represents time (in months), while the y-axis represents the magnitude of the SurvSHAP(t) value, which
quantifies the contribution of each variable to the prediction of survival at a given time point. The figure shows how the predicted
survival probability of a single sample at different time points is affected by various features. (C) Risk calculator for MACEs in patients
with PMI. The left page inputs the value of the variable, and the right page outputs the risk score and level.
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tional models such as the COX proportional hazards model,
RSF overcomes key limitations by capturing complex non-
linear relationships and high-order interactions without re-
lying on the proportional hazards assumption. This adapt-
ability is particularly valuable in real-world clinical sce-
narios, where these assumptions are often violated [20,21].
Although XGBoost is a powerful machine learning algo-
rithm, its application to survival data often requires addi-
tional modifications, such as implementing COX loss func-
tions, which may introduce constraints, and it also demands
extensive parameter tuning [22]. Similarly, DeepSurv, as a
deep learning method, requires large-scale datasets to per-
form optimally and is prone to overfitting with limited data
[23]. In contrast, RSF natively supports survival analy-
sis, offering seamless integration, robust performance even
with moderate sample sizes, and higher predictive accu-
racy without the need for extensive modifications or tun-
ing, making it more practical for real-world clinical appli-
cations.

Insulin resistance (IR), elevated HbA1c, and
metabolic abnormalities such as abnormal BMI, dys-
lipidemia, and hyperuricemia are critical contributors to
myocardial injury and increased MACEs risk, particularly
in young PMI patients. IR leads to myocardial damage
through impaired diastole, altered glucose utilization, and
microvascular dysfunction, while metabolic abnormalities
like elevated BMI and dysregulated lipid metabolism
trigger inflammation and thrombosis through the release
and accumulation of fat metabolites [24,25]. The J-shaped
relationship between BMI and MACEs observed in
this study using RCS is consistent with the findings of
some other studies [26,27], Flegal et al.’s [28] study has
shown that overweight individuals have a lower risk than
normal-weight individuals. This study’s findings highlight
the strong association of FFA with adverse cardiovas-
cular events, FFA assessment alongside traditional risk
factors to identify high-risk individuals requiring closer
monitoring and intervention. Dyslipidemia, particularly
elevated ApoB-containing lipoproteins such as LDL-C,
lipoprotein(a), and triglyceride-rich lipoproteins, signifi-
cantly contributes to MACEs risk. While LDL-C remains a
primary target for lipid management, this study’s RCS anal-
ysis aligns with prior research showing a linear relationship
between higher ApoB levels and increased MACEs risk,
even in patients on high-intensity statin therapy [29–31].
These findings suggest that for younger PMI patients,
early and aggressive management of ApoB levels may be
crucial in reducing cardiovascular risk. Elevated uric acid
levels also emerged as an important predictor of MACEs.
Through mechanisms such as oxidative stress, endothelial
dysfunction, and inflammation, uric acid exacerbates
insulin resistance and promotes atherosclerosis [32–35].
Managing uric acid levels may disrupt this pathological
cycle, offering an additional avenue for intervention in
younger patients.

Cardiac function plays a pivotal role in determining
MACEs risk. Variables in the RSF model, such as elevated
BNP, reduced LVEF, Killip≥II, cardiogenic shock, and in-
hospital diuretic use, reflect poor cardiac function during
hospitalization. This study’s RCS analysis showed a lin-
ear relationship between decreasing LVEF and increasing
MACEs risk, consistent with previous research linking re-
duced ejection fraction with poorer outcomes in PCI-treated
patients [36,37]. These findings emphasize the importance
of targeted cardiac rehabilitation and monitoring strategies
for PMI patients with compromised cardiac function.

A comprehensive strategy is essential for younger
PMI patients to reduce MACEs risk, combining advanced
predictive tools and tailored management interventions.
Aggressive control of ApoB, FFAs, and uric acid levels is
crucial to address inflammation, thrombosis, and oxidative
stress, while individualized BMI management mitigates the
J-shaped risk relationship observed with MACEs. Targeted
cardiac rehabilitation and monitoring of BNP and LVEF
further enhance outcomes in patients with compromised
cardiac function. The RSF model demonstrated its strength
by integrating these multifactorial risks into a comprehen-
sive predictive framework. With the addition of SHAP val-
ues, themodel provides individual-level explanations, help-
ing clinicians identify key contributing factors for each pa-
tient’s risk. Combined with a personalized risk calcula-
tor, these tools enable dynamic and patient-specific inter-
vention strategies targeting modifiable risk factors such as
IR, dyslipidemia, hyperuricemia, and cardiac dysfunction.
This approach supports more effective prevention and treat-
ment, ultimately improving long-term outcomes and reduc-
ing MACEs incidence in young PMI patients.

This study has several limitations. Most importantly,
it lacks external validation with independent cohorts, which
is essential for confirming the generalizability and robust-
ness of the algorithm. In future research, we will incorpo-
rate patients from diverse regions and hospitals to perform
external validation, ensuring broader applicability across
different populations. Additionally, this study primarily fo-
cuses on clinical characteristics, missing key factors such as
lifestyle, dietary habits, and multi-omics markers. Expand-
ing these variables in future studies could provide a more
comprehensive understanding of risk factors and enhance
the predictive accuracy of the model.

5. Conclusions
The RSF-based risk stratification tool demonstrated

excellent performance, proving its capability to accurately
predict MACEs risk in PMI patients. The model identified
critical predictors such as FFA, cardiogenic shock, HbA1c,
ApoB, diuretic use, LVEF, BNP, BMI, Killip ≥II, and
UA, highlighting the multifactorial complexity of MACEs
risk. Enhanced by SHAP values and a risk calculator, the
RSF model provides a personalized framework to identify
high-risk patients, pinpoint key risk factors, and guide tar-
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geted interventions. This approach enables early manage-
ment of modifiable risks, improving outcomes and reducing
MACEs in PMI patients.
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