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Abstract

Prosthetic heart valves are crucial for treating valvular heart disease and serve as substitutes for native valves. Bioprosthetic heart valves
(BHVs) are currently the most common type used in clinical practice. However, despite the long history of use, challenges remain in
clinical applications, notably via valve calcification, which significantly affects longevity and quality. The mechanisms through which
calcification occurs are complex and not yet completely understood. Therefore, this paper aims to provide a comprehensive review of
developments in prosthetic valves, focusing on the calcification processes in bioprosthetic heart valves and the biological, chemical, and
mechanical factors involved. In addition, we highlight various anti-calcification strategies currently applied to BHVs and assess whether
anti-calcification approaches can prolong valve durability and improve patient prognosis. Finally, we describe the imaging methods
presently used to monitor calcification clinically. Advances in nanotechnology and tissue engineering may provide better options for
mitigating prosthetic heart valve calcification in the future.
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1. Introduction

The prevalence of heart valve disease is increasing
globally. According to the American Heart Association,
the number of cases of valvular heart disease will increase
to 24 million by 2024, underscoring the need for effec-
tive solutions [1]. Prosthetic heart valves have revolution-
ized the management of valvular heart disease and provided
definitive therapy for patients with conditions such as aor-
tic stenosis and mitral valve prolapse. These valves act as
important backups when natural valves are unable to pro-
vide adequate blood flow because of calcification, stenosis
or regurgitation [2]. Despite the success of valve replace-
ment surgeries, clinical complications still persist, whereby
calcification is one of the worst, affecting both the durabil-
ity of the valve and patient outcomes [3]. The calcification
of prosthetic valves leads to their stiffness and malfunction,
which may require further intervention [4–7]. Thus, valve
calcification is considered to be one of the important causes
and manifestations of structural valve degeneration (SVD).
However, valve calcification is influenced by a variety of
factors, such as valve type, source, treatment process, un-
derlying diseases, genes, metabolism, etc. Although new
valve replacements continue to be researched and devel-
oped as technology advances, bioprosthetic valves remain
the most commonly used type of prosthetic heart valve
today. As calcification is an important factor in valve
longevity, it is very important to explore the relevant mech-
anisms and seek targeted anti-calcification strategies. In ad-

dition, detecting calcification early and monitoring the cal-
cification process are also clinical problems. Therefore, we
sought to review and analyze these issues in a systematic
manner.

2. Current Types of Prosthetic Heart Valves
Prosthetic heart valve manufacturing methods are cat-

egorized into nonbiological and biological methods. Non-
biological valves are valves without living cell/tissue ele-
ments, such as polymer valves, bioprosthetic valves, and
mechanical valves. Biological methods aim to replicate na-
tive heart valves by combining living cells (valve cells, stem
cells) with biocompatible scaffolds (biopolymers, cell-
generated extracellular matrix, and synthetic polymers). In
clinical settings, mechanical and bioprosthetic valves are
the most commonly used types of prosthetic heart valves.
With advances in materials science, tissue-engineered and
polymer valves are attracting increasing attention. How-
ever, each type has advantages and disadvantages. A sum-
mary of the classification of prosthetic heart valves is de-
picted in Fig. 1.

2.1 Mechanical Valves

Mechanical heart valves (MHVs) have been in use for
more than 50 years. The advantage of MHVs is their dura-
bility, since these valves are made from materials such as
pyrolytic carbon, titanium and other metallic alloys, and
they last for 20 years or more [8,9]. They have long-term
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Fig. 1. Overview of current prosthetic heart valves.

stability, which minimizes the risk of reoperation, which is
especially important for young patients or those who have a
longer life expectancy. Individuals with mechanical valves,
on the other hand, require lifelong anticoagulation therapy
because these valves increase the risk for blood clot forma-
tion. Moreover, this anticoagulation requirement is associ-
ated with increased bleeding hazard, making these valves
less suitable for patients with bleeding disorders or those
who cannot strictly follow anticoagulation protocols [8–
10].

Recent developments have improved the hemody-
namic characteristics and biocompatibility of mechanical
valves, and advancements in valve structures, such as
bileaflet and tilting-disc models, have enhanced flow char-
acteristics and decreased turbulence, thus lowering throm-
bogenicity and structural deterioration [11–13]. Scientists
are also working on the development of composite valves
that are made of both metals and polymers to mimic the nat-
ural movement of native valves and eliminate the need for
anticoagulants [12,14,15].

2.2 Bioprosthetic Valves

Bioprosthetic heart valves (BHVs) are categorized by
source: autografts (from the patient’s own tissue, for ex-
ample, the pulmonary artery), allografts (from donors) and
xenografts. Owing to limitations such as material sourc-
ing, ethical considerations and complications, the use of
autograft and allograft valve transplants remains restricted.
Clinically, xenograft valves are the primary type of BHV,
and most research improvements have focused on these

valves. Xenogeneic BHVs are sourced from animal tis-
sues, usually bovine pericardium or porcine aortic valve tis-
sue, and are treated with cross-linking agents such as glu-
taraldehyde (GLUT) to increase the sturdiness of the tissue
[16–18]. These valves exhibit more physiological charac-
teristics of the native valves and are not usually associated
with long-term anticoagulation therapy, making them ideal
for elderly patients or those at risk for bleeding. However,
BHVs exhibit reduced durability compared with mechani-
cal valves primarily because of calcification and structural
degradation over time [3].

To address these durability issues, new biomaterials,
such as decellularized fish bladder tissue, have been de-
veloped. Fish bladder tissue has a natural collagen matrix
with anti-calcification properties that can improve the bio-
compatibility of the valve and potentially increase its dura-
bility [19–21]. Research is also being conducted on en-
hanced cross-linking strategies that minimize immune re-
actions while maintaining the mechanical characteristics of
the valve [21]. Nevertheless, the problem of calcification of
bioprosthetic valves still persists and results in lower dura-
bility compared to mechanical valves.

2.3 Polymer Valves

Polymer heart valves (PHVs) provide excellent me-
chanical strength and fatigue resistance, along with the re-
quired flexibility, biostability and durability. PHVs can
theoretically be implanted in patients of any age. Poly-
mer valves are available in a wide range of biocom-
patible and biostable polymers. These valves are supe-
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rior to biologic valves in terms of freedom from antigens
(e.g., galactose α-1,3-galactose and N-acetylneuraminic
acid) [2]. The earliest PHV materials include polysilox-
anes, polytetrafluoroethylene, and polyurethane, but these
materials do not effectively prevent prosthetic degenera-
tion and complications given limitations in their chemi-
cal properties and surface structure. With improvements
in polymer manufacturing methods and advances in nan-
otechnology, new polymer materials, such as polyhedral
oligomeric silsesquioxane poly (carbonate-urea) urethane
(POSS-PCU), nanocomposite based on the functionalized
graphene oxide and poly (carbonate-urea) urethane (FGO-
PCU, Hastalex), nanocomposite polyvinyl alcohol (PVA)
and bacterial cellulose (PVA-BC), exhibit improved me-
chanical properties and biocompatibility [15]. Some valves
based on new polymer materials have already been used in
in vitro and animal studies as well as clinical trials and have
shown promising results.

2.4 Tissue-Engineered Valves
Tissue-engineered heart valves (TEHVs) constitute

the next generation of heart valve prosthetics and are de-
signed to develop living, self-repairing heart valves through
tissue engineering. These valves employ biodegradable
meshes populated with autologous or allogeneic cells that,
in due course, form new valve tissue [22–24]. TEHVs have
the potential to transform valve replacement therapy since
the valve can grow and change in size in the body, espe-
cially for children [25–27].

TEHV scaffolds are generally categorized into acel-
lular and synthetic scaffolds. Acellular scaffolds are ob-
tained from decellularized human or animal tissues and
have a structure that mimics the native valve structure
[28,29]. Scaffolds made from synthetic materials, includ-
ing biodegradable polymers, allow for the fine-tuning of
mechanical characteristics and degradation profiles [14,
30]. Nevertheless, TEHV has several limitations, including
scaffold degradation, calcification, and cell incorporation
[22,31]. Current research is being conducted to optimize
scaffold materials and promote endothelialization to obtain
better long-term results. Notably, despite the universal ap-
peal of TEHV, the technique has not been used clinically.

3. Mechanism of Calcification in Natural
Heart Valves

The calcification of heart valves is a dynamic process
that is determined by biochemical, genetic, and mechani-
cal factors. Although age is the most common cause of de-
generation, other factors, such as endothelial cell dysfunc-
tion, lipid accumulation, and immune reactions, contribute
to calcification.

3.1 Endothelial Cell Damage
The endothelial layer is the first barrier to calcifica-

tion [32]. Shear forces and mechanical stress on the valve

surface can disrupt endothelial cells and make the underly-
ing tissue susceptible to infiltration by lipids and immune
cells [33–35]. When endothelial cells are damaged, they
are no longer able to prevent clot formation and become
proinflammatory, promoting calcification [36]. Damaged
endothelial cells release adhesion molecules that allow im-
mune cells to attach to the tissue, increasing inflammation
and accelerating calcification [37,38].

3.2 Lipid Infiltration

Lipid accumulation, especially low-density lipopro-
tein (LDL) accumulation, is involved in the process of calci-
fication of natural valves [39,40]. When LDL is oxidized,
it forms ox-LDL, which causes inflammation that attracts
macrophages, and these macrophages take up ox-LDL and
become foam cells, which cause atherosclerosis-like lesions
on the valve [41]. Foam cells secrete cytokines and growth
factors that induce the osteoblastic phenotype of valve in-
terstitial cells (VICs) and lead to mineralization of the valve
matrix [42]. Lipids may also be involved in amyloid depo-
sition in valve calcification through the formation of amy-
loids from misfolded apolipoproteins, thereby altering ion
concentrations, providing templates for mineral deposition,
and promoting apoptosis in valve interstitial cells [43].

3.3 Immune Response

The involvement of the immune system in calcifica-
tion is now well appreciated, with T cells and macrophages
representing key players in the inflammatory process that
leads to calcification [37,44]. Immune cells secrete ma-
trix metalloproteinases (MMPs) and proinflammatory cy-
tokines that degrade the extracellular matrix (ECM) and
promote calcification [44,45]. In addition, immune cells re-
lease cytokines that stimulate osteogenic processes in VICs.
As a result, calcium nodules are formed, and the valve be-
comes hardened [41,46].

4. Calcification Mechanisms in Bioprosthetic
Valves

BHV calcification is similar to that of natural heart
valves because of its functional consistency (unidirectional
blood flow control) and structural similarity. Shear stress,
lipid deposition (especially LDL), and endothelial dam-
age trigger inflammatory responses and immune cell in-
filtration, leading to cytokine production, neoangiogene-
sis, osteoblast formation, and calcification [47]. LDL de-
posited in valve tissue oxidizes to ox-LDL, is phagocy-
tosed by macrophages to form foam cells, and stimulates
osteogenic inflammation [42,48]. Additionally, because
BHVs are foreign materials, they inherently differ from nat-
ural heart valves and contain xenogeneic antigens. BHVs
require preimplantation processing (e.g., decellularization
and cross-linking), influencing their calcification mecha-
nisms.
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4.1 Alloimmune Response
In addition to the immune inflammation, cell infiltra-

tion, and cytokine secretion observed in natural valve cal-
cification, nonspecific plasma protein adsorption can ac-
tivate the complement system, platelets, coagulation cas-
cade, and cell adhesion [49,50]. Infiltrating immune cells
release proteases, degrading the ECM, which contributes to
calcification by releasing calcium ions and providing bind-
ing sites [51]. In particular, the xenoantigens galactose-
α1,3-galactose (α-Gal) and N-glycolylneuraminic acid
(Neu5Gc) are thought to be important in triggering the im-
mune response to mediate calcification [52]. Anti-Gal anti-
bodies are the most abundant natural antibodies in humans
and constitute the main immune barrier in xenotransplan-
tation [53]. Anti-Gal in human circulation binds to α-gal
epitopes on the endothelial cells of xenografts and induces
complement-mediated cytolysis, followed by platelet ag-
gregation, small-vessel occlusion, vascular bed collapse,
and hyperacute rejection of the xenografts [54]. Cur-
rently, Gal knockout (KO) pigs created using gene knock-
out are better able to avoid hyperacute rejection. However,
the problem of calcification due to immunogenicity is not
completely resolved in this model given the presence of
other immune epitopes. Neu5Gc is another key xenoanti-
gen found primarily in glycoproteins and gangliosides in
most mammals, but humans do not synthesize Neu5Gc.
In humans, Neu5Gc obtained through dietary intake in-
duces natural immunity and produces anti-Neu5Gc antibod-
ies in the serum [55]. Antibody-antigen binding promotes
valve calcification, and the levels of Neu5Gc, anti-Neu5Gc
immunoglobulin G (IgG), and complement deposition are
much greater in calcified BHVs compared with calcified
natural aortic valves [52]. In addition to the two impor-
tant antigenic epitopes described above, other antigenic epi-
topes, such as Sda, may also participate in the process of
valvular calcification, and these antigenic species and the
safety of methods of elimination need to be revealed by fur-
ther research.

4.2 Decellularization Impact
Decellularization reduces BHV immunogenicity by

removing cells and nucleic acids from the ECM using phys-
ical (freeze-thaw, high hydrostatic pressure, supercritical
fluid) and chemical methods (surfactants, acids, bases, and
enzymes such as trypsin) [56]. Physical methods pre-
serve ECM integrity but are less effective immunogeni-
cally. Chemical methods are widely used but may damage
ECMproteins [57]. Combinationmethods optimize results,
but residual immunogenicity and ECM changes can affect
immune responses and calcification. Some in vitro experi-
ments have shown a higher rate of calcification in decellu-
larized porcine aortic valves than in those fixed with GLUT,
and this difference may be attributed to tissue surface modi-
fication and residual cellular debris during decellularization
[58].

4.3 Cross-Linking Impact
Natural collagen undergoes intramolecular and inter-

molecular crosslinking via enzymatic processes or nonspe-
cific glucose interactions, resulting in the formation of ad-
vanced glycation end products. These crosslinks protect
proteins from degradation and maintain their stability [59].
BHV cross-linking aims to enhance these crosslinks using
physical and chemical techniques, influencing calcification.

Currently, GLUT is the most commonly used cross-
linking agent because of its highwater solubility, fast reac-
tion rate, superior cross-linking properties, and cost effec-
tiveness. However, GLUT cross-linking can induce valve
calcification through several mechanisms. For example,
GLUT treatment causes cell death, stops membrane ion
pumps, increases the level of intracellular calcium, and pro-
motes nucleation and calcification [3]. Glycosaminogly-
cans in the ECM are not cross-linked by GLUT, leading to
degradation under mechanical stress or proteases, exposing
calcification-prone areas and facilitating collagen mineral-
ization [3]. Unlike collagen, GLUT cannot stabilize elastin
because of insufficient active amino groups, making elastin
susceptible to mechanical and enzymatic degradation, re-
sulting in calcification [60]. GLUTs form polymers through
aldol condensation in water, with free aldehyde groups per-
sisting and causing cytotoxicity [61]. The study has shown
that aldehyde content is correlated with increased tissue cal-
cium levels [62]. GLUT cross-linked biomaterials carry a
negative charge, attracting positively charged calcium ions
from host plasma and leading to calcification [61].

4.4 Valve Implantation Method
After decades of development, transcatheter aortic

valve replacement (TAVR) has demonstrated the feasibil-
ity of transcatheter interventions for the treatment of heart
valve disease. The bioprosthetic valves used in TAVR need
to be folded and then unfolded after being accessed through
a catheter in the appropriate position. The impact of differ-
ent procedures on future valve calcification remains incon-
clusive. However, TAVR may lead to calcification or even
SVD due to the use of a thinner pericardium and bioma-
terial microinjury during the curling process. The Nordic
Aortic Valve Intervention (NOTION) trial randomized pa-
tients at low surgical risk for TAVR or surgical aortic valve
replacement (SAVR) and reported their 10-year clinical and
bioprosthesis prognoses, revealing that the risk of severe
bioprosthesis SVD after TAVR was lower than that of SVD
after TAVR. Compared with SAVR, prosthesis SVD after
TAVR has a lower risk [63]. Another retrospective study
reported similar findings [64]. However, to varying de-
grees, the aforementioned studies involved small sample
sizes, survival bias, and multiple influencing factors, and
the relationship between implanted valve calcification and
the surgical approach needs to be further investigated.
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5. Genetic Factors Influencing Calcification
in Prosthetic Heart Valves

Recent studies have shown that genetic predisposi-
tions significantly influence calcification in both natural
and prosthetic heart valves [65,66]. Specific genes related
to osteogenesis, the immune response, and lipidmetabolism
are associated with increased calcification risk, which im-
pacts patient outcomes and the longevity of bioprosthetic
valves. Knowledge of these genetic factors provides the
possibility of developing specific treatments for calcifica-
tion in genetically predisposed patients.

5.1 Key Genetic Pathways in Calcification
Multiple genes involved in the process of calcifica-

tion in the cardiovascular system, such as Runt-related tran-
scription factor 2 (RUNX2), are essential for osteogenic dif-
ferentiation and can cause calcificationwhen overexpressed
[67]. Patients with RUNX2 gene mutations may undergo
more severe calcification in both bioprosthetic valves and
native heart valves, and this gene is normally active in bone
formation but can be abnormally switched on in heart tis-
sue, leading to mineralization [68].

Another important signaling pathway is the bone mor-
phogenetic protein (BMP) pathway, in which BMPs, es-
pecially BMP-2, are known to be strong promoters of os-
teogenic differentiation in vascular tissues [69]. Alleles
that increase BMP expression are involved in the develop-
ment of calcific aortic stenosis and may promote calcifi-
cation of prosthetic valves [70]. In addition, mutations in
SMAD (homolog of Caenorhabditis elegans Sma and the
Drosophilamad, mothers against decapentaplegic) proteins
that are involved in BMP signaling are associated with ab-
normal mineralization and how the body controls calcifica-
tion responses in implanted valves [71].

5.2 Inflammation and Immune Response Genes
The immune response to implanted valves is one of

the major contributors to calcification, especially in xeno-
geneic bioprosthetic valves, in which polymorphisms in
proinflammatory cytokines, including tumor necrosis factor
alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-
6 (IL-6), are associated with an enhanced immune response
leading to local inflammation and calcification [72,73].
These cytokines activate macrophages, which subsequently
create osteogenic precursor cells within the valve tissue, a
process that increases calcification.

5.3 Lipid Metabolism and Genetic Predisposition
Genes involved in lipid metabolism are also involved

in calcification, mainly through the oxidation of LDL, such
as the apolipoprotein E (APOE) gene, which is involved in
lipid transport and metabolism in the body. The APOE ε4
allele increases the risk of LDL oxidation in patients, which
leads to inflammatory reactions in valve tissues and calci-
fication, and oxidized LDLs penetrate the valve scaffold,

activate macrophages, and promote the osteoblastic trans-
formation of VICs [74,75].

6. Metabolic Factors Contributing to
Calcification in Heart Valves

Diabetes, chronic kidney disease (CKD), and hyper-
lipidemia are metabolic disorders that increase the risk of
calcification in prosthetic heart valves. These conditions
affect mineral handling and inflammatory processes in the
body and promote the calcification and degradation of bio-
prosthetic valves.

6.1 Hypercalcemia and Phosphate Dysregulation
Hyperphosphatemia is a common feature in patients

with CKD and contributes to vascular and valvular calci-
fication, as phosphate combines with calcium to form hy-
droxyapatite crystals that precipitate in valve tissues. This
condition encourages calcification through osteogenic sig-
naling pathways, including the activation of genes that are
involved in bone formation, such as alkaline phosphatase
(ALP) and osteopontin [76,77].

Furthermore, CKD patients have disordered calcium
metabolism, and high serum calcium leads to mineral depo-
sition on the valve surface. Phosphate binders, commonly
prescribed tomanage hyperphosphatemia, canworsen these
problems by increasing serum calcium concentrations and
thereby increasing the risk of calcification [76,78].

6.2 Diabetes Mellitus and Advanced Glycation End
Products (AGEs)

Diabetes mellitus is associated with increased calci-
fication risk, primarily because of the formation of AGEs
at high glucose concentration [79]. AGEs are proteins or
lipids that are glycated because of high blood sugar lev-
els and cause tissue hardening and calcification, including
prosthetic valves, and they interact with receptors on im-
mune cells, especially macrophages, to stimulate inflam-
matory signaling that leads to calcification [71,80]. AGEs
alter the mechanical properties of valve tissues by cross-
linking collagen and increase the susceptibility of valves
to calcification [81]. A literature review revealed that dia-
betic patients undergo calcification of bioprosthetic valves
at a faster rate than nondiabetic patients do; thus, they re-
quire reoperationsmore frequently [80]. AGE inhibitors are
among the preventive measures that are being researched
for their ability to slow calcification in diabetic patients.

6.3 Dyslipidemia and Calcification
Dyslipidemia, which is defined by increased LDL and

triglyceride levels, is involved in prosthetic valve calcifica-
tion through lipid infiltration and oxidation. As discussed
in Section 3.2, oxidized lipids activate inflammatory pro-
cesses and attract immune cells to the valve site that sub-
sequently become foam cells. These cells enhance the dif-
ferentiation of VICs into osteoblast-like cells and increase
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Table 1. Anti-calcification strategies of bioprosthetic heart valves.
Category Aim Specific methods

Systemic strategies Applying drug therapies to reduce calcifi-
cation risk

Stain
Immunosuppressants
Management of underlying disease

Local strategies (i) Target the physical and chemical prop-
erties of valve materials to resist calcifica-
tion

Advanced decellularization techniques
Crossing-linking innovations
Adding coatings to BHV surface

(ii) Maintain biocompatibility and me-
chanical integrity

Elimination of xenoantigens
Polyphenol-based treatment

(iii) Improve long-term performance and
durability

Dry valve techniques

BHV, bioprosthetic heart valve.

the rate of mineralization [41]. In the case of statins, which
are used to treat dyslipidemia, the effects on calcification
have been inconclusive. However, newer drugs in the
lipid-lowering family, such as proprotein convertase subtil-
isin/kexin type 9 (PCSK9) inhibitors, may provide benefits
in preventing lipid-induced calcification [82].

6.4 Impact of Hormonal and Mineral Imbalances
Calcification is also regulated by hormonal factors, es-

pecially parathyroid hormone (PTH). PTH is involved in
calcium and phosphate balance, and hyperparathyroidism
may cause an excess of calcium phosphate, which increases
the calcification potential [83,84]. Dietary and pharmaco-
logical interventions may help reduce calcification risk in
high-risk populations, but more research is needed to fine-
tune these strategies.

7. Anti-Calcification Strategies
Current strategies to address artificial heart valve cal-

cification focus on its mechanisms and are categorized into
systemic and local approaches. Systemic anti-calcification
strategies aim to reduce or eliminate systemic risk factors
linked to valve calcification, primarily through pharmaco-
logical treatments. Local strategies involve special treat-
ments or improvements to artificial valves to enhance their
physical and chemical properties, thereby reducing or pre-
venting calcification (Table 1).

7.1 Systemic Anti-Calcification Strategies
7.1.1 Statin Therapy

Statins work by competitively inhibiting 3-hydroxy-3-
methylglutaryl-coenzymeA (HMG-CoA) reductase, reduc-
ing endogenous cholesterol synthesis, which increases LDL
receptor activity and lowers total cholesterol and LDL lev-
els [85]. They also reduce triglycerides and increase high-
density lipoprotein (HDL). Lowering plasma lipid levels
may help prevent artificial heart valve calcification given
the role of lipids in calcification. A study showed that in-
activating the mttp gene in hypercholesterolemic mice nor-
malized oxidative stress and reduced pathogenic signaling,

preventing aortic valve disease progression [86]. Other
studies have indicated that statins (e.g., rosuvastatin and
atorvastatin) reduce BHV calcification by lowering IL-6
and BMP levels [87,88]. However, the role of statins in
valve calcification is debated. Kulik and colleagues [89]
reported that lipid-lowering therapies did not delay calci-
fication postaortic valve replacement. A meta-analysis re-
ported no impact on valve structure, function, calcification,
or clinical outcomes, despite cholesterol-lowering effects
[90]. Discrepancies may arise from differences between
animal models and humans and from varying study meth-
ods. Although statins might be used to treat or delay valve
calcification, high-level evidence is needed. The nonlipid
effects of statins, such as improving endothelial function,
resisting oxidation and reducing inflammation, could also
be beneficial in treating valve calcification.

7.1.2 Immunosuppressive Drug Therapy
Research indicates a reduction in calcific degenera-

tion of the valves in BHV transplant patients with aortitis
who receive steroid treatment [91]. Therefore, given the
role of immune responses in artificial heart valve calcifica-
tion, the use of immunosuppressive drugs could also rep-
resent a potential therapeutic approach. However, the sys-
temic use of immunosuppressive drugs may produce severe
side effects, such as an increased risk of infections. Cur-
rently, some researchers are focusing on the use of surface-
modified nanoparticles that bind to specific receptors that
are overexpressed in atherosclerosis to achieve precise and
efficient therapeutic effects, thereby reducing adverse im-
pacts on nontargeted tissues [92,93]. A similar approach
might be applied to immunotherapy for treating heart valve
calcification.

7.1.3 Management of Underlying Diseases
As previously noted, diabetes, kidney disease, and

hormonal imbalances can lead to heart valve calcifica-
tion. Treating these conditions may help reduce calcifica-
tion. However, some treatments may worsen it. For ex-
ample, calcium-based phosphate binders, which are used
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for hyperphosphatemia in chronic kidney disease, can in-
crease cardiovascular risk [94]. Conversely, sevelamer
hydrochloride, an alternative to calcium-based phosphate
binders, was found to reduce BHV calcification through
calcium‒phosphate regulation and anti-inflammatory ef-
fects independent of these elements [95,96].

7.2 Local Anti-Calcification Strategies

Currently, local strategies for preventing calcification
primarily target the physical and chemical properties of
the valve materials themselves, aiming to create prosthetic
valves that are resistant to calcification while maintaining
biocompatibility and mechanical integrity. These strategies
include improving the decellularization process, improving
cross-linking chemistry, eliminating xenoantigens, adding
coatings to the valve surface, polyphenol-based treatment
and drying biological valve techniques.

7.2.1 Enhancing Decellularization
Two of the most important steps in the preparation of

bioprosthetic valves are decellularization and cross-linking
because they affect the calcification resistance of the valve.
New strategies are designed to enhance these techniques
to increase calcification resistance without compromising
tissue properties. Decellularization is a critical step in re-
ducing the immunogenicity of BHVs because it eliminates
cell components that may cause an immune response after
implantation [29,97,98]. New agents and methods are be-
ing developed to enhance the process of antigen removal
while maintaining ECM integrity. Heat, ultrasound, and
pressure are not very effective when used individually but
are very effective when used in combination with chemi-
cal treatments. Vacuum-assisted decellularization improves
efficiency and reduces time without affecting valve proper-
ties, possibly by enhancing chemical distribution [99,100].
Researchers suggest incorporating this parameter in the de-
sign of decellularization protocols [99].

Chemical decellularization agents, such as detergents
and enzymes, offer another level of precision but have po-
tential trade-offs [101,102]. Detergents are categorized as
ionic detergents, nonionic detergents, and zwitterionic de-
tergents [103]. Sodium dodecyl sulfate (SDS), for example,
is highly effective at dissolving cellular structures (such as
cell and nuclear membranes) and removing antigenic cellu-
lar components, but it can damage ECMproteins if it is used
at high concentrations or for extended durations, causing
degeneration [104,105]. Researchers are refining protocols
by using submicellar concentrations of SDS or combining
detergents with shorter wash times, balancing cell removal
with ECM preservation [106,107]. Controlling detergent
residues to approximately 50 ng/mg may minimize toxic
effects and will not impair subsequent endothelial cell func-
tions [108]. Triton X-100 is a representative nonionic de-
tergent widely used in various decellularization protocols.
It targets lipid-lipid and lipid-protein chemical bonds with-

out disrupting protein-protein interactions, effectively pre-
serving the collagen structure of the ECM and maintain-
ing its mechanical and biochemical properties [109,110].
However, Triton X-100 is typically not used to decellular-
ize tissues rich in glycosaminoglycans because it is less ef-
fective at removing antigenic components; this has led to
explorations of combining nonionic and ionic detergents to
achieve optimal results [101,111].

Enzymatic methods are also common for decellular-
ization and can effectively remove cell debris and other un-
desirable ECM components. Trypsin is a frequently used
enzyme. However, prolonged exposure can lead to re-
ductions in elastin and glycosaminoglycan (GAG) contents
within the ECM [98]. The study has shown that exposure to
0.05% trypsin for 24 hours can cause irreparable damage to
the ECM [112]. Pepsin is another commonly used enzyme.
Additionally, different enzymes, such as α-galactosidase,
can be selected on the basis of the specific tissue compo-
nents to be removed to eliminate α-Gal xenogeneic epi-
topes, thereby reducing tissue immunogenicity [113]. To
obtain the best decellularization, reduce immunogenicity
and maintain the ECM structure to the maximum extent
possible, it is necessary to consider the type of enzyme, its
concentration, and the duration of the treatment.

7.2.2 Improving Cross-Linking

BHV tissues are often cross-linked with GLUTs to
increase their stability, but GLUT residues contain alde-
hyde groups that bind calcium ions, leading to calcifica-
tion [47,114,115]. To this end, researchers have developed
methods to eliminate these aldehyde residues. For exam-
ple, when GLUT-fixed tissues are exposed to agents such as
adipic acid diacyl hydrazide (AADH) or glutathione, free
aldehyde groups are blocked, and calcification resistance
and inflammation are improved [114,115]. Some of the new
cross-linking agents under consideration as GLUT substi-
tutes include dialdehyde chondroitin sulfate and formalde-
hyde xanthan gum, and these new cross-linkers provide bet-
ter stability of the ECM while exhibiting improved resis-
tance to calcification [114,115].

In addition to modifications based on GLUT cross-
linking, researchers are constantly developing new cross-
linkers to circumvent the major limitations of GLUT cross-
linking. Research has demonstrated that double cross-
linking methods that employ zwitterionic copolymers can
form stable covalent linkages within the ECMwithout elic-
iting aldehyde-related cytotoxicity that leads to calcifica-
tion [114]. A study of secondary cross-linking of bovine
pericardium using oxidized chondroitin sulfate and an am-
photeric radical copolymerization system instead of GLUT
demonstrated that the products presented desirable me-
chanical properties and anti-calcification, anti-coagulant,
and anti-inflammatory abilities in in vivo and in vitro ex-
periments [116]. The GLUT-crosslinked BHVs modified
with the robust polyvinyl alcohol-based hydrogel embed-
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ded with recombinant humanized collagen type III and tan-
nic acid were shown to possess long-term anticoagulant
activity, accelerated endothelialization, a mild inflamma-
tory response and anti-calcification properties [117]. Syn-
ergistic cross-linking of porcine pericardium with dialde-
hyde xanthan gum and curcumin also resulted in better
anti-calcification and anti-inflammatory ability compared
with GLUT cross-linking in in vitro experiments [118]. Al-
though these novel cross-linkers show ideal prospects for
anti-calcification, more conclusive evidence is still needed
to support the effectiveness, safety and even economy of
their long-term effects if they are to replace GLUTs as
widely used cross-linkers. In addition, these new cross-
linkers also suffer from the problems of complex reactions,
high catalyst limitations, and easy contamination of sam-
ples by byproducts to varying degrees.

7.2.3 Adding Coating to Surfaces

The addition of coatings to the surface of BHVs is also
a proven anti-calcification method. With advances in mate-
rials science, polymers show considerable potential in this
area. Researchers grafted poly(2-methoxyethyl acrylate)
(PMEA) onto porcine pericardium (PP) pretreated with
GLUT and methacrylate polylysine to fabricate a PMEA-
coated porcine pericardium, and the results demonstrated
that the PMEA coatings significantly reduced PP calcifi-
cation [119]. Luo et al. [120] coated a hybrid hydrogel
of sulfobetaine methacrylate and methacrylate hyaluronic
acid onto the surface of decellularized heart valves mod-
ified with methacrylic anhydride and then grafted the
endothelium-affinity peptide, which showed better anti-
calcification and endothelialization potential than BHV
cross-linked with GLUT. Porcine pericardium cross-linked
with bromo bicyclic-oxazolidine (OX-Br) instead of GLUT
exhibits good resistance to calcification, endothelialization,
thrombosis and infection in polymer brush-grafted BHV
material [121]. Nanotechnology has also been used in this
field. Guldner et al. [122] added a 30-nm-thick titanium
nanocoating to GLUT-fixed bovine pericardium, which bet-
ter avoided calcification of heart valves using a mechanism
whereby the titanium nanocoating reduces immune com-
plex deposition and immune cell adhesion to valvular col-
lagen and physically blocks the grafted valves from contact-
ing various known and unknown antigenic epitopes on the
valve with blood. The surface structure of the coating also
has an optimal endothelialization capacity, which ensures a
certain degree of long-term anti-calcification properties.

7.2.4 Elimination of Xenoantigens

As mentioned earlier, the immunogenicity of allograft
valves and the immune response after implantation are im-
portant mechanisms that may lead to valve calcification.
Among these, the α-Gal antigen is one of the most im-
portant and has received the most attention in recent years.
There is evidence that the implantation of bioprosthesis in-

duces persistent α-Gal-specific IgG immunoreactivity in
valve recipients in an age-dependent manner [123,124]. It
can be assumed that the elimination of α-Gal epitopes in
the grafts is very beneficial for the anti-calcification and
life extension of BHV. One study showed that the treat-
ment of porcine heart valves and pericardial tissue with
α-galactosidase effectively removed α-galactose epitopes
without affecting the biomechanical properties of the tissue
[125]. Naso et al. [126] confirmed that the current GLUT
treatment routinely performed on BHV inactivates only ap-
proximately half of the α-Gal epitopes. Based on these
findings, the researchers developed a novel treatment called
FACTA, where the tissue was incubated in an isotonic so-
lution consisting of a highly selected mixture of food-grade
molecules. The treated tissue was subsequently rinsed three
times for 10 min each in phosphate-buffered saline (PBS)
at room temperature (RT) and stored at 4 °C in PBS until
use. Studies of commercially available porcine and bovine
BHV have confirmed that approximately 95% α-Gal inac-
tivation can be obtained by subjecting xenogeneic tissues to
the FACTA procedure prior to GLUT treatment [126,127].
In addition, eliminating the expression of antigens in trans-
planted biological tissues using gene editing techniques also
provides an improved method to fight immune rejection
[128].

7.2.5 Polyphenol-Based Treatment

Phenolic compounds can exert potent anti-
inflammatory effects by interfering with immune cell
regulation, proinflammatory cytokine synthesis and gene
expression [129]. In addition, polyphenols act to mask
immunogenic epitopes and carboxyl residues involved
in calcification through the formation of covalent and
hydrogen bonds, which subsequently form stable com-
plexes. Polyphenol-based treatment also improves the
flexibility of the valve tissue, allowing for a more even
distribution of mechanical stress across the leaflet surface
and reducing the impact of mechanical stress on the valve
through a more uniform and consistent valve switch. For
commercial BHVs produced using different manufacturing
methods, the application of polyphenol-based technologies
in addition to other treatments can further improve their
stabilizing properties [130]. Some researchers have also
suggested that treatment with polyphenols alone could
be potentially problematic, as calcium ions may bind to
pericardium-bound polyphenols, which in turn can lead to
calcification. Therefore, the investigators introduced ferric
chloride, which reduced calcified deposits by competing
with calcium ions through iron ions and better protected
elastin [131].

7.2.6 Innovative Biomaterial Treatment Techniques

In view of problems such as GLUT residue and calci-
fication of traditional GLUT crosslinked BHV, non-GLUT
crosslinked dry valve technology was developed. Dry bio-
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logical valve technology is based on decellularization and
decalcification through glycerolization, three-dimensional
force-controlled drying, and ultralow-temperature vacuum
lyophilization. The valve is dehydrated and dried and ul-
timately premounted, precut, and preloading, with a finer
delivery system than traditional valves and with a tissue
strength no less than that of similar products. In actual use,
the valve can be used simply by rinsing with saline, which
greatly decreases the loading time.

Linx AC anti-calcification technology is designed to
minimize cholesterol uptake and stabilize leaflet collagen
by extracting lipids and reducing free aldehyde groups,
resulting in long-term performance and durability, with
valves lasting 10–15 years or longer. A rabbit model study
demonstrated less calcification in porcine valves treated
with Linx AC technology compared with glutaraldehyde-
treated controls [132]. A follow-up study revealed satisfac-
tory long-term clinical outcomes and valve performance af-
ter implantation of the Epic Supra valve (treated with Linx
AC technology) in the aortic position [133].

The ThermaFix process, developed in 2007, is a third-
generation bioprosthetic valve anti-calcification technol-
ogy that involves phospholipid extraction and an addi-
tional heat-treatment step that provides anti-calcification by
covering the free aldehyde groups, removing most of the
cholesterol and phospholipids in the leaflet, and stabiliz-
ing the leaflet collagen. This technology can also extend
the valve life to 10–15 years or longer. In an animal ex-
periment, ThermaFix process-treated bovine pericardium
showed improved anti-calcification properties compared
with those of conventional glutaraldehyde-treated controls
[132]. Early results from a premarket clinical study in
China suggest that the SAPIEN 3 valve, which is based
on this anti-calcification technology, is safe and effective
in Chinese patients undergoing transcatheter interventional
valve replacement for high-risk aortic stenosis [134].

8. Imaging for Early Detection and
Treatment Evaluation

Imaging is crucial for the early detection of calcifi-
cation and for evaluating the response of prosthetic heart
valves to anti-calcification therapies. Imaging techniques
help clinicians identify calcific deposits at a stagewhen they
are not clinically relevant. Therefore, patients can receive
treatment before these deposits become a problem.

8.1 Echocardiography and Intraoperative Imaging
Echocardiography remains the gold standard for pros-

thetic valve imaging, as it provides real-time information on
the function and structure of the valve. Procedures such as
three-dimensional transesophageal echocardiography (3D
TEE) allow for detailed imaging of the valve leaflets and
calcifications [135,136]. Doppler echocardiography quan-
tifies flow across the valve and can identify any hemody-
namic changes due to calcification [137]. Transesophageal

and intracardiac echocardiography are used during the im-
plantation of the valve to visualize the valve and check for
early signs of calcification and proper positioning of the
valve [138,139]. Intraoperative imaging is very important
for minimizing postoperative complications and for obtain-
ing an instant assessment of the procedure’s effectiveness.

8.2 Computed Tomography (CT) Imaging for Calcification
Detection

CT is a highly sensitive technique that provides de-
tailed images of the calcification process and enables ac-
curate measurement of calcified plaque, and it is also ap-
plied to assess calcification in aortic valves, providing an
opportunity to quantify the calcification process and its dy-
namics in time [140]. Quantitative CT can monitor changes
in calcification density, which can help in early diagnosis
and evaluations of the efficacy of anti-calcification medi-
cations, including statins or phosphate binders [141]. CT
imaging is also useful in preoperative evaluation, where
surgeons can determine the degree of calcification in native
and prosthetic valves. Recent developments in 3D recon-
struction of CT images have enabled precise visualization
of the valve morphology, which is essential for choosing the
right type of valve and its placement during the operation
[142,143].

8.3 Positron Emission Tomography (PET) for Metabolic
Activity Assessment

PET imaging, especially when integrated with CT
(PET-CT), is helpful in evaluating metabolic activity re-
lated to early calcification. Here, radiotracers such as 18F-
sodium fluoride (18F-NaF) are taken up in areas of ac-
tive calcification and allow the clinician to identify early
mineralization processes that are not visible on CT alone
[144–146]. 18F-NaF PET imaging has high sensitivity
for detecting microcalcifications and is a valuable tool in
the assessment of early calcification in bioprosthetic valves
[146,147]. PET imaging is also used to assess the effective-
ness of anti-calcification therapies, as decreased radiotracer
uptake suggests decreased metabolic activity and possible
calcification. Thus, PET imaging may assist clinicians in
modifying treatment plans according to patients’ response
to calcification in real time [148].

8.4 Magnetic Resonance Imaging (MRI) for Soft Tissue
Characterization

MRI is generally less sensitive to calcific deposits
compared with CT. However, it offers important informa-
tion about the mechanical properties and materials used in
prosthetic valves, helping to distinguish between calcified
and noncalcified tissues. This information helps to under-
stand the mechanical characteristics of the valve and iden-
tify potential zones of degeneration. T1 and T2 mapping
are two of the most recent MRI techniques that can be used
to quantify tissue stiffness, which is associated with early
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calcification and fibrosis [149,150]. MRI is especially valu-
able in the assessment of tissue-engineered heart valves be-
cause it offers high soft tissue contrast and does not involve
the use of ionizing radiation. This makes MRI suitable for
use in pediatric and younger patients over long periods be-
cause frequent imaging does not contribute to the develop-
ment of cancer due to radiation [151].

9. Conclusions
Prosthetic heart valves in clinical use are primarily

mechanical or bioprosthetic, with BHV offering superior
hemodynamics and reduced bleeding risks due to the ab-
sence of the need for anticoagulation therapy. However,
calcification remains a significant limitation affecting BHV
longevity. Local anti-calcification strategies are the main
methods currently applied, primarily targeting the physi-
cal and chemical properties of valve materials. In the near
future, advances in nanotechnology and tissue engineer-
ing could hold more promise for mitigating prosthetic heart
valve calcification. Nonetheless, the transition from labo-
ratory and animal studies to clinical applications has been
limited. This gap highlights the need for a deeper under-
standing of calcification mechanisms and influencing fac-
tors in the human body, as well as the development of stan-
dardized evaluation criteria and more physiologically rele-
vant models. Bridging this gap is crucial for selecting and
advancing the most promising anti-calcification strategies
for clinical use.
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