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Abstract

Background: This study aimed to construct a prediction model for a treatment plan for patients with coronary artery disease combined
with diabetes mellitus using machine learning to efficiently formulate the treatment plan for special patients and improve the prognosis of
patients, provide an explanation of the model based on SHapley Additive exPlanation (SHAP), explore the related risk factors, provide a
reference for the clinic, and concurrently, to lay the foundation for the establishment of a multicenter prediction model for future treatment
plans. Methods: To investigate the relationship between concomitant coronary heart disease (CHD) and diabetes mellitus (DM), this
study retrospectively included patients who attended the Beijing Anzhen Hospital of Capital Medical University between 2022 and
2023. The processed data were then input into five different algorithms for model construction. The performance of each model was
rigorously evaluated using five specific evaluation indicators. The SHAP algorithm also provided clear explanations and visualizations
of the model’s predictions. Results: The optimal set of characteristics determined by the least absolute shrinkage and selection operator
(LASSO) regression were 15 features of general information, laboratory test results, and echocardiographic findings. The best model
identified was the eXtreme Gradient Boost (XGBoost) model. The interpretation of the model based on the SHAP algorithm suggests
that the feature in the XGBoost model that has the greatest impact on the prediction of the results is the glycated hemoglobin level.
Conclusions: Using machine-learning algorithms, we built a prediction model of a treatment plan for patients with concomitant DM and
CHD by integrating patients’ information and screened the best feature set containing 15 features, which provides help and strategies to
develop the best treatment plan for patients with concomitant DM and CHD.
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1. Introduction
In recent years, the morbidity and mortality rates of

coronary heart disease (CHD) have been on the rise, with
the age of onset decreasing annually [1–6]. Meanwhile,
diabetes mellitus (DM) has reached epidemic proportions
worldwide, and its prevalence is also on the rise [7,8]. CHD
and DM, as two separate pathological entities, can enhance
each other’s disease progression, and the mortality rate of
patients suffering from both is higher than that of patients
with just one [9–17]. Therefore, the development of treat-
ment regimens for patients with both DM and CHD needs
to take into account the common factors and influences of
the two diseases [18–22]. At this time, treatment options for
patients with bothDMandCHD can be broadly divided into
two categories: conservative treatment with medication af-
ter glycemic control and surgical treatment (including per-
cutaneous coronary interventions and coronary artery by-

pass grafting) [23,24]. Due to human errors and imperfec-
tions in examination and testing indicators, many patients
are still unable to receive appropriate treatment plans, such
that the prognosis and recovery of patients cannot be opti-
mized [25,26]. In recent years, machine learning has often
been used to deal with this kind of data involving magnan-
imous samples and data mining [27,28].

Machine learning is dedicated to the study of how
computers can simulate or implement human learning be-
haviors to acquire new knowledge or skills and reorganize
existing knowledge structures to continuously enhance their
performance [29–33]. Machine learning can systematically
process and classify much clinical data on its own and ulti-
mately obtain information of clinical interest from the sys-
tem’s output [34,35], which can help to reveal the essential
features of the disease and elucidate the potential correla-
tion between the information of different variables [36–44].
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In recent years, it has been shown to provide useful insights
into cardiovascular diseases and has begun to have clinical
applications [45–51].

In this study, we aimed to develop and validate a pre-
diction model for treatment regimens of patients with CHD
combined with DM by conducting a retrospective study
using a single-center database. We used five machine-
learning algorithms for model construction, from which
we identified the eXtreme Gradient Boost (XGBoost) algo-
rithm as the best algorithm and used it as a basis for mining
the relevant risk factors.

2. Materials and Methods
2.1 Data Source and Study Population

The Coronary Heart Disease Database of the Anzhen
Hospital of the Capital Medical University is a platform-
type operation andmanagement system for disease resource
sharing customized and developed for the Coronary Heart
Disease Database platform of the Anzhen Hospital on the
basis of the Jiahemeikang Disease Resource Sharing Man-
agement System. In this study, we exported 3171 patients
diagnosed with coronary heart disease combined with DM
from the Coronary Heart Disease Database of the Beijing
Anzhen Hospital of the Capital Medical University in 2022
and 2023 and retrospectively included 3153 patients with
coronary heart disease combined with DM in the inter-
nal cohort after filtering out useless data that did not meet
the criteria for nullclassification or with missing features
greater than 30 or more items.

Inclusion criteria:
(1) Patients with a clear diagnosis of coronary artery

disease (CAD) combined with DM;
(2) After rigorous history taking, important data were

complete;
(3) Age ≥18 years.
Exclusion criteria:
(1) Pregnant patients;
(2) Combination of malignant tumors and long-term

use of chemotherapy drugs;
(3) Combination of diseases that can significantly af-

fect routine blood and biochemical indices.

2.2 Data Collection and Preprocessing
Restricted pre-processing of the collected data was

performed by coding categorical variables such as heart
failure, atrial fibrillation, or cardiogenic shock using 0 and
1, representing that the sample in which 0 did not have this
characteristic, and 1 did have this characteristic. In addi-
tion, factorization was performed. All data were divided
into positive (Group P) and negative (Group N) groups
based on the presence or absence of the treatment (i.e.,
percutaneous stenting and coronary artery bypass grafting).
All continuous variables comparing the clinical data of the
two groups of patients were described using either x̄ ± S
(satisfying normal distribution) or M (Q1, Q3) (not satisfy-

ing normal distribution). Categorical variables (count data)
were described using percentages and frequencies. Statis-
tical analysis used the R language (R 4.3.2, R Core Team,
Vienna, Austria) for subsequent predictive model construc-
tion and data visualization.

To make each feature in the results comparable, all the
data are first standardized, and all the data was randomly di-
vided in the ratio of 8:2, i.e., 80% of the data were used as
the training set and 20% of the data were used as the test
set. The screening of features, model construction, and pa-
rameter tuning were all done in the training set, and it is
guaranteed that data leakage in the test set. Based on the
training set data, dummy variables (DVs) were introduced
for variables that did not need to be classified and then re-
gressed by the least absolute shrinkage and selection opera-
tor (LASSO). To optimize the regularization strength of the
LASSO regression model, a grid search was carried out to
determine the optimal alpha value.

For missing data, features with greater than 15%miss-
ing data were deleted, and features with no more than 15%
missing data were inputed into the random forest algorithm.
The random forest imputation process consists of the fol-
lowing steps: First, for each feature with a missing value, a
random forest regression model was constructed using the
other features as inputs [52]. Second, simple statistics (e.g.,
mean or median) were used to estimate the missing values.
The model is then trained in the complete case (samples
without missing values) and used to predict missing val-
ues, replacing the initial imputations. This process is re-
peated until the model converges or a predetermined num-
ber of iterations is reached to ensure stable input results
[53]. If the data are unbalanced samples, the Synthetic Mi-
nority Over-Sampling Technique (SMOTE) algorithm is in-
troduced to eliminate the effect of imbalance before split-
ting the data, where SMOTE generates new synthetic sam-
ples in the vicinity of the minority class instances with the
aim of enhancing their representativeness [54].

2.3 Model Construction
Five different machine learning algorithms, namely

Random Forest (RF), Logistic Regression (LR), XGBoost,
Support Vector Machine (SVM), and K-nearest neighbor
(KNN), were used in this experiment.

2.3.1 RF
Random forest is an integrated machine learning algo-

rithm that improves the accuracy and robustness of a model
by combining the predictions of multiple decision trees. For
the classification task, the prediction result of random forest
is usually obtained through the majority voting mechanism,
that is, each tree gives a prediction result, and the majority
category is finally selected as the prediction result of ran-
dom forest. This process can be expressed as: for the input
feature vector x, each tree ti in the random forest gives a
prediction result yi (for classification tasks, yi is a category
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label). The final prediction class y* is the class that maxi-
mizes the following expression:

y∗ = argmax
y

k∑
i=1

I (yi = y)

Where, I()is the indicator function, which takes the
value 1 when the parenthesis condition is true, otherwise it
is 0; k is the number of trees in the random forest; y is the
possible category label.

2.3.2 LR
LR belongs to probabilistic nonlinear regression,

which is mainly used to study the relationship between the
outcome index of binary classification (dependent variable)
and some influencing factors (independent variable) (can
be extended to multiple categories). It is commonly used in
epidemiology to analyze quantitative relationships between
diseases and associated risk factors. The LR model can be
expressed as:

P =
1

1 + exp [− (β0 + β1X1 + β2X2 + · · ·+ βmXm)]

In the formula, P is the probability when a positive
result occurs, β0 is the constant term, β1, β2 …, βm is
the independent variable regression coefficient of X1, X2,
…,Xm. Logarithmic conversion of the formula can be ex-
pressed in linear form:

logitP = ln
P

1− P
= β0 + β1X1 + β2X2 + · · ·+ βmXm

The logitP for positive results with negative results
occur when probability of the natural logarithm and the
value of logitP ranges have no numerical bounds.

2.3.3 XGBoost
XGBoost is an ensemble learning algorithm based on

gradient-raising decision trees that optimizes the loss func-
tion by adding prediction trees, each attempting to correct
the error of the previous tree . The core idea of XGBoost
is to combine multiple weak classifiers (decision trees) into
one strong classifier. Its mathematical formula mainly in-
volves the definition and optimization of the objective func-
tion. The objective function of XGBoost can be expressed
as:

obj(θ) =
∑
i=1

nL (yi, ŷ) +
∑
k=1

KΩ(fk)

L (yi, ŷ) represents a loss function that measures the
difference between the model’s predicted value ŷ and the
actual value yi. Ω(fk) represents the complexity of the k-
th tree and is used to control the complexity of the model
to prevent overfitting. θ represents the parameters of the
model. XGBoost performs a second-order expansion of the
loss function using Taylor’s formula to better approximate
and optimize the loss function. By adding prediction trees,
XGBoost gradually reduces residuals and improves the pre-
dictive performance of the model. Because of its efficiency,
flexibility and powerful performance, XGBoost has been
widely used in a variety of machine learning tasks such as
classification, regression, and sequencing.

2.3.4 SVM
SVM is a two-class classification model, its basic

model is defined as the linear classifier with the largest in-
terval on the feature space, its learning strategy is to maxi-
mize the interval, and finally can be transformed into a con-
vex quadratic programming problem. The goal of SVM is
to find a hyperplane:

wTx+ b = 0

w is the weight vector and b is the bias term. The sam-
ple points of different classes are separated, and the distance
from the nearest point (i.e., support vector) to the line is
maximized as far as possible. This distance is called the
margin, and the SVM attempts to maximize this gap.

2.3.5 KNN
KNN algorithm is a simple and intuitive classification

and regression method, namely the K nearest neighbor al-
gorithm. The core idea is that a sample belongs to a class if
most of the K nearest neighbors of the sample in the feature
space belong to that class. The general flow of the KNN
algorithm is as follows:

First determine the size of the K, that is, how many
neighbors to choose to participate in the decision. The
choice of K value has great influence on the performance
of the algorithm. Then calculate the distance between the
test object and all objects in the training set: Euclidean dis-
tance is generally adopted, and the formula is:

d(x, y) =

√∑n

i=1
(xi − yi)

2

Where x and y are two points in n-dimensional space,
and xi and yi are their coordinates on the i-th dimension,
respectively. According to the calculated distance, the K
training samples closest to the test sample are found, which
are the K nearest neighbors of the test sample. Then take
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a vote or weighted average and finally use the prediction
category or predicted value as the output of the algorithm.

First, it is necessary to sample N times from the origi-
nal data set (Bootstrap sampling method) to form a training
set with the same size N (the comparison with the original
data set is not completely consistent). If each sample in the
data set has T attributes, t (t≤T) attributes will be randomly
selected when the RF internal decision tree is split, and then
the split attributes of the node will be selected according to
some strategy, and finally a decision tree will be grown on
the training set with size N. This is repeated m times, and a
random forest of m decision trees is trained.

After completing the model parameter tuning, the pre-
dictive ability of each model was verified using a test
machine, and the receiver operating characteristic curve
(ROC) of each model was plotted, and precision, accuracy,
and recall were selected, and the F1 score and area un-
der curve (AUC) were selected as the evaluation indexes
of model effectiveness. The model with the largest AUC
was selected as the best model, and the Hosmer-Lemeshow
(HL) was further performed to assess the degree of corre-
spondence between the predicted probabilities and obser-
vations using the Hosmer-Lemeshow goodness-of-fit test
[55]. p-values less than 0.05 indicate that there may be a
model fitting problem, such as overfitting or underfitting
[56]. We used the SHapley Additive exPlanation (SHAP)
algorithm to explain the prediction model, which provides
a globally consistent explanation of the model from the the-
ory of game theory, can explain each feature output of the
machine learning model at the group level as well as at the
individual level, and visualize the output results to study
the relative importance of each feature, in which the SHAP
value of the edible oil bar graphs and scatter plots composed
of summary graphs in a graphical representation, are used
to illustrate the importance of individual features and their
overall impact on model predictions [57].

2.4 Model Evaluation
2.4.1 Accuracy

Accuracy is a measure of the percentage of all pre-
dicted samples that the model correctly predicts. In this
study, accuracy provides an intuitive evaluation criterion
to help us understand the predictive power of the model as
a whole. By evaluating the accuracy, it is possible to de-
termine whether the model’s performance on the test data
meets expectations, thus providing a basis for further opti-
mization and the calculation formula is:

Accuracy =
TP + TN

TP + TN + FP + FN

TP (True Positive) is the number of samples correctly
predicted as a positive class, TN (TrueNegative) is the num-
ber of samples correctly predicted as a negative class, FP

(False Positive) is the number of samples incorrectly pre-
dicted as a positive class, FN (False Negative) is the number
of samples incorrectly predicted as a negative class.

2.4.2 Precision

The accuracy rate measures the proportion of all sam-
ples predicted to be positive that are actually positive. In
this study, the accuracy rate reflects the accuracy of the
model when predicting positive classes, such as patients
with cardiovascular disease. The higher accuracy indicates
that the model can identify the real positive samples well,
which is of great significance for avoiding false positive
prediction and reducing misdiagnosis, and the formula is:

Precision =
TP

TP + FP

Where TP is the number of samples correctly pre-
dicted as positive, and FP is the number of samples incor-
rectly predicted as positive.

2.4.3 Recall

The recall represents the percentage of all samples that
are actually positive that are correctly predicted to be pos-
itive. Recall rates in this study were used to assess the
model’s ability to identify positive samples, especially in
high-risk patients. The higher recall rate means that the
model can capture more actual positive samples, which is
crucial for early detection of diseases and reducing missed
diagnoses and is calculated as:

Recall =
TP

TP + FN

Where TP is the number of samples correctly pre-
dicted as a positive class, FN is the number of samples in-
correctly predicted as a negative class.

2.4.4 F1 Score

The F1 score is the harmonic average of the accuracy
rate and the recall rate, which takes into account the ac-
curacy and completeness of the model in the positive pre-
diction. In this study, F1 scores provide a way to balance
accuracy and recall, especially when dealing with data im-
balances. With F1 scores, we are able to evaluate the clas-
sification performance of the model more comprehensively
and its calculation formula is:

F1 Score =
2× TP

2× TP + FP + FN
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2.4.5 AUC
TheAUC value is calculated by plotting the area under

the ROC curve, and the calculation formula is usually ob-
tained by numerical integration. AUC is an important index
to evaluate the performance of binary classification models,
whichmeasures the ability ofmodels to distinguish between
positive and negative classes. In this study, the AUC values
reflect the comprehensive performance of the model under
different thresholds. A higher value of AUC means that the
model can distinguish positive and negative samples more
effectively, and has a strong classification ability. Espe-
cially in the case of unbalanced categories, AUC is a very
useful performance evaluation standard.

2.4.6 Matthews correlation coefficient (MCC)
MCC is a comprehensive index considering all clas-

sification results, which can fully reflect the classification
performance of the model. In this study, MCC is used to
evaluate the performance of the model in the face of unbal-
anced data. The closer the value of MCC is to 1, the better
the prediction results of the model are. Especially when
dealing with small samples of positive or negative classes,
MCC provides a more stable performance evaluation and
its calculation formula is:

MCC =

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

2.4.7 Hosmer-Lemeshow Test Statistic
The Hosmer-Lemeshaw test is used to evaluate the

goodness of fit of a model, and it tests the agreement be-
tween the predicted values of the model and the actual
observed values. In this study, the test is used to deter-
mine whether the model can accurately fit the data and
whether there are systematic errors. Through this test, we
can confirm the model’s consistency across different data
sets, thereby enhancing its reliability for clinical application
and the statistics of the Hosmer-Lemeshaw test are usually
calculated by the following formula:

Ĉ =

G∑
k=1

(O1k − E1k)
2

Nk × π̄k × (1− π̄k)

Here, G represents the number of groups (usually 10
groups), O1k is the actual number of events observed in
group kk (i.e., the number of samples with the dependent
variable taking the value of 1), E1k is the number of events
predicted by the model in group kk (that is, the sum of the
predicted probabilities of all samples in this group), Nk is
the total sample size of Group k, π̄k is the average of the
predicted probabilities of the k group.

2.4.8 Hosmer-Lemeshow Test p-value
The p-value is calculated from the statistics of the

Hosmer-Lemeshaw test, which is usually tested based
on the Chi-square distribution. The p-value of Hosmer-
Lemeshaw test is used to evaluate the fitting effect of the
model, and a higher p-value indicates a better match be-
tween the model and the actual data. In this study, the p-
value helped us judge the applicability of the model to clin-
ical data, ensuring that its prediction results have a high de-
gree of confidence in practical applications.

2.4.9 Confusion Matrix
The confusion matrix intuitively reveals the classifi-

cation results of the model by showing the comparison be-
tween the actual categories and the predicted categories of
the model. In this study, the confusion matrix helps us to
understand the predictive performance of the model for var-
ious samples, especially whether it can correctly identify
positive and negative classes. With this tool, we are able
to evaluate the specific performance of the model in each
category and provide specific directions for subsequent im-
provement. The confusion matrix usually looks like this:

[
TN FP

FN TP

]
Where TP, TN, FP and FN represent true example, true

counter example, false positive and false counter example
respectively.

2.4.10 Calibration Curve
The calibration curve evaluates the calibrability of the

model by calculating the difference between the actual inci-
dence and the predicted probability for each predicted prob-
ability interval. Specific formulas usually involve calculat-
ing by ratios or differences. The calibration curve shows the
agreement between the probability predicted by the model
and the actual results. In this study, the accuracy of the
model’s prediction probabilities was evaluated by calibra-
tion curves to ensure that the model was not only able to
classify, but also to provide reliable probability predictions.
The good calibration curve shows that the probabilistic pre-
diction of the model is consistent with the actual incidence
rate, which enhances its operability and reliability in the ac-
tual clinical environment.

2.5 Research Quality Control
Strict quality control is used in order to ensure the reli-

ability and accuracy of the study: (1) the collection process
of the samples is carried out by two investigators in strict
accordance with the development of the inclusion and ex-
clusion criteria, and controversial cases are discussed and
resolved with the intervention of a third person; (2) the sam-
ple data collection is completed for comparison, to ensure

5

https://www.imrpress.com


Fig. 1. Flowchart of AI framework establishment. The population with coronary heart disease combined with diabetes mellitus,
sourced from the Coronary Heart Disease Specialized Database of the Beijing Anzhen Hospital affiliated with the Capital Medical
University between 2022 and 2023, was retrospectively included. A total of 3171 cases were exported. After cleaning, which involved
removing cases that did not meet the inclusion criteria and those with more than 30 missing features, 3153 cases remained. These cases
were then categorized based on whether the patients had undergone treatment (percutaneous interventional or coronary artery bypass
grafting). AI, artificial intelligence.

that there are no data extraction mismatches and omissions;
(3) the inclusion of the data is carried out once again before
inputing the data, sample set features containing missing
values are deleted; (4) data are processed using the R lan-
guage, and after the code is written, the code is repeated
several times to check the code to ensure the accuracy of
the results.

2.6 Literature Search Strategy

To ensure the comprehensiveness and rigor of the lit-
erature, we adopted a multi-dimensional literature search
strategy in this study, which includes the following aspects:
First, we searched for literature related to the risk factors
and treatment strategies specifically for diabetic and CAD
populations. The focus was on the complications of car-
diovascular diseases in diabetic patients, risk assessments
for CAD, the impact of diabetes on cardiovascular health,
the effectiveness of drug treatments, and the role of lifestyle

interventions (such as diet and exercise) in the prevention
and treatment of CAD. These sources provided theoretical
support for feature selection and helped identify key risk
factors related to both diabetes and CAD.

Next, we searched for commonly used machine learn-
ing models in clinical prediction, particularly those applied
in cardiovascular disease prediction. The search included
traditional machine learning algorithms, such as logistic re-
gression, SVM, and random forests, which are widely used
in clinical data prediction modeling. Additionally, we ex-
plored the application of deep learning algorithms, such
as neural networks, convolutional neural networks (CNN),
and Transformer architectures, and assessed their applica-
bility, advantages, and limitations in cardiovascular disease
prediction. These sources provided valuable theoretical and
practical guidance for model selection and optimization.

We then conducted further searches on the risk factors
and treatment strategies for diabetes patients with CAD.

6
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Specifically, we focused on the unique characteristics of
diabetic patients with CAD, such as the impact of diabetes
on vascular health, the comorbid mechanisms between di-
abetes and CAD, and the effectiveness of combined treat-
ments for diabetes and cardiovascular diseases. These stud-
ies contributed to a deeper understanding of the risks and
treatment strategies specific to diabetic patients with CAD.

3. Results
3.1 Population Characteristics Overview

In this study, we retrospectively included patients
with concomitant DM and CHD who attended the Bei-
jing Anzhen Hospital of the Capital Medical University
from 2023 to 2024. We included 3153 patients after
strictly screening potential participants per the nadir crite-
ria. Among them, 2056 patients received treatment (percu-
taneous coronary stenting or coronary artery bypass graft-
ing), and 1097 patients received conservative treatment.

After excluding entries containing missing values,
feature screening was performed with the LASSO regres-
sion within the training set (the differences between the
training and test sets were not statistically significant),
and the optimal parameter alpha of 0.02 was obtained af-
ter validation through grid search, corresponding to the
smallest error. The features with non-zero coefficients
could be included at this time, and the final set of the
best features was obtained, which included: sex, age, and
the randomized glucose level, positivity or weak positiv-
ity of fecal occult blood, free thyroxine level, erythro-
cyte distribution width, coefficient of variation, glycosy-
lated hemoglobin level, high-density lipoprotein choles-
terol level, hemoglobin level, glomerular filtration rate, ala-
nine aminotransferase titer, pulmonary artery trunk internal
diameter, maximum left ventricular diastolic E-wave flow
velocity, maximum aortic flow velocity, and hospitaliza-
tion period, and activated partial thromboplastin time. This
optimal feature set was used in the construction of the sub-
sequent five predictive models. The flowchart is shown in
Fig. 1.

The general data of treatment group (n = 2056) and
conservative treatment group (n = 1097) were compared:
the ages (years) were 62.59 ± 8.67 and 64.73 ± 9.28, re-
spectively. There were 1527 (74.27%) and 803 (73.20%)
males, respectively. Fecal occult blood was positive or
weak positive in 258 (12.55%) cases and 166 (15.13%)
cases. Heart failure occurred in 381 (18.53%) cases and
303 (27.62%) cases, respectively. Comparison of relevant
data of laboratory examination results: the results of ran-
domblood glucose examination (mmol/L)were 6.49± 2.58
and 7.05 ± 2.84, respectively. The results of low density
lipoprotein cholesterol (mmol/L) were 2.19± 0.85 and 2.26
± 0.87, respectively. The relative data of echocardiogra-
phy were compared: left ventricular ejection fraction (%)
was 58.99 ± 8.71 and 58.22 ± 10.95, respectively. The
maximum diastolic A-wave velocity (cm/s) of left ventric-

ular were 89.95 ± 20.69 and 91.45 ± 24.73, respectively.
Themain internal diameters of pulmonary artery (mm)were
23.16 ± 2.54 and 23.6 ± 3.1, respectively. The maximum
velocity of pulmonary artery (cm/s) was 90.25± 15.36 and
91.17 ± 18.73, respectively. The maximum E-wave ve-
locity (cm/s) in left ventricular diastolic period were 72.21
± 24.92 and 80.79 ± 35.42, respectively. Comparisons of
general data between the positive group (n = 2056) and the
negative group (n = 1097) are presented in Table 1.

Subsequently, all included data were randomly split
into training and testing sets at a ratio of 8:2. The data were
preprocessed and fed into various algorithms formodel con-
struction. Upon completion of the construction, each algo-
rithmic model was evaluated for its performance.

3.2 Prognostic Implication and Predictive Performance of
the Five Models

In this study, five models were constructed based on
machine learning, and the calibration curves of its five algo-
rithms are shown in Fig. 2A–E; the ROC curves of the five
algorithms are shown in Fig. 2L. Among them, the AUC of
the RFmodel was 0.87; the AUC of the LRmodel was 0.70;
the AUC of the XGBoost model was 0.89; the AUC of the
SVMmodel was 0.75; and the AUC of the KNNmodel was
0.74. To alleviate the bias caused by the data imbalance, this
study calculates additional metrics, including precision, ac-
curacy, recall, MCC and the F1 score to comprehensively
evaluate the model’s predictive performance based on the
four basic metrics TP, TN, FP and FN in the model confu-
sion matrix. Precision represents the percentage of samples
that are actually positive out of all the samples predicted
by the model to be positive. It measures the accuracy of
the model when the prediction is a positive example, and
the formula is Precision = TP

TP+FP ; Accuracy represents
the proportion of samples correctly predicted by the model
to the total number of samples. It measures the accuracy
of the overall classification of the model. The calculation
formula is Accuracy = TP+TN

TP+TN+FP+FN ; Recall repre-
sents the percentage of samples that are correctly predicted
to be positive by the model out of all samples that are ac-
tually positive. It measures the model’s ability to identify
positive samples and is calculated as Recall = TP

TP+FN ;
MCC is a measure of the quality of a binary classifica-
tion model that takes into account all four classification
outcomes (TP, TN, FP, FN) and returns a value between
–1 and 1. An MCC of 1 is a perfect prediction, 0 is an
average random prediction and –1 is a completely incon-
sistent prediction and its calculation formula is MCC =

TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

; The F1 score is
the harmonic average of Precision and Recall and is used
to weigh between the two. It provides a single metric to
evaluate the overall performance of the model and its cal-
culation formula is F1 Score = 2×TP

2×TP+FP+FN .
Based on the evaluation results of the five algorithms,

it can be concluded that the XGBoost model shows bet-
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Table 1. Comparison of baseline characteristics between the two data sets.
Negative group Positive group Standardize difference p-value

Sample size 1097 2056
Age 64.73 ± 9.28 62.59 ± 8.67 0.24 (0.16, 0.31) <0.001*
BMI 25.40 ± 3.30 25.71 ± 3.13 0.10 (0.02, 0.17) 0.007*
Random blood glucose test results 7.05 ± 2.84 6.49 ± 2.58 0.21 (0.13, 0.28) <0.001*
Neutrophil count findings 4.25 ± 1.56 4.28 ± 1.53 0.02 (–0.06, 0.09) 0.368*
Total thyroid hormone results 123.29 ± 21.50 122.32 ± 22.04 0.04 (–0.03, 0.12) 0.162*
Free thyroxine (FT4) test results 11.76 ± 1.95 11.45 ± 2.00 0.16 (0.09, 0.23) <0.001*
Fasting blood glucose test results 7.05 ± 2.84 6.49 ± 2.58 0.21 (0.13, 0.28) <0.001*
Blood creatinine test results 90.70 ± 59.97 80.60 ± 40.24 0.20 (0.12, 0.27) <0.001*
Lactic acid test value 1.73 ± 0.52 1.72 ± 0.62 0.02 (–0.05, 0.10) 0.006*
Activated partial thromboplastin time test result 31.75 ± 4.18 31.59 ± 4.69 0.04 (–0.04, 0.11) 0.369*
Results of coefficient of variation of erythrocyte distribution width 13.23 ± 1.05 13.02 ± 0.90 0.21 (0.13, 0.28) <0.001*
Glycated hemoglobin test results 7.19 ± 1.01 7.03 ± 0.88 0.17 (0.09, 0.24) <0.001*
Platelet count findings 214.39 ± 65.36 217.70 ± 56.00 0.05 (–0.02, 0.13) 0.009*
HDL cholesterol test results 1.04 ± 0.27 1.00 ± 0.24 0.16 (0.08, 0.23) <0.001*
White blood cell count results 6.58 ± 1.82 6.63 ± 1.74 0.03 (–0.04, 0.10) 0.187*
Hemoglobin test results 136.10 ± 17.94 139.04 ± 15.39 0.18 (0.10, 0.25) <0.001*
Triglyceride test results 1.62 ± 0.96 1.64 ± 0.98 0.02 (–0.05, 0.10) 0.120*
High Sensitivity Troponin I (HS-TnI) test results 105.75 ± 669.86 140.01 ± 998.08 0.04 (–0.03, 0.11) <0.001*
Creatine kinase isoenzyme test results 2.07 ± 2.51 2.10 ± 3.11 0.01 (–0.06, 0.08) 0.092*
PT-International Normalized Ratio (INR) test results 1.02 ± 0.19 1.00 ± 0.16 0.11 (0.04, 0.19) 0.753*
Monocyte count findings 0.42 ± 0.14 0.42 ± 0.12 0.02 (–0.06, 0.09) 0.698*
Total cholesterol results 4.06 ± 1.08 3.96 ± 1.05 0.09 (0.02, 0.16) 0.032*
Mean platelet volume findings 9.98 ± 1.04 9.97 ± 0.97 0.01 (–0.06, 0.08) 0.695*
Homocysteine test results 16.80 ± 8.68 16.56 ± 8.34 0.03 (–0.05, 0.10) 0.302*
Apolipoprotein A test results 58.77 ± 56.87 60.85 ± 58.37 0.04 (–0.04, 0.11) 0.305*
Ultrasensitive C-reactive protein test results 3.35 ± 4.70 2.96 ± 4.28 0.09 (0.01, 0.16) 0.060*
Glomerular filtration rate 80.54 ± 21.98 86.26 ± 16.64 0.29 (0.22, 0.37) <0.001*
Thyroid stimulating hormone test results 2.72 ± 5.61 2.97 ± 5.85 0.04 (–0.03, 0.12) 0.898*
Thyroid function TT3 test 1.41 ± 0.28 1.44 ± 0.28 0.09 (0.02, 0.16) 0.040*
Prothrombin time test result 11.52 ± 2.21 11.29 ± 1.82 0.11 (0.04, 0.18) 0.507*
Erythrocyte hematocrit test results 39.73 ± 4.94 40.47 ± 4.23 0.16 (0.09, 0.23) 0.002*
Macroplatelet ratio findings 25.79 ± 7.16 25.69 ± 6.78 0.01 (–0.06, 0.09) 0.831*
Free fatty acids (FFA) test results 0.53 ± 0.23 0.52 ± 0.25 0.03 (–0.04, 0.10) 0.103*
Free Triiodothyronine (FT3) test results 4.61 ± 0.58 4.67 ± 0.65 0.09 (0.02, 0.17) 0.148*
Aspartate aminotransferase assay value 23.40 ± 84.22 21.41 ± 16.18 0.03 (–0.04, 0.11) <0.001*
Platelet distribution width test results 16.12 ± 0.33 16.11 ± 0.31 0.02 (–0.05, 0.10) 0.400*
D-dimer test results 308.83 ± 1582.41 184.85 ± 401.38 0.11 (0.03, 0.18) <0.001*
Lymphocyte count test results 1.72 ± 0.60 1.75 ± 0.60 0.05 (–0.02, 0.12) 0.050*
Alanine aminotransferase assay value 22.09 ± 41.62 26.12 ± 25.03 0.12 (0.04, 0.19) <0.001*
LDL cholesterol test results 2.26 ± 0.87 2.19 ± 0.85 0.08 (0.00, 0.15) 0.070*
Left ventricular ejection fraction 58.22 ± 10.95 58.99 ± 8.71 0.08 (0.00, 0.15) 0.153*
Interventricular septal thickness (IVS) 10.50 ± 2.07 10.42 ± 1.82 0.04 (–0.03, 0.11) 0.549*
Maximum left ventricular diastolic A-wave flow velocity 91.45 ± 24.73 89.95 ± 20.69 0.07 (–0.01, 0.14) 0.273*
Left ventricular end-diastolic internal diameter 49.20 ± 7.16 48.45 ± 5.93 0.11 (0.04, 0.19) 0.097*
Internal diameter of pulmonary artery trunk 23.60 ± 3.10 23.16 ± 2.54 0.16 (0.08, 0.23) 0.002*
Aortic sinus internal diameter 34.14 ± 4.33 33.83 ± 3.81 0.08 (0.00, 0.15) 0.283*
Posterior left ventricular wall thickness 9.32 ± 1.88 9.22 ± 1.46 0.06 (–0.01, 0.13) 0.375*
Left ventricular shortening fraction findings 31.60 ± 6.09 31.84 ± 5.18 0.04 (–0.03, 0.12) 0.474*
Maximum pulmonary artery flow velocity 91.17 ± 18.73 90.25 ± 15.36 0.05 (–0.02, 0.13) 0.871*
LV diastolic E-wave flow velocity max 80.79 ± 35.42 72.21 ± 24.92 0.28 (0.21, 0.35) <0.001*
Left ventricular end-systolic internal diameter 33.36 ± 8.00 32.36 ± 6.15 0.14 (0.07, 0.21) 0.645*
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Table 1. Continued.
Negative group Positive group Standardize diff. p-value

Right ventricular anteroposterior diameter 21.74 ± 3.04 21.44 ± 2.80 0.10 (0.03, 0.18) 0.017*
Right ventricular outflow tract inner diameter 27.86 ± 3.23 27.68 ± 3.12 0.06 (–0.02, 0.13) 0.175*
Amplitude of septal motion 7.18 ± 1.66 7.32 ± 1.60 0.08 (0.01, 0.16) 0.068*
Amplitude of posterior wall motion of the left ventricle 8.54 ± 2.10 8.51 ± 1.93 0.02 (–0.06, 0.09) 0.102*
Maximum aortic flow velocity 150.50 ± 78.99 137.78 ± 55.60 0.19 (0.11, 0.26) 0.009*
Ascending aortic internal diameter findings 35.61 ± 4.42 35.34 ± 3.91 0.07 (–0.01, 0.14) 0.366*
Maximum hospitalized blood creatinine 101.03 ± 79.46 96.49 ± 61.70 0.06 (–0.01, 0.14) 0.050*
Hospitalized activated partial thromboplastin time test result 33.28 ± 18.67 34.96 ± 22.21 0.08 (0.01, 0.16) 0.503*
Gender 0.02 (–0.05, 0.10) 0.514*

Male 803 (73.20%) 1527 (74.27%)
Female 294 (26.80%) 529 (25.73%)

Whether the fecal occult blood is positive or weakly positive 0.07 (0.00, 0.15) 0.043
No 931 (84.87%) 1798 (87.45%)
Yes 166 (15.13%) 258 (12.55%)

Whether heart failure has occurred 0.22 (0.14, 0.29) <0.001
No 794 (72.38%) 1675 (81.47%)
Yes 303 (27.62%) 381 (18.53%)

Whether atrial fibrillation occurred 0.23 (0.16, 0.31) <0.001
No 987 (89.97%) 1972 (95.91%)
Yes 110 (10.03%) 84 (4.09%)

Whether cardiogenic shock has occurred 0.14 (0.07, 0.21) <0.001
No 1060 (96.63%) 2030 (98.74%)
Yes 37 (3.37%) 26 (1.26%)

Results in table: Continuous variables are described by Mean ± SD, and categorical variables are described by N (%). The p-values
have been consolidated into one column, with continuous variables marked with an asterisk (*) next to the p-value, and categorical
variables displaying the values directly. BMI, body mass index; HDL, high-density lipoprotein; PT, prothrombin time; TT3, Total
Triiodothyronine3; LDL, Low-Density Lipoprotein; LV, left ventricle.

ter performance in all the evaluation metrics, demonstrating
the best prediction. A confusion matrix (CM) is a specific
table layout used in machine learning and statistics to de-
scribe the performance of supervised learning algorithms. It
provides a visual representation of the comparison between
the predicted and actual results of a classification model
on a test dataset. The CM for the five models is shown in
Fig. 2G–K. A comparison of the performances of the differ-
ent models is presented in Fig. 2F and Table 2. To further
assess model calibration, we used the HL test. The results,
including the associated p-values, are shown in Table 3. RF
and KNN were the poorly fitted models, whereas LR, XG-
Boost, and SVM were the well-fitted ones.

3.3 Clinical Interpretability Underlying XGBoost

To visualize feature selection and treatment options
and further elaborate the correlation between features, we
used the XGBoost algorithm as a template to draw a scatter
plot of the relationship between continuous variables and
ending variables in the features (Fig. 3). At the same time,
we constructed pairwise plots and Spearman correlation
heatmaps using the original dataset. Pairwise plots use a
color-coding system to differentiate the choice of treatment
regimen, thus facilitating the observation of correlations

and distributions among features (Fig. 4A). Heatmaps indi-
cate correlations between features, with the color intensity
indicating the Spearman correlation coefficient (Fig. 4B).
These visualizations provide insights into the relationships
between features and reveal differences in the distribution
of treatment regimen choices. At the same time, we plot-
ted the Pearson correlation coefficient, which measures the
linear relationship between continuous variables in the fea-
tures (Fig. 4C).

To gain a deeper understanding of the predictive
power of the XGBoost model, this study used SHAP val-
ues, which elucidate the contribution of each feature to the
prediction, thus enabling the identification of the key fea-
tures that influence the model’s decision. To visualize the
influence of the importance of each feature on the individual
predictions, we used TreeExplainer from the SHAP library
to calculate the SHAP values and generated SHAP sum-
mary plots and feature importance plots (Fig. 5A). From the
plots, it can be seen that the feature with the greatest impact
on the predictions in the XGBoost model is the glycated
hemoglobin level, followed by the free thyroxine level re-
sult and the pulmonary artery trunk internal diameter. The
SHAP correlation summary plots, conversely, demonstrate
the impact of the XGBoost predictions on the population.

9

https://www.imrpress.com


Fig. 2. Evaluation metrics for five machine learning algorithms. (A) Calibration curve of the KNN. (B) Calibration curve of the
LRs. (C) Calibration curve of the XGBoost. (D) Calibration curve of the RF. (E) Calibration curve of the SVM. (F) Performance of
five machine learning algorithms. (G) Confusion matrix for KNN. (H) Confusion matrix for LR. (I) Confusion matrix for XGBoost.
(J) Confusion matrix for RF. (K) Confusion matrix for SVM. (L) Comparison of subject work characteristics (ROC) curves for the five
machine learning models. ROC, receiver operating characteristic curve.

The SHAP correlation summary plot shows the contribu-
tion of each feature in the XGBoost prediction model at the
population level. Each point in the plot represents a sam-
ple, and the color of the point reflects the magnitude of the
corresponding feature value of the sample, with red indicat-
ing that the value of the feature is relatively high and blue

indicating that the value of the feature is low. Points to the
right of the baseline (i.e., the dotted line) in the figure are
meant to have a positive impact on the model predictions,
while the opposite is true for those on the left side, with
the impact increasing with the distance from the baseline
(Fig. 5B).
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Fig. 3. Scatterplot of the relationship between continuous and ending variables in the features. (A) Hospitalized activated partial
thromboplastin time test results vs surgery or not. (B) Internal diameter of pulmonary artery trunk vs surgery or not. (C) Glomerular
filtration rate vs surgery or not. (D) Alanine aminotransferase assay value vs surgery or not. (E) Free thyroxine (FT4) test results vs
surgery or not. (F) Maximum aortic flow velocity vs surgery or not. (G) Age vs surgery or not. (H) Random blood glucose test results vs
surgery or not. (I) Hemoglobin test results vs surgery or not. (J) Glycated hemoglobin test results vs surgery or not. (K) HDL cholesterol
test results vs surgery or not. (L) LV diastolic E-wave flow velocity max vs surgery or not. (M) Results of coefficient of variation of
erythrocyte distribution width vs surgery or not.
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Table 2. Performance comparison of five machine learning algorithms.
Method AI architecture Data scale Features Accuracy Precision Recall F1 score AUC MCC

XGBoost Ensemble Learning
(Gradient Boosting
Decision Tree)

Medium Gender, Age,
Other Clinical
Data

0.801 0.822 0.779 0.800 0.893 0.603

RF Ensemble Learning
(Random Forest,
based on voting
mechanism of multi-
ple decision trees)

Medium Age, BMI, Other
Clinical Data

0.789 0.814 0.760 0.786 0.866 0.580

SVM Boundary Maxi-
mization (Maximal
Margin Classifier
using hyperplane
separation)

Medium Gender, BMI,
Other Clinical
Data

0.700 0.717 0.681 0.698 0.753 0.402

KNN Instance-based
Learning (Classi-
fication based on
Euclidean distance)

Medium Gender, Other
Clinical Data

0.673 0.723 0.583 0.646 0.740 0.356

LR Linear Model (Lo-
gistic Regression
based on Sigmoid
function for proba-
bility prediction)

Small Gender, Age,
BMI, Other
Clinical Data

0.649 0.657 0.652 0.655 0.696 0.298

AUC, area under curve; MCC, matthews correlation coefficient; XGBoost, eXtreme Gradient Boost; RF, Random Forest; SVM, Support
Vector Machine; KNN, K-nearest neighbor; LR, Logistic Regression.

Table 3. HL test values for five machine learning algorithms.
Hosmer-Lemeshow Test Statistic Hosmer-Lemeshow Test p-value

Random Forest 38.739836 5.49 × 10–6

Logistic Regression 4.048735 0.85
XGBoost 14.560336 0.068
SVM 5.828116 0.67
KNN 65.103693 4.60 × 10–11

The SHAP analysis provides a comprehensive under-
standing of the decision-making process of the XGBoost
model and identifies relevant predictors. These findings
are essential for further optimizing the model and inter-
preting its predictions. Meanwhile, the relevant features
mined highlight their potential clinical applications, which
can provide a more comprehensive assessment and a scien-
tific basis for personalized medicine.

4. Discussion
In this study, we retrospectively included patients with

both CHD and DM who attended the Beijing Anzhen Hos-
pital of the Capital Medical University in 2022–2023 based
on five machine-learning algorithms for prediction mod-
eling. We found that compared with other algorithms,
the XGBoost algorithm model had better predictive abil-
ity and better comprehensive performance, suggesting that
machine-learning algorithms and data mining and analysis
have unique advantages, which are more easily reflected in

large-sample data. This algorithm is characterized by its ro-
bustness and proficiency in dealing with high-latitude fea-
tures and its excellent ability to capture complex nonlin-
ear relationships. Meanwhile, we identified 65 predictors
among more than 100 features, including biological data,
laboratory results, and imaging data, in which 15 features
should be given sufficient attention in clinical work and pro-
vide new ideas for the treatment plan of the disease.

Age and gender became two of the 15 key factors in
the predictive model for treatment options of coronary heart
disease in diabetic patients, mainly due to their significant
roles in physiological mechanisms, pathological changes,
and treatment responses. Age influences the model through
physiological changes such as increased vascular stiffness,
impaired endothelial function, and exacerbated atheroscle-
rosis with aging. These changes make elderly diabetic pa-
tients more susceptible to cardiovascular complications, re-
quiring more cautious treatment decisions. For example,
elderly patients are more likely to undergo interventional
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Fig. 4. Correlation and distribution between features. (A) Comparison of baseline characteristics between the two data sets. (B)
Spearman correlation analysis between features. (C) Pearson correlation coefficient between continuous variables in characteristics.
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Fig. 5. SHAP value. (A) Feature importance plot in XGBoost model. (B) SHAP summary plot in XGBoost model. SHAP, SHapley
Additive exPlanation.

treatments (such as coronary stent implantation) rather than
relying solely on medication because their blood vessels are
less elastic, and the effects of medication may not be as
effective as in younger patients. Additionally, elderly pa-
tients often have other chronic conditions, such as hyperten-
sion and kidney disease, which further influence treatment
choices. Gender plays a crucial role due to the differences
in the pathophysiology and treatment response between
males and females. Men tend to exhibit more atheroscle-
rosis and coronary artery disease at a younger age, while
women experience a sharp increase in cardiovascular risk

after menopause due to the loss of estrogen’s protective ef-
fects, particularly in diabetic women. Gender also affects
drug metabolism and treatment adherence. Women may
have different responses to certain medications (such as an-
tihypertensive and lipid-lowering drugs) compared to men,
and their treatment adherence may be lower. In summary,
age and gender directly influence treatment decisions by af-
fecting the patient’s physiological condition, disease pro-
gression, and drug response, which explains why these fac-
tors are key predictors in our machine learning model.
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It is important to accurately predict the optimal treat-
ment regimen for different individuals, as CHD and DM
are two comorbid conditions with interdependent disease
progressions [58,59]. In recent years, many risk assess-
ment and disease prognosis prediction models have been
developed but not specifically for the prediction of treat-
ment regimens in patients with both DM and CHD. A study
using machine learning to predict atrial fibrillation in el-
derly patients with coronary heart disease and type 2 dia-
betes showed that the best model XGBoost had a sensitiv-
ity of 0.833, a specificity of 0.562, an accuracy of 0.587,
and an AUC of 0.743, compared to existing superior mod-
els [60]. Another study of CHD diagnosis model for el-
derly diabetic patients based on machine learning algorithm
showed that the optimal random forest model had an AUC
of 0.845, an accuracy of 0.789, an accuracy of 0.778, an
F1 score of 0.735, a sensitivity of 0.688, and a specificity
of 0.851 [61]. Compared to these findings, our model out-
performs on several key metrics: accuracy of 0.801, accu-
racy of 0.822, recall rate of 0.779, F1 score of 0.8, AUC
of 0.893, and MCC of 0.603. These results show that our
model not only makes a breakthrough in prediction accu-
racy, but also outperforms existing prediction models in
overall performance, especially in terms of AUC and F1
scores, which further validates the effectiveness and poten-
tial clinical application value of our method. It is worth
noting that in such machine-learning prediction models for
predicting the risk of diabetic patients with comorbid CHD,
there are the same features as in the present study, and such
features show a consistent tendency andmatch. Sometimes,
identical features have different weights in different models
[62–64] suggesting that there is heterogeneity among fea-
tures in disease assessment models constructed for different
populations and even the same population. We also need
to note that there are still barriers to the development of
artificial intelligence (AI) and its integration into clinical
practice [65–67], such as the need to maximize accuracy
while avoiding overfitting and determine what clinical and
general data should be included, taking into account conve-
nience and the patient’s financial burden. Also, in the use
of machine-learning algorithms, researchers often choose
algorithms based on their own preferences and knowledge
limitations, resulting in algorithms that may not be the best
ones, having suboptimal prediction accuracy [68,69]. In
this regard, we utilize a standardized approach that employs
retrospective studies to ensure the credibility of the basic
factual results. Using multiple machine-learning models
can reduce the underlying uncertainty and ultimately iden-
tify the best prediction model based on the evaluation in-
dexes, such as the area under the AUC curve of each al-
gorithm, accuracy, and precision, to reduce the bias of the
results caused by human error.

Although this study provides valuable insights, sev-
eral limitations should be acknowledged. Since this is a
retrospective study, some relevant information may have

been omitted during the data inclusion process. Individual
cases with missing data were excluded, which resulted in
a reduction of the sample size. Additionally, features with
higher rates of missing values were removed, which may
have led to the exclusion of potentially stronger predictive
factors.

Furthermore, the model was validated solely on data
from coronary heart disease patients at the Beijing Anzhen
Hospital, affiliated with the Capital Medical University.
It is important to note that when the model is trained on
datasets with different data patterns (such as those from dif-
ferent hospitals, regions, or ethnic backgrounds), it may
face challenges in generalizing to external populations.
This can lead to incorrect predictions or an overfitting to
the specificity of the training data, thereby limiting its abil-
ity to generalize to heterogeneous data not represented in
the training set. To address these issues, we plan to develop
related software programs or websites to support multicen-
ter networking and improve the model’s accuracy and broad
applicability.

In the future, in addition to conducting multi-center
external validation, prospective validation of the model’s
accuracy and universality with data from diverse and
broader patient populations will be necessary. Addition-
ally, an automatic data extraction system could be estab-
lished within the database to significantly improve the effi-
ciency of sample collection, further enhancing the robust-
ness and scalability of the model.

In the future deployment of clinical AI models, first,
the model should be integrated with existing electronic
health record (EHR) systems, allowing doctors to quickly
obtain real-time risk assessments and treatment recommen-
dations based on patient data during daily care. By seam-
lessly connecting with clinical workflows, doctors can di-
rectly refer to the output of AI models at every stage of
diagnosis and treatment, thus making more accurate deci-
sions. Second, AImodels can set thresholds and alert mech-
anisms to help doctors identify high-risk patients, especially
in emergency or intensive care Settings, and automatically
alert doctors to intervene in a timely manner. Finally, to
ensure the continued effectiveness of AI models, they need
to be regularly updated and optimized to respond to chang-
ing patient population characteristics and disease progres-
sion in clinical practice, ensuring the accuracy and clini-
cal adaptability of the models. Through these measures,
the proposed AI model will not only enhance personalized
treatment, but also improve clinical work efficiency and ul-
timately optimize patient outcomes.

As the dataset continues to expand, we will further
explore the application of this model in clinical settings
and validate its effectiveness in real-world clinical decision-
making, aiming to provide more precise and personalized
treatment options for coronary heart disease patients.
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5. Conclusion
We retrospectively included patients with concomitant

DM and CHD who attended the Beijing Anzhen Hospital
of the Capital Medical University in 2022–2023 based on
a machine-learning algorithm and established a prediction
model for the establishment of a treatment plan for these
patients. We identified the XGBoost algorithm as the best
one by incorporating the patients’ general information, lab-
oratory test results, and echocardiographic findings, and
screened for the optimal feature set. The optimal feature
set, which contained 15 features, was selected to assist us
in choosing the treatment plan. It provides help and ideas
for the development of the optimal treatment plan for pa-
tients with concomitant DM and CHD.
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