

Review

Left Ventricular Noncompaction Cardiomyopathy in Children: A Focus on Genetic and Molecular Mechanisms

Monica B. Lehman^{1,2}, Buyan-Ochir Orgil^{1,2}, Karine Guerrier^{1,2}, Keiichi Hirono³, Enkhzul Batsaikhan⁴, Kazuyoshi Saito⁵, John W. Collyer⁶, Jeffrey A. Towbin^{1,2,7}, Enkhsaikhan Purevjav^{1,2,*}

Academic Editor: Attila Nemes

Submitted: 15 March 2025 Revised: 21 May 2025 Accepted: 6 June 2025 Published: 29 August 2025

Abstract

Left ventricular noncompaction (LVNC), also called noncompaction cardiomyopathy (NCM), is a myocardial disease that affects children and adults. Morphological features of LVNC include a noncompacted spongiform myocardium due to the presence of excessive trabeculations and deep recesses between prominent trabeculae. Incidence and prevalence rates of this disease remain contentious due to varying clinical phenotypes, ranging from an asymptomatic phenotype to fulminant heart failure, cardiac dysrhythmias, and sudden death. There is a strong genetic component associated with LVNC, and nearly half of pediatric LVNC patients harbor an identifiable genetic mutation. Recent studies have identified LVNC-associated mutations in genes involved in intercellular trafficking and cytoskeletal integrity, in addition to well-known mutations causing abnormal cardiac embryogenesis. Currently, the diagnosis is based on symptoms, as well as various diagnostic criteria, including echocardiography, electrocardiograms, and cardiac magnetic resonance imaging. Meanwhile, clinical management is primarily focused on the prevention of complications, such as heart failure, thromboembolic events, life-threatening arrhythmias, and stroke. Continued research is focusing on the genetic etiology, the development of gold-standard diagnostic criteria, and evidence-based treatment guidelines across all age groups. This review article will highlight the genotype—phenotype relationship within pediatric LVNC patients and assess the latest discoveries in genetic and molecular research aimed at improving their diagnostic and therapeutic management.

Keywords: noncompaction; cardiomyopathy; heart failure; gene mutation; fetal heart development

1. Introduction

A cardiomyopathy is a disease of the myocardium that causes systolic dysfunction, diastolic dysfunction, or an increased propensity for arrhythmias. Left ventricular noncompaction (LVNC), also called noncompaction cardiomyopathy (NCM), results from abnormal myocardial maturation and compaction and is a classified form of cardiomyopathy in the United States [1]. Per the American Heart Association's 2019 statement on cardiomyopathy in children, LVNC meets the classification as a congenital cardiomyopathy in pediatric patients and presents in isolation, including those with normal systolic function (isolated form), or alongside characteristics seen in other cardiomyopathies (non-isolated form) [2]. Non-isolated forms of LVNC can be subdivided into a dilated cardiomyopathy (DCM) phenotype, a hypertrophic cardiomyopathy (HCM) phenotype, an arrhythmogenic cardiomyopathy (ACM) phenotype, or a restrictive cardiomyopathy (RCM) phenotype. In addition,

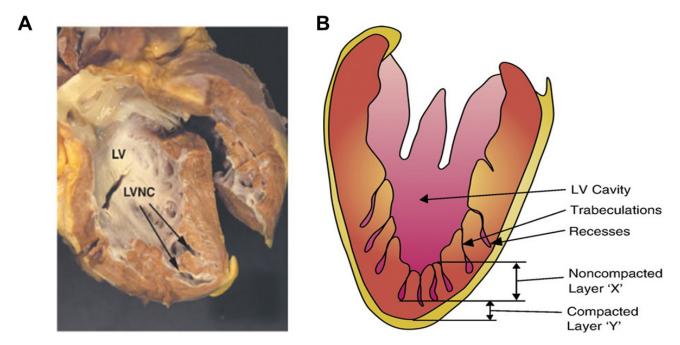
some patients may have a right ventricle (RV) only phenotype, a biventricular phenotype, an undulating cardiomyopathy phenotype (meaning the phenotype starts as one phenotype—such as DCM with hyper-trabeculation—and then changes to an HCM with hyper-trabeculation and back to the DCM with hyper-trabeculation phenotype) [3,4]. The congenital heart disease (CHD) phenotype is a co-morbidity in patients with LVNC and CHD [5,6]. In contrast, the European Society of Cardiology identifies LVNC as an "unclassified" cardiomyopathy or morphological trait shared by phenotypically distinct cardiomyopathies [7]. Although there is a divergence in characterizing LVNC as a normal variation of fetal heart development, a distinct genetic cardiomyopathy, or an acquired morphological trait associated with other types of cardiomyopathies, structural features of this entity are broadly recognized among experts [3,8,9].

Morphologically, LVNC has two distinct layers within the LV myocardium: the spongy, noncompacted meshwork

¹The Heart Institute, Department of Pediatrics, University of Tennessee Health and Science Center, Memphis, TN 38103, USA

²Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, USA

³Department of Pediatrics, Graduate School of Medicine, University of Toyama, 930-8555 Toyama, Japan


⁴Department of Pharmacology, Toxicology and Addiction Sciences, University of Tennessee Health and Science Center, Memphis, TN 38103, USA

⁵Department of Pediatrics, School of Medicine, Fujita Health University, 470-1192 Aichi, Japan

⁶Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA

⁷Cardiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA

^{*}Correspondence: epurevja@uthsc.edu (Enkhsaikhan Purevjav)

Fig. 1. Morphopathological appearance of left ventricular noncompaction (LVNC). (A) An autopsy image of the heart seen as a spongy myocardium. Arrows indicate trabeculations towards the apex and left ventricle (LV) lateral walls. (B) Schema of noncompacted and compacted layers of the LV walls with deep trabeculations and intertrabecular recesses. Adapted with permission from Towbin and Bowles [11]. The failing heart. *Nature* 415, 227–233 (2002). https://doi.org/10.1038/415227a.

and the thin compacted layer mainly seen at the apical region of the heart [10,11]. The "spongy" myocardial meshwork includes extensive trabeculae and deep recesses between trabeculae carneae that provide a potential source for severe cardiac complications, such as thrombosis, arrhythmias, cardiac arrest, and heart failure (Fig. 1, Ref. [11]). Additionally, the RV may be affected in isolation or in combination with the LV, leading to isolated LV, RV, or biventricular heart failure [5,12–14].

Genetically, LVNC is heterogeneous, and 45% of the affected pediatric population have identified genetic mutations [14,15]. Among adults, LVNC is a rare diagnosis and 30% of the affected adult population have an identified genetic mutation or chromosomal abnormality [9,12,13,16,17]. Despite a strong association with genetic abnormalities, a direct genotype-phenotype relationship has yet to be established in many LVNC cases [4]. This is partially due to diverse clinical and pathological phenotypes of LVNC in patients of all ages, including acquired noncompaction cases of various etiologies and speculative modifier factors. Another challenge in identifying the genotypephenotype relationship is the diversity of identified genetic mutations in causal and modifier genes [14,18,19]. Recent studies have utilized whole exome sequencing among affected family members to further investigate the complex genotype-phenotype relationships of ventricular noncompaction [19-22].

This review article will broadly outline recent improvements in the diagnosis and management of this disease

in pediatric patients with an emphasis on underlying genetic and molecular factors in the development of LVNC.

2. Epidemiology

The first cases of isolated LVNC without cardiac malformations were described in the 1990s [23,24] and because of advances in echocardiography and cardiac magnetic resonance (CMR) imaging, the ability to diagnose LVNC has improved, enabling better diagnostic accuracy and leading to an increasing rate of patients currently identified with LVNC. Despite thirty years of progress, the true estimation of the incidence and prevalence of LVNC remains challenging due to the heterogeneous nature of the disease, varying diagnostic criteria, and a tendency for hypertrabeculation and noncompaction of the myocardium in high-risk populations, such as patients with CHD, heart failure or other cardiac and non-cardiac morbidities, and stresses [25-29]. Adults without heart failure have shown to develop hypertrabeculation as an adaptive response to physiological stress. This phenomenon has been demonstrated in adult athletes, pregnant women, and patients with sickle cell anemia, skeletal myopathies, and chronic renal failure [8,30]. Unlike hypertrabeculation due to physiological stress, LVNC caused by genetic mutation will not fully resolve once the physiological stress is removed [14].

Approximately 5% of pediatric cardiomyopathy patients have been diagnosed with LVNC compared with 3% to 4% of adult patients who have heart failure with associated LVNC [18,31,32]. A recent pediatric study showed

Table 1. Genes associated with left ventricular noncompaction (LVNC) or noncompaction cardiomyopathy (NCM).

Chromosome	LVNC or NCM Genes [References]	Additional Cardiomyopathy Phenotypes [References]
Chr11p15	MLP; SOX6 [34]	DCM [39], HCM [40,41]
Chr8p23	GATA4 [35]	CHD [42]
Chr15q14	ACTC1 [43,44]	DCM [45], HCM [46], CHD [47]
Chr1q43	ACTN2 [20]	DCM [39], HCM [48]
Chr18q11	MIB1 [49]	
Chr11q11	MYBPC3 [50]	DCM [51], HCM [52]
Chr14q11	<i>MYH7</i> [53]	HCM [54], CHD [55]
Chr15q22	<i>TPM1</i> [56]	DCM [57], HCM [58], CHD [56,59]
Chr18q12	DTNA [18]	
Chr2q35	DES [60]	DCM [61]
Chr2p13	BMP10 [36]	
ChrXq24	LAMP2 [62,63]	DCM [64], HCM [63]
Chr10q23	LDB3 [65,66]	DCM [67], HCM [48]
ChrXq28	TAZ [18]	DCM [68]
Chr2q31	TTN [38]	ACM [69], DCM [70], HCM [71]
Chr3p22	SCN5A [37]	DCM [72], HCM [73]
Chr10q22	VCL [74]	HCM [74,75], DCM [76]

ACM, arrhythmogenic cardiomyopathy; CHD, congenital heart disease; DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; NCM, noncompaction cardiomyopathy; MLP, glycine-rich protein; SOX6, SRY-Box Transcription Factor 6; GATA4, GATA binding protein 4; ACTC1, cardiac α -actin; MIB1, MIB E3 ubiquitin protein ligase 1; MYBPC3, myosin binding protein C; MYH7, β -myosin heavy chain; TPM1, α -tropomyosin; DTNA, alpha-dystrobrevin; DES, desmin; BMP10, bone morphogenetic protein 10; LAMP2, Lysosome-associated membrane glycoprotein 2; LDB3, lim domain binding 3; TAZ, tafazzin; TTN, titin; SCN5A, sodium channel protein type 5 subunit alpha; VCL, vinculin.

nearly 9% of all cardiomyopathy cases are now diagnosed with LVNC, recognizing it as the third most common form of inherited cardiomyopathies in children [2]. Per the Pediatric Cardiomyopathy Registry (PCMR), LVNC has a familial inheritance pattern of up to 40% with estimated occurrence of ~1 per 7000 live births [1,16,32]. The reported ratio of isolated to non-isolated forms of LVNC is 6:1 [2]. Recently, a prevalence of LVNC has been estimated as of 0.076% in a population-based cohort of unremarkable neonates by echocardiography [12], while the estimated prevalence in middle and high school students was 17.5% based on CMR screening [33]. Both studies demonstrated that LVNC was associated with lower parameters in systolic function and with an increased risk of LV dysfunction, even if clinically asymptomatic.

3. Genetic Etiologies and Genotype-Phenotype Associations

Genetic etiologies of isolated primary LVNC are heterogeneous, although the genetic basis is still unresolved in most LVNC patients. While gene defects are identified in only 30% of adult patients with LVNC [15], a familial trait is evident in approximately 40% of infants with LVNC being the dominant cases with incomplete penetrance of autosomal dominant, autosomal recessive, or X-linked inheritance patterns [3]. In some cases, mitochondrial inheritance is noted. A genome-wide linkage analysis in families

with autosomal dominant LVNC identified the associated genetic *loci* on chromosome (Chr) 11p15 and 8p23.1. The Chr.11 locus includes cardiomyopathy-associated genes, such as glycine-rich protein (CSRP3/MLP) and SRY-Box Transcription Factor 6 (SOX6) [34], while an interstitial deletion of the Chr.8p23.1 contains GATA binding protein 4 (GATA4), a zinc-finger transcription factor involved in the cardiac embryogenesis [35]. Other specific gene mutations occur in a relatively small number of genes (Table 1, Ref. [18,20,34–76])—including cardiac α -actin (ACTCI), bone morphogenetic protein 10 (BMP10), myosin binding protein C (MYBPC3), β -myosin heavy chain (MYH7), MIB E3 ubiquitin protein ligase 1 (MIB1), alpha-dystrobrevin (DTNA), α -tropomyosin (TPMI), lim domain binding 3 (LDB3), PR domain containing 16 (PRDM16), and cardiac troponin T (TNNT2)—have been linked with noncompaction phenotypes in humans and mouse models to date [10,14,36,77]. LVNC patients with heart failure have demonstrated a high rate of pathologic variants in TTN (titin) and SCN5A (sodium channel protein type 5 subunit alpha), supporting the notion that these genes are implicated in the development of LVNC as disease-causing or disease-modifying genes [37,38]. Evidence shows an increased burden of variants in ion channel genes, such as SCN5A, ANK2, CACNA1C, ABCC9, HCN4, KCNH2, KCNE3, KCNQ1, RYR1, and RYR2 in pediatric LVNC patients as reported by Hirono et al. [78]. Multiple stud-

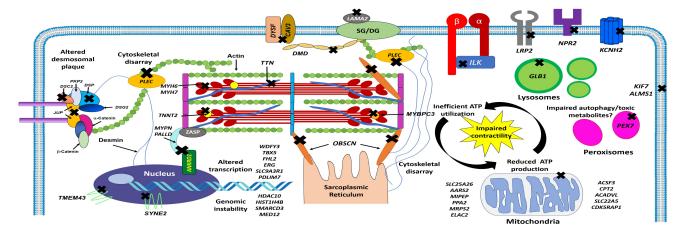


Fig. 2. Schematic representation of cardiomyocyte structure and location of genes implicated with LVNC phenotypes and molecular pathways involved. Cross symbols indicate mutated genes that encode cytoskeletal, ion channel, nuclear, sarcomere, and sarcoplasmic proteins associated with LVNC. ATP, adenosine triphosphate; *DSC2*, desmocollin 2; *DSP*, desmoplakin; *DSG2*, desmoglein 2; *JUP*, junctional plakoglobin; *PKP2*, plakophilin 2; *TMEM43*, transmembrane protein 43; *SYNE2*, nesprin 2; *ANKRD1*, ankyrin repeat domain 1; *MYPN*, myopalladin; *PALLD*, palladin; *TNNT2*, cardiac troponin T; *DMD*, dystrophin; *DYSF*, dysferlin; *CAV3*, caveolin 3; *LAMA2*, laminin subunit alpha 2; *SG/DG*, sarcoglycans/dystroglycans; *PLEC*, plectin; *ILK*, integrin-linked kinase; *LRP2*, LDL receptor related protein 2; *NRP2*, neuropilin 2; *KCNH2*, voltage-activated potassium channel; *GLB1*, galactosidase, beta 1; *KIF7*, kinesin 7; *ALMS1*, Alstrom syndrome protein 1; *PEX7*, peroxisomal biogenesis factor 7; *OBSCN*, obscurin; *WDFY3*, WD repeat and FYVE domain-containing protein 3; *TBX5*, T-box protein 5; *FHL2*, four-and-a-half LIM domain protein 2; *ERG*, ETS-related gene; *SLC9A3R1*, sodium-hydrogen antiporter 3 regulator 1; *PDLIM7*, PDZ and LIM domain protein 7; *HDAC10*, histone deacetylase 10; *HIST1H4B*, histone H4; *SMARCD3*, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 3; *MED12*, mediator complex subunit 12; *SLC25A26*, solute carrier family 25 member 26; *AARS*, alanyl-tRNA synthetase; *MIPEP*, mitochondrial intermediate peptidase; *PPA2*, protein phosphatase 2A; *MRPS2*, mitochondrial ribosomal protein S2; *ELAC2*, ElaC ribonuclease Z2; *ACSF3*, acyl-CoA synthetase family member 3; *CPT2*, carnitine palmitoyltransferase 2; *ACADVL*, acyl-CoA dehydrogenase very long chain; *SLC22A5*, solute carrier family 22 member 5; *CDK5RAP1*, CDK5 regulatory subunit-associated protein 1.

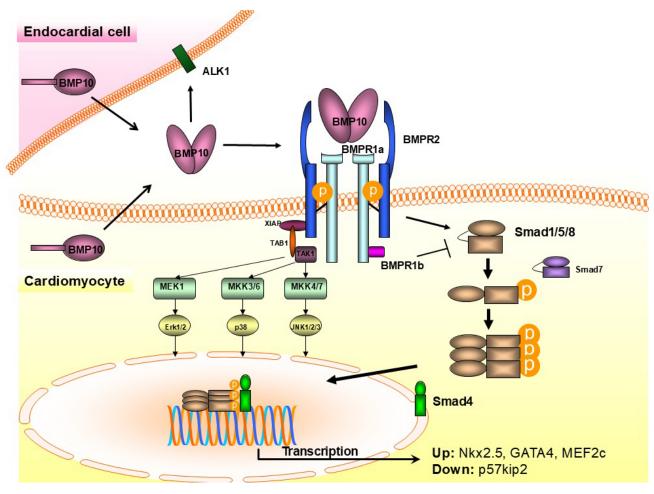
ies have demonstrated oligogenic or multigenic inheritance among families with LVNC [9,19,79]. A key study from the Netherlands demonstrated that 41% of adult and pediatric probands had an identified genetic mutation, and familial screening revealed their affected relatives were largely asymptomatic at the time of diagnosis [80]. Discovering LVNC in asymptomatic individuals illustrates the importance of genetic testing of probands and their relatives for all families with isolated and non-isolated LVNC subtypes.

As shown schematically in Fig. 2, the LVNC-associated genes identified to date are largely involved in sarcomere function, mitochondrial function, regulation of transcription and translation, protein degradation, ion channel function, and signal transduction. More recently, genes that encode proteins involved in intercellular trafficking, cellular junction, and cytoskeletal integrity of the myocardium have also been identified [15,36,78,81].

Non-isolated LVNC phenotypes with extended clinical variability in young children have been associated with mitochondrial disorders, such as Barth syndrome, which is caused by *TAZ/G4.5* (tafazzin) mutations, zaspopathycaused mutations in *ZASP*, hereditary neuromuscular disorders, chromosomal defects (such as 1p36, 1q43, and dis-

tal 5q deletions), Turner syndrome, Ohtahara syndrome, trisomy 22, trisomy 13, and DiGeorge syndrome [6,9,18,65, 82–84]. The genotype-phenotype correlation is well identified between LVNC and X-linked Barth syndrome [18,24]. LVNC has also been associated with a variety of CHDs, such as multiple, small ventricular septal defects, bicuspid aortic valve, and Ebstein's anomalies [28,29]. These coexisting CHDs may also explain the existence of common pathogenic pathways in the maldevelopment of the ventricular myocardium [16,85,86].

Acquired LVNC in adult patients has various and speculative etiologies [30]. Incidences of acquired LVNC has been demonstrated in athletes, patients with sickle cell anemia, skeletal myopathies and chronic renal failure, and in pregnant women [8]. It is speculated that acquired ventricular hypertrabeculation in athletes, predominantly in the LV apex, allows for increased compliance, which reduces wall stress and strain [87]. Hypertrabeculation in adult patients with progressive neuromuscular disorders occurs as a part of myocardial remodeling or it may be acquired to increased cardiac pre-load and pressure overload or myocardial damage [88,89]. It may also be associated with disturbances in desmosomes and activation of WNT signaling that results


in the development of ACM [83,90]. The difference between physiological hypertrabeculation responses and the pathological disease of LVNC is the presence of ventricular dysfunction or fibrosis, cardiac symptoms, and a family history of cardiomyopathy.

4. Pathogenesis and Molecular Signaling

Formation of the normal ventricular wall is based on anatomically overlapping morphogenetic events: trabeculation and compaction of the developing cardiac muscles [91]. During fetal development, ventricular myocardium is initially composed of trabeculations and deep intertrabecular recesses. At approximately week 5 and 8 in human embryonic development, cardiac muscle undergoes gradual compaction, which starts from the epicardial towards the endocardial surface at the base of the heart. As it progresses inward and distally, the LV apex is the last area to undergo compaction [92]. It has been speculated that an

abnormal termination of the myocardial compaction process during early development leads to excessive trabeculations with intertrabecular recesses between trabeculae and a spongy noncompacted LV myocardial appearance, as shown in Fig. 1 [93,94]. This process can also occur in the RV. As noted earlier, the study has also identified genetic mutations associated with intercellular trafficking and cytoskeletal integrity, among others (Fig. 2), which may indicate more complex polygenetic interactions lead to the development of LVNC's distinct morphological features [15].

Animal studies have demonstrated that normal trabeculation and compaction processes depend on an exquisite balance between cardiomyocyte proliferation, differentiation, and maturation [91,93,95,96]. In mice, the trabeculation process starts at E8.0–8.5 when endothelial cells sprout towards the myocardium, forming endocardial domes filled with cardiac jelly or the so-called "extracellular matrix (ECM) bubble" with primitive cardiomyocytes proliferat-

Fig. 3. Schema of BMP10-mediated signaling in endocardial and myocardial cells. BMP10, bone morphogenetic protein 10; BMPR, BMP receptor; ALK1, activin receptor-like kinase 1; XIAP, X-linked inhibitor of apoptosis; TAK1, transforming growth factor beta (TGF-β)-activated kinase 1; TAB1, TAK1-binding protein 1; MEK1, mitogen-activated protein kinase kinase; MKK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; p38, protein 38; JNK, c-Jun N-terminal kinase; Smad, suppressor of mother against decapentaplegic; Nkx2.5, NK2 homeobox 5; myocyte-specific enhancer factor 2C; p57kip2, cyclin-dependent kinase inhibitor 1C.

ing into laminar trabeculae [97]. Further, trabeculae undergo assembly, extension and growth followed by the termination process occurring at around E14.5. Concomitant with trabecular growth, ECM bubbles are progressively reduced from the basal parts to the apex of embryonic heart. Myocardial compaction process occurs at the base of trabeculae adjacent to the outer myocardium, forming the compacted ventricular muscle wall [98]. The development of trabeculae is vigorously controlled by a disintegrin and metalloproteinase with a thrombospondin motif 1 (ADAMTS1) protease that digests ECM proteoglycan versican in the heart [99]. In normal cardiac embryogenesis, ADAMTS1 expression in the cardiac jelly is suppressed by brahma-related gene 1 (BRGI)-mediated chromatin remodeling, and suppression of ADAMTS1 protease is critical for completion of trabecular growth [100]. Later in the maturating heart, ADAMTS1 expression is de-repressed (initiated) in the endocardium; its activation degrades the cardiac jelly, preventing excessive hyper-trabeculation within the adjacent myocardium, as seen in LVNC resulting from the failure of termination of ADAMTS1-mediated trabeculation caused by a single mutation in the CHD4 gene that encodes chromodomain helicase DNA-binding protein 4 [101].

Signaling pathways such as NOTCH, NRG1, BMP, and Nkx2-5 have been shown to play critical roles for balanced processes of normal trabeculation and compaction [49,97,102–106]. NOTCH is a highly evolutionary conserved signaling pathway involving transmembrane recep-

tors (NOTCH 1–4) with extracellular and intracellular domains that interact with the ligands (Delta-like1, 3, 4, and Jagged1, 2) that control cell fate, differentiation, and patterning [107–109]. In the cardiovascular system, development of ventricular myocardium and coronary vessels is mediated by NOTCH1, and communication between the endocardium and myocardium during cardiomyocyte proliferation and differentiation is tightly regulated by NOTCH signaling [110]. It has been shown that NOTCH activity within the developing endocardium is regulated by JARID2 [93,111], a transcriptional repressor of several cardiac transcriptional factors, including Nkx2.5, GATA4 [112], MEF2 [113], retinoblastoma protein (RP), and cyclin D1 [114, 115].

NOTCH also controls the expression of BMP10, a peptide growth factor in the TGF- β family that functions as the key regulator of ventricular trabeculation and compaction [108,116–118]. In mouse embryos, expression of BMP10 is documented in the ventricular myocardium from E9.0 to E13.5 and in the atria from E16.5 to E18.5, suggesting a crucial role for BMP10 in myocardial maturation [36]. Three specific BMP receptors (BMPRs) have been identified on endocardial and myocardial cells (Fig. 3), including BMPR1a or activin receptor-like kinase 3 (ALK3), BMPR1b (ALK6), and BMPR2 [108]. The C-terminus of BMP10 binds to BMPR1a and BMPR1b, while two fingertip domains (Fingertip1 and Fingertip2) in the β -domain of BMP10 bind to the BMPR2 (Fig. 4, Ref. [36]).

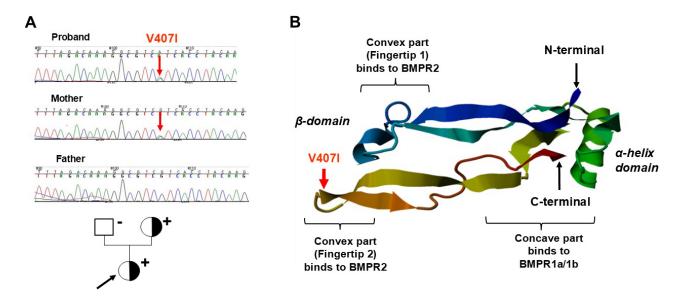


Fig. 4. Chromatographic images of sequencing in the members of the LVNC family (left) and the structure of the BMP10 protein (right). (A) Chromatographs of direct sequencing (upper panels) and the pedigree of the family with LVNC (lover panel). The proband indicated by black arrow and affected mother with LVNC carried the c.1219G>A (V407I) variant in the BMP10 gene. (B) Structure of the BMP10 protein. The mature BMP10 forms two domains, alpha and beta. The beta-domain has two finger-shaped convex parts, which binds to BMPR2. Red arrows indicate the V407I mutation and its location in the β -domain Fingertip2 of BMP10. Adapted with permission from Hirono *et al.* [36] Familial left ventricular non-compaction is associated with a rare p.V407I variant in bone morphogenetic protein 10. Circ J. 2019 Jul 25;83(8):1737–1746. https://doi.org/10.1253/circj.CJ-19-0116.

As shown in Fig. 3, BMP10' binding to its BMPRs regulates cardiomyocyte proliferation and trabeculation during cardiogenesis via activation of SMAD1/5/8 (canonical) and MAPK (non-canonical) as a result of phosphorylation (p), which downstream activate pathways involve NKX2-5, MEF2c, and TBX20 cardiogenic factors [93,117], but inhibiting CDKN1c/p57-kip2 [119]. A pathogenic BMP10 mutation (c.1219G>A, p.V407I) has recently been identified in familial LVNC cases, a proband, and her affected mother [36]. The V407I mutation located in the Fingertip2 domain of BMP10 (Fig. 4) altered the interaction of BMP10 with receptors, BMPR1a and BMPR2. Subsequently, abnormal cytoplasmic aggregations of BMP10 in cardiomyocytes, inhibition of the proliferation of differentiating H9C2 cardiac myoblasts, and cellular intolerance to cyclic stretch have been demonstrated [36].

Mib1, another NOTCH pathway element, is associated with the biventricular noncompaction phenotype, ventricular dilatation, and heart failure when mutated [10]. Genetic testing of 100 European patients identified V943F and R530X variations in MIB1. Injection of Mib1-mutant V943F and R530X mRNAs into zebrafish embryos disrupted Notch signaling and reduced myocardial arrest pro-

ducing immature trabeculae and noncompaction [49]. In LVNC cases with the associated CHD, interruption of the NOTCH or WNT signaling appears to be part of a "common final pathway" of this form of LVNC [9,97,108]. LVNC and ACM also have overlapping associations with WNT signaling disturbances [83,90].

5. Diagnostic Testing

Adult and pediatric LVNC patients are commonly diagnosed by imaging at the time of clinical presentation. Echocardiography is commonly used to diagnose a noncompacted ventricular myocardium in patients with LVNC [16,120]. Echocardiographic criteria for diagnosing LVNC consists of a noncompacted to compacted myocardium ratio of greater than 2:1 in at least one ventricular segment in end-diastole. The apical, mid-septal, and mid-lateral ventricular segments are typically involved [121]. Other studies define LVNC based on the noncompacted to compacted myocardium ratio being greater than 2:1 in end-systole [27,33]. Cases of increased trabeculations echocardiographic criteria for LVNC during pregnancy with complete or marked resolution of LV trabeculations postpartum have also been documented [122].

Fig. 5. Electrocardiogram images of pediatric patients with left ventricular noncompaction. (A) A 12-lead electrocardiogram in a 1-year-old patient with LVNC with sinus rhythm, left atrial enlargement, prolonged PR interval, Q wave in V1, and prolonged QTc interval. (B) A 12-lead electrocardiogram in an infant with LVNC with sinus rhythm, excessive QRS voltage, and biventricular hypertrophy.

CMR imaging with late gadolinium enhancement (LGE) testing is suggested for adult and pediatric patients with suspected LVNC on electrocardiogram (ECG) for precise clinical assessment of noncompaction, myocardial fibrosis, and damage to predict severity of the disease [123, 124]. Diagnostic criteria of LVNC using CMR imaging also varies among studies, although this method is particularly useful for adults in providing more reliable assessment of hypertrabeculation in the apex [125]. Examples of CMR diagnostic criteria include the trabeculated mass being greater than 20% of the global LV mass in end diastole, and an enddiastolic ratio of noncompacted to compacted myocardium greater than 2.3:1 in the short and long axis views [126]. Cases of increased trabeculations with de novo echocardiographic criteria for LVNC during pregnancy with complete or marked resolution of LV trabeculations postpartum have also been documented [122]. Moreover, LV strain parameters on CMR imaging were lower in adolescent children and young adults with LVNC compared to healthy age-matched control individuals [127].

ECG is abnormal in 75-94% of pediatric and adult LVNC patients [128]. Typical ECG findings include prolonged QTc intervals, R wave notching, T wave inversion, pathologic Q waves, left axis deviation, and severe LV hypertrophy with gigantic QRS complexes, especially in neonates [94]. In babies with LVNC, the ECG commonly shows extreme QRS complex voltage (Fig. 5). In adults, in addition to all those ECG features, intraventricular conduction delay with predominant left bundle branch block and life-threatening ventricular arrhythmias, such as ventricular tachycardia, and ventricular fibrillation have been reported by Steffel et al. [129]. Presence of fragmented QRS complex (fQRS) on ECGs in adult LVNC patients were identified as a novel predictor of arrhythmic events, sudden cardiac death, and mortality [130]. Atrial fibrillations are also associated with LVNC, which may be due to proarrhythmic substrate from the continuity between extensive intertrabecular recesses and endocardium as demonstrated in previous studies [131].

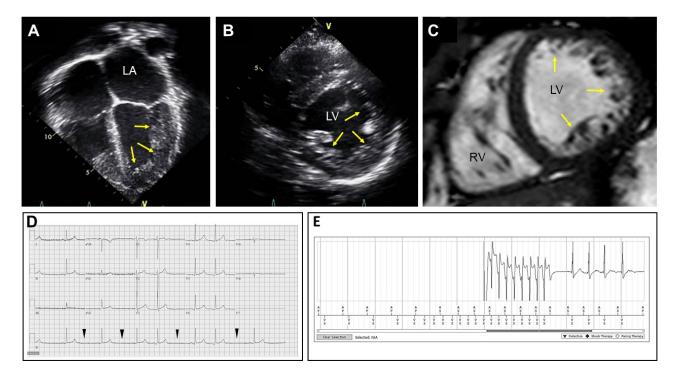


Fig. 6. Results of echocardiographic, cardiac magnetic resonance (CMR) imaging, and electrocardiography (ECG) tracing analyses in a 17-year-old adolescent patient with LVNC. A representative echocardiography image in four chamber view. Yellow arrows indicate noncompacted myocardial walls with trabeculae and recesses seen in the LV. (A) A parasternal short axis view of echocardiogram demonstrating circumferential noncompaction on the LV walls. (B) A representative CMR image demonstrating circumferential LV noncompaction. (C) An ECG tracing recorded prior to pacemaker placement. Sinoatrial (SA) nodal exit block (Mobitz II) is demonstrated. Arrowheads demarcate timing of SA node exit block. (D) An ECG tracing recorded after pacemaker implantation. (E) Non-sustained ventricular tachycardia found on device interrogation is demonstrated. Adapted with permission from Collyer *et al.* [19] Combining whole exome sequencing with *in silico* analysis and clinical data to identify candidate variants in pediatric left ventricular noncompaction. Int J Cardiol. 2022 Jan 15:347:29–37. https://doi.org/10.1016/j.ijcard.2021.11.001.

6. Clinical Manifestations

Adults and children with LVNC present with the full spectrum of this heterogenous disease with clinical manifestations ranging from asymptomatic hypertrabeculation to infantile cardiac muscle disease presentation of heart failure with reduced EF (HFrEF) and unfavorable long-term prognoses. As previously reported, adult patients may be asymptomatic and develop hypertrabeculation as a physiological response. These cases are not typically associated with systolic or diastolic dysfunction [8,30]. It has also been demonstrated that pediatric patients with isolated LVNC and normal ventricular function remain asymptomatic throughout adulthood and into old age [132]. This phenotype accounts for nearly 35% of LVNC cases and has been termed a "benign form" by Towbin *et al.* [3,5].

Affected adult and pediatric patients typically present with symptoms of chest pain, dyspnea, palpitations, syncope, peripheral edema, or exercise intolerance [9,78]. Their overall presentation may consist of congestive heart failure, arrhythmias, thromboembolism, embolic ischemic stroke, myocardial infarction, or sudden death [19,23,32, 120,133]. Although some adult patients have adaptive hypertrabeculation, they may also present with heart failure secondary to LVNC. One case study highlighted a 41-yearold heart failure patient with LVNC confirmed by ECG and CMR. Ventricular remodeling was demonstrated after initiation of heart failure guideline-mediated medical therapy [134]. Other case studies diagnosed via ECG and CMR include a previously healthy 62-year-old patient who presented with palpitations and diagnosed with atrial fibrillation [135] and a 78-year-old patient with history of ischemic cardiomyopathy and end-stage renal disease [136]. Both patients started heart failure medications and anticoagulation prophylaxis. Lastly, a 55-year-old patient who presented with dyspnea, chest pain, and peripheral edema was diagnosed with LVNC and right-sided aortic arch. This patient later died from the known complication of ventricular fibrillation [131].

LVNC may also have associated CHDs, neuromuscular disorders, or chromosomal defects [6,9,15,23,81,137]. Children are more likely to have associated CHD and an identified genetic mutation than their adult counterparts [138]. Complex clinical phenotypes with concurrent dilated, hypertrophic, restrictive, or arrhythmogenic forms, or those with overlapping phenotypes one or more forms of cardiomyopathy or CHD, are also reported [9]. For example (Fig. 6, Ref. [19]), a 17-year-old patient with circumferential apical hypertrabeculation, no systolic dysfunction, and no LGE on echocardiogram and CMR imaging, respectively, required placement of a pacemaker for sinoatrial (SA) nodal exit Mobitz II block, which was followed by upgrading to a defibrillator system due to development of nonsustained ventricular tachycardia (NSVT) after pacemaker implantation and interrogation [19]. Distinct LVNC phenotypes identified impact diagnostic testing, potential treatments, and overall prognosis in the pediatric LVNC population [2,5,9].

LVNC in newborns and infants is most commonly non-isolated (mixed) with worst case outcomes reported, particularly in those with associated systemic and metabolic disorders with or without CHD [5,9]. Those with overlapping forms of cardiomyopathy [14] have an associated increased risk for heart failure [139]. Therefore, it is imperative to follow these pediatric patients long-term to establish their individual risk for developing potential complications while optimizing their medical management. As the potential genetic etiology is explored further, it is important to screen first degree relatives for LV noncompaction or other cardiomyopathy forms. Studies have shown that 30% of screened family members are also diagnosed with LVNC or other types of cardiomyopathies [140]. In addition, identifying all affected and unaffected family members is necessary to define if the LVNC phenotype in affected (clinically and sub-clinically) patients is progressive, and whether proactive genetic counseling and individualized prevention and medical management should be initiated [19].

7. Genetic Testing

Genetic testing is not routinely performed in the clinical setting in many countries. As previously noted, patients with suspected LVNC based on the above diagnostic testing and clinical presentation should be considered for genetic testing, given LVNC's strong correlation with genetic etiologies. Family members of affected individuals should also be genetically screened. Recent studies have shown the importance of genetic testing in this patient population due to potential adjustment of clinical management and risk stratification for family members via cascade testing [141,142]. A broad cardiomyopathy genetic panel may be considered at time of presentation to identify LVNC pathologic variants, including those overlapping with other cardiomyopathies [142]. One study demonstrated half of adult and pediatric LVNC probands and relatives had an identified genetic mutation via a targeted panel containing 17 genes, which included MYH7, MYBPC3, ACTC1, TPM1, CSRP3, TAZ, LDB3, cardiac troponins (TNNC1, TNNT2, TNNI3), cardiac-regulatory myosin light chains (MYL2, MYL3), theletonin (TCAP), calsequestrin (CASO2), calreticulin (CALR3), phospholamban (PLN), and lamin A/C (LMNA) [80]. Other studies have demonstrated the utility of whole exome sequencing in LVNC probands and their family members [19-22]. Genetic testing and familial screening for LVNC are essential for diagnosis, prognosis, and future genetic counseling among affected families [120]. Overall, without current gold standard diagnostic and genetic testing criteria, the accurate assessment of genotype-phenotype associations in inherited LVNC cases in both pediatric and adult populations is difficult. This is further complicated by the heterogeneity among LVNC

phenotypes and potential progression of LV dysfunction, particularly in pediatric patients over time [140]. Uniform diagnostic criteria in assessment of symptoms, cardiac imaging, and electrocardiogram applied to asymptomatic and symptomatic pediatric and adult populations may lead to a more accurate depiction of LVNC's genetic architecture.

8. Prognosis and Treatment

Prognosis among adult and pediatric LVNC patients is affected by individual phenotypes and the presence of an identified genetic mutation or ventricular dysfunction [120, 143,144]. LVNC patients have a significant risk for complications, such as ventricular arrhythmias, systolic dysfunction with heart failure, cardioembolic events, and sudden cardiac death, which may occur in up to two-thirds of LVNC patients [3,145,146]. The worst outcomes are also associated with mitochondrial disorders, hereditary neuromuscular disorders, or chromosomal defects. These are more commonly found in pediatric LVNC patients, specifically infants [5,9]. A meta-analysis demonstrated an overall mortality rate of 14% among adults with isolated LVNC [120]. There is an increased risk for heart failure, heart transplantation and death among LVNC subtypes with RCM, ACM, DCM, HCM, and undulating phenotypes in children and adults [6,14,139,147]. Children with LVNC are more likely to have an identified genetic mutation and associated CHD [138]. Prior studies have also demonstrated increased risk for death or heart transplantation rates among LVNC patients with overlapping phenotypes compared to those with the isolated LVNC phenotype [6,147]. Between 60% to 75% of LVNC patients either die or undergo cardiac transplantation within 6 years of diagnosis [6,148,149]; heart transplantation is more common in pediatric LVNC patients with a higher incidence of extracorporeal membrane oxygenation (ECMO) and inotropic use employed as a bridge to transplant, compared to those with idiopathic cardiomyopathy. Moreover, pediatric LVNC patients with associated CHD have worse postoperative outcomes following cardiac surgery and longer hospitalizations, compared to those with isolated CHD [150].

There is no specific therapy for LVNC except for consensus guideline-directed heart failure treatments for various cardiomyopathies and arrhythmias across age groups. Heart failure guideline-directed medical therapy (GDMT), including beta blocker, angiotensin-converting-enzyme (ACE) inhibitors, angiotensin II receptor blocker (ARB) and angiotensin receptor/neprilysin inhibitor (ARNI), has been shown to improve systolic function and favorable ventricular remodeling in adult LVNC patients [134]. Mineralocorticoid receptor antagonists (MRA) and sodiumglucose cotransporter 2 inhibitors (SGLT2i) are additional components of adult heart failure GDMT. Due to the limited pediatric data from single center studies, these medications are often prescribed based on pediatric heart failure ex-

pert guidance and extrapolation from the adult clinical trials [151,152]. Cardiac resynchronization therapy is typically utilized only in the adult population [120]. Reduced systolic function and deep intertrabecular recesses may contribute to the increased risk of thrombosis formation. Chronic anticoagulation is generally recommended as primary prevention for thromboembolic events, such as strokes [138,148]. The clinical necessity of therapeutic anticoagulation in benign cases of adult LV hypertrabeculation and pregnant women [153,154]. If LVNC patients do not respond well to medical management, they should be evaluated for ventricular assist device placement or heart transplant as needed. Also, patients with significantly reduced ejection fraction or lifethreatening arrhythmias should be considered for placement of an implantable cardioverter defibrillator (ICD) to prevent cardiac arrest and sudden cardiac death [94,155].

Several critical differences in the management of pediatric LVNC patients with heart failure should be considered compared to adult patients. The majority of LVNC patients undergoing heart transplantation was pediatric, and their post-transplant survival was comparable with that of other cardiomyopathy patients [149]. Babies have the highest risk, and other risk factors for death or transplantation include female sex and severity of systolic dysfunction [147]. Although huge achievements have been made in diagnosis and treatment, limited quantifiable criteria may hinder early detection of LVNC and primary prevention of potential complications in newborns and young children [12,133]. In addition, due to undeveloped capillary networks within the hyper-trabeculated meshwork and noncompacted endocardial islands, LVNC easily can be a substrate for ischemia and infarctions and thromboembolic events commonly displaying as peripheral embolism or stroke in pediatric LVNC cases [9]. Further secondary pathogenic processes, such as dissection of the myocardium, myocardial hypertrophy, or myocardial tearing caused by dilatation and hypervascularization, cause major adverse cardiac events and advanced deterioration of heart function [14]. Therefore, careful cardiorespiratory management with monitoring oxygen partial pressure, ventilation support, and medication therapy with beta blocker, ARB or ACE inhibitors are considered in pediatric LVNC patients with LV ejection fraction less than 45% [156,157].

9. Conclusions

Left ventricular noncompaction in children is a complex disease with heterogeneous phenotypes and a diverse array of associated genetic mutations. Children are more likely to have certain LVNC phenotypes, an identified genetic mutation, and heart transplantation compared to their adult counterparts. There are no widely accepted diagnostic criteria, but multiple image modalities are utilized to assist with the diagnosis and guide management. There is a wide spectrum of clinical presentations and long-term prognosis; therefore, patients diagnosed with childhood LVNC should

be followed throughout their lifespan to optimize their medical management and prevent future complications based on their individual risk. Future studies are needed to establish gold standard diagnostic criteria and corroborate targeted therapies for this complex disease, especially in neonates and young pediatric populations.

Author Contributions

MBL: drafting the manuscript; MBL, BOO, KG, KH, EB, KS, JWC, JAT, EP: acquisition and interpretation of data and editing the manuscript; JAT: providing the funding; EP: providing funding and approving the manuscript. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript. All authors have participated sufficiently in the work and agreed to be accountable for all aspects of the work.

Ethics Approval and Consent to Participate

Not applicable.

Acknowledgment

Andrew J. Gienapp, MS, Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, provided copyediting and formatting. Thanks to all the peer reviewers for their opinions and suggestions.

Funding

The research was supported in part by the National Institutes of Health (R01HL53392, R01HL116906 [JAT] and R01HL151438 [JAT and EP]).

Conflict of Interest

The authors declare no conflict of interest. Keiichi Hirono is serving as Guest Editor of this journal. We declare that Keiichi Hirono had no involvement in the peer review of this article and has no access to information regarding its peer review. Full responsibility for the editorial process for this article was delegated to Attila Nemes.

References

- [1] Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006; 113: 1807–1816. https://doi.org/10.1161/CIRCULATIONAHA.106.174287.
- [2] Lipshultz SE, Law YM, Asante-Korang A, Austin ED, Dipchand AI, Everitt MD, et al. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement From the American Heart Association. Circulation. 2019; 140: e9–e68. https: //doi.org/10.1161/CIR.0000000000000082.
- [3] Towbin JA. Left ventricular noncompaction: a new form of heart

- failure. Heart Failure Clinics. 2010; 6: 453–69, viii. https://doi.org/10.1016/j.hfc.2010.06.005.
- [4] Towbin JA. Inherited cardiomyopathies. Circulation Journal: Official Journal of the Japanese Circulation Society. 2014; 78: 2347–2356. https://doi.org/10.1253/circj.cj-14-0893.
- [5] Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction cardiomyopathy. Lancet (London, England). 2015; 386: 813–825. https://doi.org/10.1016/S0140-6736(14) 61282-4.
- [6] Jefferies JL, Wilkinson JD, Sleeper LA, Colan SD, Lu M, Pahl E, et al. Cardiomyopathy Phenotypes and Outcomes for Children With Left Ventricular Myocardial Noncompaction: Results From the Pediatric Cardiomyopathy Registry. Journal of Cardiac Failure. 2015; 21: 877–884. https://doi.org/10.1016/j.cardfail.2015.06.381.
- [7] Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart Journal. 2008; 29: 270–276. https://doi.org/10.1093/eurheartj/ehm342.
- [8] Arbustini E, Favalli V, Narula N, Serio A, Grasso M. Left Ventricular Noncompaction: A Distinct Genetic Cardiomyopathy? Journal of the American College of Cardiology. 2016; 68: 949–966. https://doi.org/10.1016/j.jacc.2016.05.096.
- [9] Towbin JA, Jefferies JL. Cardiomyopathies Due to Left Ventricular Noncompaction, Mitochondrial and Storage Diseases, and Inborn Errors of Metabolism. Circulation Research. 2017; 121: 838–854. https://doi.org/10.1161/CIRCRESAHA.117.310987.
- [10] Ichida F. Left ventricular noncompaction Risk stratification and genetic consideration. Journal of Cardiology. 2020; 75: 1–9. ht tps://doi.org/10.1016/j.jjcc.2019.09.011.
- [11] Towbin JA, Bowles NE. The failing heart. Nature. 2002; 415: 227–233. https://doi.org/10.1038/415227a.
- [12] Børresen MF, Blixenkrone-Møller E, Kock TO, Sillesen AS, Vøgg ROB, Pihl CA, et al. Prevalence of Left Ventricular Noncompaction in Newborns. Circulation. Cardiovascular Imaging. 2022; 15: e014159. https://doi.org/10.1161/CIRCIMAGING. 121.014159.
- [13] Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. Journal of the American College of Cardiology. 2000; 36: 493–500. https://doi.org/10.1016/s0735-1097(00)00755-5.
- [14] van Waning JI, Caliskan K, Hoedemaekers YM, van Spaendonck-Zwarts KY, Baas AF, Boekholdt SM, *et al.* Genetics, Clinical Features, and Long-Term Outcome of Noncompaction Cardiomyopathy. Journal of the American College of Cardiology. 2018; 71: 711–722. https://doi.org/10.1016/j.jacc.2017.12.019.
- [15] Rojanasopondist P, Nesheiwat L, Piombo S, Porter GA, Jr, Ren M, Phoon CKL. Genetic Basis of Left Ventricular Noncompaction. Circulation. Genomic and Precision Medicine. 2022; 15: e003517. https://doi.org/10.1161/CIRCGEN.121.003517.
- [16] Pignatelli RH, McMahon CJ, Dreyer WJ, Denfield SW, Price J, Belmont JW, et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation. 2003; 108: 2672–2678. https://doi.or g/10.1161/01.CIR.0000100664.10777.B8.
- [17] Ross SB, Semsarian C. Clinical and Genetic Complexities of Left Ventricular Noncompaction: Preventing Overdiagnosis in a Disease We Do Not Understand. JAMA Cardiology. 2018; 3: 1033–1034. https://doi.org/10.1001/jamacardio.2018.2465.
- [18] Ichida F, Tsubata S, Bowles KR, Haneda N, Uese K, Miyawaki T, *et al.* Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation. 2001; 103: 1256–1263. https://doi.org/10.1161/01.cir.103.9.1256.

- [19] Collyer J, Xu F, Munkhsaikhan U, Alberson NF, Orgil BO, Zhang W, et al. Combining whole exome sequencing with in silico analysis and clinical data to identify candidate variants in pediatric left ventricular noncompaction. International Journal of Cardiology. 2022; 347: 29–37. https://doi.org/10.1016/j.ijcard.2021.11.001.
- [20] Bagnall RD, Molloy LK, Kalman JM, Semsarian C. Exome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden death. BMC Medical Genetics. 2014; 15: 99. https://doi.org/10.1186/s12881-014-0099-0.
- [21] Gifford CA, Ranade SS, Samarakoon R, Salunga HT, de Soysa TY, Huang Y, et al. Oligogenic inheritance of a human heart disease involving a genetic modifier. Science (New York, N.Y.). 2019; 364: 865–870. https://doi.org/10.1126/science.aat5056.
- [22] Miszalski-Jamka K, Jefferies JL, Mazur W, Głowacki J, Hu J, Lazar M, et al. Novel Genetic Triggers and Genotype-Phenotype Correlations in Patients With Left Ventricular Noncompaction. Circulation. Cardiovascular Genetics. 2017; 10: e001763. https://doi.org/10.1161/CIRCGENETICS.117.001763.
- [23] Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990; 82: 507–513. https://doi.org/10.1161/01.cir.82.2.507.
- [24] Ichida F, Hamamichi Y, Miyawaki T, Ono Y, Kamiya T, Akagi T, et al. Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. Journal of the American College of Cardiology. 1999; 34: 233–240. https://doi.org/10.1016/s0735-1097(99)00170-9.
- [25] Towbin JA, Johnson JN. Prevalence of Left Ventricular Non-compaction in Newborns by Echocardiography: Is This the Most Accurate Approach? Circulation. Cardiovascular Imaging. 2022; 15: e014416. https://doi.org/10.1161/CIRCIMAGIN G.122.014416.
- [26] Hughes ML, Carstensen B, Wilkinson JL, Weintraub RG. Angiographic diagnosis, prevalence and outcomes for left ventricular noncompaction in children with congenital cardiac disease. Cardiology in the Young. 2007; 17: 56–63. https://doi.org/10.1017/S1047951106001351.
- [27] Kohli SK, Pantazis AA, Shah JS, Adeyemi B, Jackson G, McKenna WJ, et al. Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? European Heart Journal. 2008; 29: 89–95. https://doi.org/10.1093/eurheartj/eh m481.
- [28] Mehdi M, Bhatia S, Patel M, Aly A. Ebstein's Anomaly, Left Ventricular Noncompaction and Gerbode-Like Defect Triad (Fetal Diagnosis and Neonatal Course). Case Reports in Pediatrics. 2021; 2021: 9969588. https://doi.org/10.1155/2021/9969588.
- [29] Myers PO, Tissot C, Cikirikcioglu M, Kalangos A. Complex aortic coarctation, regurgitant bicuspid aortic valve with VSD and ventricular non-compaction: a challenging combination. The Thoracic and Cardiovascular Surgeon. 2011; 59: 313–316. https://doi.org/10.1055/s-0030-1250392.
- [30] Okumura T, Murohara T. Unsolved Issue in Left Ventricular Noncompaction: Is the Strange Form of Myocardium Congenital or Acquired? Cardiology. 2019; 143: 105–106. https://doi. org/10.1159/000501585.
- [31] Kovacevic-Preradovic T, Jenni R, Oechslin EN, Noll G, Seifert B, Attenhofer Jost CH. Isolated left ventricular noncompaction as a cause for heart failure and heart transplantation: a single center experience. Cardiology. 2009; 112: 158–164. https://doi.org/10.1159/000147899.
- [32] Sandhu R, Finkelhor RS, Gunawardena DR, Bahler RC. Prevalence and characteristics of left ventricular noncompaction in

- a community hospital cohort of patients with systolic dysfunction. Echocardiography (Mount Kisco, N.Y.). 2008; 25: 8–12. https://doi.org/10.1111/j.1540-8175.2007.00560.x.
- [33] Masso AH, Uribe C, Willerson JT, Cheong BY, Davis BR. Left Ventricular Noncompaction Detected by Cardiac Magnetic Resonance Screening: A Reexamination of Diagnostic Criteria. Texas Heart Institute Journal. 2020; 47: 183–193. https://doi.org/10.14503/THIJ-19-7157.
- [34] Sasse-Klaassen S, Probst S, Gerull B, Oechslin E, Nürnberg P, Heuser A, et al. Novel gene locus for autosomal dominant left ventricular noncompaction maps to chromosome 11p15. Circulation. 2004; 109: 2720–2723. https://doi.org/10.1161/01.CIR. 0000131865.21260.56.
- [35] Blinder JJ, Martinez HR, Craigen WJ, Belmont J, Pignatelli RH, Jefferies JL. Noncompaction of the left ventricular myocardium in a boy with a novel chromosome 8p23.1 deletion. American Journal of Medical Genetics. Part a. 2011; 155A: 2215–2220. https://doi.org/10.1002/ajmg.a.34129.
- [36] Hirono K, Saito K, Munkhsaikhan U, Xu F, Wang C, Lu L, et al. Familial Left Ventricular Non-Compaction Is Associated With a Rare p.V4071 Variant in Bone Morphogenetic Protein 10. Circulation Journal: Official Journal of the Japanese Circulation Society. 2019; 83: 1737–1746. https://doi.org/10.1253/circj.CJ -19-0116.
- [37] Shan L, Makita N, Xing Y, Watanabe S, Futatani T, Ye F, et al. SCN5A variants in Japanese patients with left ventricular noncompaction and arrhythmia. Molecular Genetics and Metabolism. 2008; 93: 468–474. https://doi.org/10.1016/j.ymgme.2007.10.009.
- [38] Hastings R, de Villiers CP, Hooper C, Ormondroyd L, Pagnamenta A, Lise S, et al. Combination of Whole Genome Sequencing, Linkage, and Functional Studies Implicates a Missense Mutation in Titin as a Cause of Autosomal Dominant Cardiomyopathy With Features of Left Ventricular Noncompaction. Circulation. Cardiovascular Genetics. 2016; 9: 426–435. https://doi.org/10.1161/CIRCGENETICS.116.001431.
- [39] Mohapatra B, Jimenez S, Lin JH, Bowles KR, Coveler KJ, Marx JG, et al. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Molecular Genetics and Metabolism. 2003; 80: 207–215. https://doi.org/10.1016/s1096-7192(03)00142-2.
- [40] Geier C, Gehmlich K, Ehler E, Hassfeld S, Perrot A, Hayess K, et al. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Human Molecular Genetics. 2008; 17: 2753–2765. https://doi.org/10.1093/hmg/ddn160.
- [41] Geier C, Perrot A, Ozcelik C, Binner P, Counsell D, Hoffmann K, et al. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation. 2003; 107: 1390–1395. https://doi.org/10.1161/01.cir.0000056522.82563.5f.
- [42] Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003; 424: 443–447. https://doi.org/10.1038/nature01827.
- [43] Yoshida Y, Hirono K, Nakamura K, Suzuki T, Hata Y, Nishida N. A novel ACTC1 mutation in a young boy with left ventricular noncompaction and arrhythmias. HeartRhythm Case Reports. 2015; 2: 92–97. https://doi.org/10.1016/j.hrcr.2015.11.008.
- [44] Frustaci A, De Luca A, Guida V, Biagini T, Mazza T, Gaudio C, et al. Novel α-Actin Gene Mutation p.(Ala21Val) Causing Familial Hypertrophic Cardiomyopathy, Myocardial Noncompaction, and Transmural Crypts. Clinical-Pathologic Correlation. Journal of the American Heart Association. 2018; 7: e008068. https://doi.org/10.1161/JAHA.117.008068.
- [45] Takai E, Akita H, Shiga N, Kanazawa K, Yamada S, Terashima M, et al. Mutational analysis of the cardiac actin gene in famil-

- ial and sporadic dilated cardiomyopathy. American Journal of Medical Genetics. 1999; 86: 325–327. https://doi.org/10.1002/(sici)1096-8628(19991008)86:4<325::aid-ajmg5>3.0.co;2-u.
- [46] Olson TM, Doan TP, Kishimoto NY, Whitby FG, Ackerman MJ, Fananapazir L. Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology. 2000; 32: 1687–1694. https://doi.org/10.1006/jmcc.2000.1204.
- [47] Frank D, Yusuf Rangrez A, Friedrich C, Dittmann S, Stallmeyer B, Yadav P, et al. Cardiac α-Actin (ACTC1) Gene Mutation Causes Atrial-Septal Defects Associated With Late-Onset Dilated Cardiomyopathy. Circulation. Genomic and Precision Medicine. 2019; 12: e002491. https://doi.org/10.1161/CIRCGE N.119.002491.
- [48] Theis JL, Bos JM, Bartleson VB, Will ML, Binder J, Vatta M, et al. Echocardiographic-determined septal morphology in Z-disc hypertrophic cardiomyopathy. Biochemical and Biophysical Research Communications. 2006; 351: 896–902. https://doi.org/10.1016/j.bbrc.2006.10.119.
- [49] Luxán G, Casanova JC, Martínez-Poveda B, Prados B, D'Amato G, MacGrogan D, et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nature Medicine. 2013; 19: 193–201. https://doi.org/10.1038/nm.3046.
- [50] Probst S, Oechslin E, Schuler P, Greutmann M, Boyé P, Knirsch W, et al. Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circulation. Cardiovascular Genetics. 2011; 4: 367–374. https://doi.org/10.1161/CIRCGENETICS.110.959270.
- [51] Hershberger RE, Norton N, Morales A, Li D, Siegfried JD, Gonzalez-Quintana J. Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circulation. Cardiovascular Genetics. 2010; 3: 155–161. https://doi.org/10.1161/CIRCGENETICS.109.912345.
- [52] Wang Y, Wang Z, Yang Q, Zou Y, Zhang H, Yan C, et al. Autosomal recessive transmission of MYBPC3 mutation results in malignant phenotype of hypertrophic cardiomyopathy. PloS One. 2013; 8: e67087. https://doi.org/10.1371/journal.pone.0067087.
- [53] Postma AV, van Engelen K, van de Meerakker J, Rahman T, Probst S, Baars MJH, et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circulation. Cardiovascular Genetics. 2011; 4: 43–50. https://doi.org/10.1161/CIRCGENETICS .110.957985.
- [54] Moolman-Smook JC, De Lange WJ, Bruwer EC, Brink PA, Corfield VA. The origins of hypertrophic cardiomyopathy-causing mutations in two South African subpopulations: a unique profile of both independent and founder events. American Journal of Human Genetics. 1999; 65: 1308–1320. https://doi.org/10.1086/302623.
- [55] van Engelen K, Postma AV, van de Meerakker JBA, Roos-Hesselink JW, Helderman-van den Enden ATJM, Vliegen HW, *et al.* Ebstein's anomaly may be caused by mutations in the sarcomere protein gene MYH7. Netherlands Heart Journal: Monthly Journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation. 2013; 21: 113–117. https://doi.org/10.1007/s12471-011-0141-1.
- [56] Nijak A, Alaerts M, Kuiperi C, Corveleyn A, Suys B, Paelinck B, et al. Left ventricular non-compaction with Ebstein anomaly attributed to a TPM1 mutation. European Journal of Medical Genetics. 2018; 61: 8–10. https://doi.org/10.1016/j.ejmg.2017.10.003.
- [57] Olson TM, Kishimoto NY, Whitby FG, Michels VV. Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology. 2001; 33: 723–732. https://doi.org/10.1006/jm

- cc.2000.1339.
- [58] Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg HP, et al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994; 77: 701–712. https://doi.org/10.1016/0092-8674(94)90054-x.
- [59] Kelle AM, Bentley SJ, Rohena LO, Cabalka AK, Olson TM. Ebstein anomaly, left ventricular non-compaction, and early onset heart failure associated with a de novo α-tropomyosin gene mutation. American Journal of Medical Genetics. Part a. 2016; 170: 2186–2190. https://doi.org/10.1002/ajmg.a.37745.
- [60] Marakhonov AV, Brodehl A, Myasnikov RP, Sparber PA, Kiseleva AV, Kulikova OV, et al. Noncompaction cardiomyopathy is caused by a novel in-frame desmin (DES) deletion mutation within the 1A coiled-coil rod segment leading to a severe filament assembly defect. Human Mutation. 2019; 40: 734–741. https://doi.org/10.1002/humu.23747.
- [61] Taylor MRG, Slavov D, Ku L, Di Lenarda A, Sinagra G, Carniel E, et al. Prevalence of desmin mutations in dilated cardiomy-opathy. Circulation. 2007; 115: 1244–1251. https://doi.org/10.1161/CIRCULATIONAHA.106.646778.
- [62] Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature. 2000; 406: 906–910. https://doi.org/10.1038/35022604.
- [63] Arad M, Maron BJ, Gorham JM, Johnson WH, Jr, Saul JP, Perez-Atayde AR, et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. The New England Journal of Medicine. 2005; 352: 362–372. https://doi.org/10.1056/NEJM psi333349
- [64] Sugimoto S, Shiomi K, Yamamoto A, Nishino I, Nonaka I, Ohi T. LAMP-2 positive vacuolar myopathy with dilated cardiomyopathy. Internal Medicine (Tokyo, Japan). 2007; 46: 757–760. https://doi.org/10.2169/internalmedicine.46.6265.
- [65] Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, Perles Z, et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. Journal of the American College of Cardiology. 2003; 42: 2014–2027. https://doi.org/10.1016/j.jacc.2003.10.021.
- [66] Xing Y, Ichida F, Matsuoka T, Isobe T, Ikemoto Y, Higaki T, et al. Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Molecular Genetics and Metabolism. 2006; 88: 71–77. https://doi.org/10.1016/j.ymgm e.2005.11.009.
- [67] Arimura T, Hayashi T, Terada H, Lee SY, Zhou Q, Takahashi M, et al. A Cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. The Journal of Biological Chemistry. 2004; 279: 6746–6752. https://doi.org/10.1074/jbc.M311849200.
- [68] Gedeon AK, Wilson MJ, Colley AC, Sillence DO, Mulley JC. X linked fatal infantile cardiomyopathy maps to Xq28 and is possibly allelic to Barth syndrome. Journal of Medical Genetics. 1995; 32: 383–388. https://doi.org/10.1136/jmg.32.5.383.
- [69] Taylor M, Graw S, Sinagra G, Barnes C, Slavov D, Brun F, et al. Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation. 2011; 124: 876–885. https://doi.org/10.1161/CIRCULATIONAHA.110.005405.
- [70] Itoh-Satoh M, Hayashi T, Nishi H, Koga Y, Arimura T, Koyanagi T, et al. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochemical and Biophysical Research Communications. 2002; 291: 385–393. https://doi.org/10.1006/bbrc.2002.6448.
- [71] Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo F, Kimura A. Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Bio-

- chemical and Biophysical Research Communications. 1999; 262: 411–417. https://doi.org/10.1006/bbrc.1999.1221.
- [72] Cheng J, Morales A, Siegfried JD, Li D, Norton N, Song J, et al. SCN5A rare variants in familial dilated cardiomyopathy decrease peak sodium current depending on the common polymorphism H558R and common splice variant Q1077del. Clinical and Translational Science. 2010; 3: 287–294. https://doi.org/10.1111/j.1752-8062.2010.00249.x.
- [73] Zaklyazminskaya E, Dzemeshkevich S. The role of mutations in the SCN5A gene in cardiomyopathies. Biochimica et Biophysica Acta. 2016; 1863: 1799–1805. https://doi.org/10.1016/j.bb amcr.2016.02.014.
- [74] Meinke P, Nguyen TD, Wehnert MS. The LINC complex and human disease. Biochemical Society Transactions. 2011; 39: 1693–1697. https://doi.org/10.1042/BST20110658.
- [75] Vasile VC, Ommen SR, Edwards WD, Ackerman MJ. A missense mutation in a ubiquitously expressed protein, vinculin, confers susceptibility to hypertrophic cardiomyopathy. Biochemical and Biophysical Research Communications. 2006; 345: 998–1003. https://doi.org/10.1016/j.bbrc.2006.04.151.
- [76] Peters S, Thompson BA, Perrin M, James P, Zentner D, Kalman JM, et al. Arrhythmic Phenotypes Are a Defining Feature of Dilated Cardiomyopathy-Associated SCN5A Variants: A Systematic Review. Circulation. Genomic and Precision Medicine. 2022; 15: e003432. https://doi.org/10.1161/CIRCGEN.121.003432.
- [77] Nomura Y, Momoi N, Hirono K, Hata Y, Takasaki A, Nishida N, et al. A novel MYH7 gene mutation in a fetus with left ventricular noncompaction. The Canadian Journal of Cardiology. 2015; 31: 103.e1–3. https://doi.org/10.1016/j.cjca.2014.11.012.
- [78] Hirono K, Hata Y, Miyao N, Okabe M, Takarada S, Nakaoka H, et al. Increased Burden of Ion Channel Gene Variants Is Related to Distinct Phenotypes in Pediatric Patients With Left Ventricular Noncompaction. Circulation. Genomic and Precision Medicine. 2020; 13: e002940. https://doi.org/10.1161/CI RCGEN.119.002940.
- [79] Hirono K, Sakai T, Hata Y, Nishida N. The presence of multiple variants affects the clinical phenotype and prognosis in left ventricular noncompaction after surgery. The Journal of Thoracic and Cardiovascular Surgery. 2018; 155: e101–e109. https://doi.org/10.1016/j.jtcvs.2017.10.053.
- [80] Hoedemaekers YM, Caliskan K, Michels M, Frohn-Mulder I, van der Smagt JJ, Phefferkorn JE, et al. The importance of genetic counseling, DNA diagnostics, and cardiologic family screening in left ventricular noncompaction cardiomyopathy. Circulation. Cardiovascular Genetics. 2010; 3: 232–239. https://doi.org/10.1161/CIRCGENETICS.109.903898.
- [81] van Waning JI, Moesker J, Heijsman D, Boersma E, Majoor-Krakauer D. Systematic Review of Genotype-Phenotype Correlations in Noncompaction Cardiomyopathy. Journal of the American Heart Association. 2019; 8: e012993. https://doi.org/10.1161/JAHA.119.012993.
- [82] Finsterer J, Stöllberger C, Towbin JA. Left ventricular non-compaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nature Reviews. Cardiology. 2017; 14: 224–237. https://doi.org/10.1038/nrcardio.2016.207.
- [83] Finsterer J, Stöllberger C, Gaismayer K, Janssen B. Acquired noncompaction in Duchenne muscular dystrophy. International Journal of Cardiology. 2006; 106: 420–421. https://doi.org/10. 1016/j.ijcard.2005.01.018.
- [84] Finsterer J. Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatric Cardiology. 2009; 30: 659–681. https://doi.org/10.1007/s00246-008-9359-0.
- [85] Vermeer AMC, van Engelen K, Postma AV, Baars MJH, Christiaans I, De Haij S, *et al.* Ebstein anomaly associated with left

- ventricular noncompaction: an autosomal dominant condition that can be caused by mutations in MYH7. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics. 2013; 163C: 178–184. https://doi.org/10.1002/ajmg.c.31365.
- [86] Liu Y, Chen H, Shou W. Potential Common Pathogenic Pathways for the Left Ventricular Noncompaction Cardiomyopathy (LVNC). Pediatric Cardiology. 2018; 39: 1099–1106. https://doi.org/10.1007/s00246-018-1882-z.
- [87] Abela M, D'Silva A. Left Ventricular Trabeculations in Athletes: Epiphenomenon or Phenotype of Disease? Current Treatment Options in Cardiovascular Medicine. 2018; 20: 100. https://doi. org/10.1007/s11936-018-0698-8.
- [88] Gati S, Rajani R, Carr-White GS, Chambers JB. Adult left ventricular noncompaction: reappraisal of current diagnostic imaging modalities. JACC. Cardiovascular Imaging. 2014; 7: 1266–1275. https://doi.org/10.1016/j.jcmg.2014.09.005.
- [89] Ivanov A, Dabiesingh DS, Bhumireddy GP, Mohamed A, Asfour A, Briggs WM, et al. Prevalence and Prognostic Significance of Left Ventricular Noncompaction in Patients Referred for Cardiac Magnetic Resonance Imaging. Circulation. Cardiovascular Imaging. 2017; 10: e006174. https://doi.org/10.1161/CIRCIMAGING.117.006174.
- [90] Aras D, Ozeke O, Cay S, Ozcan F, Baser K, Dogan U, et al. Arrhythmogenic Noncompaction Cardiomyopathy: Is There an Echocardiographic Phenotypic Overlap of Two Distinct Cardiomyopathies? Journal of Cardiovascular Ultrasound. 2015; 23: 186–190. https://doi.org/10.4250/jcu.2015.23.3.186.
- [91] Zhang W, Chen H, Qu X, Chang CP, Shou W. Molecular mechanism of ventricular trabeculation/compaction and the pathogenesis of the left ventricular noncompaction cardiomyopathy (LVNC). American Journal of Medical Genetics. Part C, Seminars in Medical Genetics. 2013; 163C: 144–156. https://doi.org/10.1002/ajmg.c.31369.
- [92] Engberding R, Yelbuz TM, Breithardt G. Isolated noncompaction of the left ventricular myocardium a review of the literature two decades after the initial case description. Clinical Research in Cardiology: Official Journal of the German Cardiac Society. 2007; 96: 481–488. https://doi.org/10.1007/s00392-007-0528-6.
- [93] Chen H, Zhang W, Li D, Cordes TM, Mark Payne R, Shou W. Analysis of ventricular hypertrabeculation and noncompaction using genetically engineered mouse models. Pediatric Cardiology. 2009; 30: 626–634. https://doi.org/10.1007/s00246-009-9406-5.
- [94] Ichida F. Left ventricular noncompaction. Circulation Journal: Official Journal of the Japanese Circulation Society. 2009; 73: 19–26. https://doi.org/10.1253/circj.cj-08-0995.
- [95] Sedmera D, Pexieder T, Rychterova V, Hu N, Clark EB. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. The Anatomical Record. 1999; 254: 238–252. https://doi.org/10.1002/(SICI)1097-0185(19990201)254:2<238::AID-AR10>3.0.CO;2-V.
- [96] Moorman AFM, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiological Reviews. 2003; 83: 1223–1267. https://doi.org/10.1152/physrev.00006. 2003
- [97] Del Monte-Nieto G, Ramialison M, Adam AAS, Wu B, Aharonov A, D'Uva G, et al. Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature. 2018; 557: 439–445. https://doi.org/10.1038/ s41586-018-0110-6.
- [98] Wessels A, Sedmera D. Developmental anatomy of the heart: a tale of mice and man. Physiological Genomics. 2003; 15: 165– 176. https://doi.org/10.1152/physiolgenomics.00033.2003.
- [99] Kuno K, Matsushima K. ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type I motifs and

- its spacing region. The Journal of Biological Chemistry. 1998; 273: 13912–13917. https://doi.org/10.1074/jbc.273.22.13912.
- [100] Stankunas K, Hang CT, Tsun ZY, Chen H, Lee NV, Wu JI, et al. Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Developmental Cell. 2008; 14: 298–311. https://doi.org/10.1016/j.devcel.2007. 11.018.
- [101] Shi W, Scialdone AP, Emerson JI, Mei L, Wasson LK, Davies HA, et al. Missense Mutation in Human CHD4 Causes Ventricular Noncompaction by Repressing ADAMTS1. Circulation Research. 2023; 133: 48–67. https://doi.org/10.1161/CIRCRESA HA.122.322223.
- [102] Ben-Shachar G, Arcilla RA, Lucas RV, Manasek FJ. Ventricular trabeculations in the chick embryo heart and their contribution to ventricular and muscular septal development. Circulation Research. 1985; 57: 759–766. https://doi.org/10.1161/01.res.57.5.759.
- [103] Sedmera D, Thomas PS. Trabeculation in the embryonic heart. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 1996; 18: 607. https://doi.org/10.1002/bies.950180714.
- [104] Yang J, Bücker S, Jungblut B, Böttger T, Cinnamon Y, Tchorz J, et al. Inhibition of Notch2 by Numb/Numblike controls myocardial compaction in the heart. Cardiovascular Research. 2012; 96: 276–285. https://doi.org/10.1093/cvr/cvs250.
- [105] Choquet C, Nguyen THM, Sicard P, Buttigieg E, Tran TT, Kober F, et al. Deletion of Nkx2-5 in trabecular myocardium reveals the developmental origins of pathological heterogeneity associated with ventricular non-compaction cardiomyopathy. PLoS Genetics. 2018; 14: e1007502. https://doi.org/10.1371/jo urnal.pgen.1007502.
- [106] Towbin JA. Ion channel dysfunction associated with arrhythmia, ventricular noncompaction, and mitral valve prolapse: a new overlapping phenotype. Journal of the American College of Cardiology. 2014; 64: 768–771. https://doi.org/10.1016/j.jacc.2014.06.1154.
- [107] Neuhaus H, Rosen V, Thies RS. Heart specific expression of mouse BMP-10 a novel member of the TGF-beta superfamily. Mechanisms of Development. 1999; 80: 181–184. https://doi.or g/10.1016/s0925-4773(98)00221-4.
- [108] Grego-Bessa J, Luna-Zurita L, del Monte G, Bolós V, Melgar P, Arandilla A, et al. Notch signaling is essential for ventricular chamber development. Developmental Cell. 2007; 12: 415–429. https://doi.org/10.1016/j.devcel.2006.12.011.
- [109] Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science (New York, N.Y.). 1999; 284: 770–776. https://doi.org/10.1126/ science.284.5415.770.
- [110] D'Amato G, Luxán G, de la Pompa JL. Notch signalling in ventricular chamber development and cardiomyopathy. The FEBS Journal. 2016; 283: 4223–4237. https://doi.org/10.1111/febs.13773.
- [111] Chen H, Zhang W, Sun X, Yoshimoto M, Chen Z, Zhu W, *et al.* Fkbp1a controls ventricular myocardium trabeculation and compaction by regulating endocardial Notch1 activity. Development (Cambridge, England). 2013; 140: 1946–1957. https://doi.org/10.1242/dev.089920.
- [112] Kim TG, Chen J, Sadoshima J, Lee Y. Jumonji represses atrial natriuretic factor gene expression by inhibiting transcriptional activities of cardiac transcription factors. Molecular and Cellular Biology. 2004; 24: 10151–10160. https://doi.org/10.1128/MC B.24.23.10151-10160.2004.
- [113] Kim TG, Jung J, Mysliwiec MR, Kang S, Lee Y. Jumonji represses alpha-cardiac myosin heavy chain expression via inhibiting MEF2 activity. Biochemical and Biophysical Research Communications. 2005; 329: 544–553. https://doi.org/10.1016/

- j.bbrc.2005.01.154.
- [114] Jung J, Kim TG, Lyons GE, Kim HRC, Lee Y. Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. The Journal of Biological Chemistry. 2005; 280: 30916–30923. https://doi.org/10.1074/jbc.M414482200.
- [115] Toyoda M, Shirato H, Nakajima K, Kojima M, Takahashi M, Kubota M, et al. jumonji downregulates cardiac cell proliferation by repressing cyclin D1 expression. Developmental Cell. 2003; 5: 85–97. https://doi.org/10.1016/s1534-5807(03) 00189-8.
- [116] de la Pompa JL. Notch signaling in cardiac development and disease. Pediatric Cardiology. 2009; 30: 643–650. https://doi.or g/10.1007/s00246-008-9368-z.
- [117] Pashmforoush M, Lu JT, Chen H, Amand TS, Kondo R, Pradervand S, et al. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell. 2004; 117: 373–386. https://doi.org/10.1016/s0092-8674(04)00405-2.
- [118] Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development (Cambridge, England). 2004; 131: 2219– 2231. https://doi.org/10.1242/dev.01094.
- [119] Huang J, Elicker J, Bowens N, Liu X, Cheng L, Cappola TP, *et al.* Myocardin regulates BMP10 expression and is required for heart development. The Journal of Clinical Investigation. 2012; 122: 3678–3691. https://doi.org/10.1172/JCI63635.
- [120] Llerena-Velastegui J, Velastegui-Zurita S, Santander-Fuentes C, Dominguez-Gavilanes D, Roa-Guerra A, Jesus ACFSD, *et al.* Advances and challenges in the diagnosis and management of left ventricular noncompaction in adults: A literature review. Current Problems in Cardiology. 2024; 49: 102571. https://doi.org/10.1016/j.cpcardiol.2024.102571.
- [121] Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart (British Cardiac Society). 2001; 86: 666–671. https://doi.org/10.1136/heart.86.6.666.
- [122] Gati S, Papadakis M, Papamichael ND, Zaidi A, Sheikh N, Reed M, *et al.* Reversible de novo left ventricular trabeculations in pregnant women: implications for the diagnosis of left ventricular noncompaction in low-risk populations. Circulation. 2014; 130: 475–483. https://doi.org/10.1161/CIRCULATIONA HA.114.008554.
- [123] Thuny F, Jacquier A, Jop B, Giorgi R, Gaubert JY, Bartoli JM, et al. Assessment of left ventricular non-compaction in adults: side-by-side comparison of cardiac magnetic resonance imaging with echocardiography. Archives of Cardiovascular Diseases. 2010; 103: 150–159. https://doi.org/10.1016/j.acvd.2010.01.002.
- [124] Nucifora G, Aquaro GD, Pingitore A, Masci PG, Lombardi M. Myocardial fibrosis in isolated left ventricular non-compaction and its relation to disease severity. European Journal of Heart Failure. 2011; 13: 170–176. https://doi.org/10.1093/eurjhf/hfq 222.
- [125] Ikeda U, Minamisawa M, Koyama J. Isolated left ventricular non-compaction cardiomyopathy in adults. Journal of Cardiology. 2015; 65: 91–97. https://doi.org/10.1016/j.jjcc.2014.10.005.
- [126] Petersen SE, Selvanayagam JB, Wiesmann F, Robson MD, Francis JM, Anderson RH, et al. Left ventricular noncompaction: insights from cardiovascular magnetic resonance imaging. Journal of the American College of Cardiology. 2005; 46: 101–105. https://doi.org/10.1016/j.jacc.2005.03.045.
- [127] Nucifora G, Sree Raman K, Muser D, Shah R, Perry R, Awang Ramli KA, et al. Cardiac magnetic resonance evaluation of left ventricular functional, morphological, and structural features in

- children and adolescents vs. young adults with isolated left ventricular non-compaction. International Journal of Cardiology. 2017; 246: 68–73. https://doi.org/10.1016/j.ijcard.2017.05.100.
- [128] Sanna GD, Piga A, Parodi G, Sinagra G, Papadakis M, Pantazis A, et al. The Electrocardiogram in the Diagnosis and Management of Patients With Left Ventricular Non-Compaction. Current Heart Failure Reports. 2022; 19: 476–490. https://doi.org/10.1007/s11897-022-00580-z.
- [129] Steffel J, Kobza R, Namdar M, Wolber T, Brunckhorst C, Lüscher TF, et al. Electrophysiological findings in patients with isolated left ventricular non-compaction. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology. 2009; 11: 1193–1200. https://doi.org/10.1093/euro pace/eup187.
- [130] Cetin MS, Ozcan Cetin EH, Canpolat U, Cay S, Topaloglu S, Temizhan A, et al. Usefulness of Fragmented QRS Complex to Predict Arrhythmic Events and Cardiovascular Mortality in Patients With Noncompaction Cardiomyopathy. The American Journal of Cardiology. 2016; 117: 1516–1523. https://doi.org/ 10.1016/j.amjcard.2016.02.022.
- [131] Akinseye OA, Ibebuogu UN, Jha SK. Left Ventricular Non-compaction Cardiomyopathy and Recurrent Polymorphic Ventricular Tachycardia: A Case Report and Literature Review. The Permanente Journal. 2017; 21: 17–45. https://doi.org/10.7812/TPP/17-045.
- [132] Ross SB, Jones K, Blanch B, Puranik R, McGeechan K, Barratt A, et al. A systematic review and meta-analysis of the prevalence of left ventricular non-compaction in adults. European Heart Journal. 2020; 41: 1428–1436. https://doi.org/10.1093/eurheart j/ehz317.
- [133] Brescia ST, Rossano JW, Pignatelli R, Jefferies JL, Price JF, Decker JA, et al. Mortality and sudden death in pediatric left ventricular noncompaction in a tertiary referral center. Circulation. 2013; 127: 2202–2208. https://doi.org/10.1161/CIRCUL ATIONAHA.113.002511.
- [134] Bustea C, Bungau AF, Tit DM, Iovanovici DC, Toma MM, Bungau SG, et al. The Rare Condition of Left Ventricular Non-Compaction and Reverse Remodeling. Life (Basel, Switzerland). 2023; 13: 1318. https://doi.org/10.3390/life13061318.
- [135] Okan T, Lodeen H, Abawkaw M, Stetsiv T, Semeniv V. Left Ventricular Noncompaction Cardiomyopathy in an Elderly Patient: A Case Report and Literature Review. Cureus. 2023; 15: e38305. https://doi.org/10.7759/cureus.38305.
- [136] Afify H, Ghosh S, Khalil M, Milunski MR. An Unusual Presentation of Left Ventricular Non-compaction Cardiomyopathy in an Elderly Patient. Cureus. 2021; 13: e15112. https://doi.org/10.7759/cureus.15112.
- [137] Stöllberger C, Blazek G, Gessner M, Bichler K, Wegner C, Finsterer J. Age-dependency of cardiac and neuromuscular findings in adults with left ventricular hypertrabeculation/noncompaction. The American Journal of Cardiology. 2015; 115: 1287–1292. https://doi.org/10.1016/j.amjcard.2015.02.014.
- [138] Bogle C, Colan SD, Miyamoto SD, Choudhry S, Baez-Hernandez N, Brickler MM, et al. Treatment Strategies for Cardiomyopathy in Children: A Scientific Statement From the American Heart Association. Circulation. 2023; 148: 174–195. https://doi.org/10.1161/CIR.0000000000001151.
- [139] Boban M, Pesa V, Persic V, Zulj M, Malcic I, Beck N, et al. Overlapping Phenotypes and Degree of Ventricular Dilatation Are Associated with Severity of Systolic Impairment and Late Gadolinium Enhancement in Non-Ischemic Cardiomyopathies. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2018; 24: 5084–5092. https:

- //doi.org/10.12659/MSM.909172.
- [140] Kock TO, Børresen MF, Sillesen AS, Vøgg ROB, Norsk JB, Pærregaard MM, et al. Left Ventricular Noncompaction in Childhood: Echocardiographic Follow-Up and Prevalence in First-Degree Relatives. JACC. Advances. 2024; 3: 100829. https://doi.org/10.1016/j.jacadv.2024.100829.
- [141] Bagnall RD, Singer ES, Wacker J, Nowak N, Ingles J, King I, et al. Genetic Basis of Childhood Cardiomyopathy. Circulation. Genomic and Precision Medicine. 2022; 15: e003686. https://doi.org/10.1161/CIRCGEN.121.003686.
- [142] Kontorovich AR. Approaches to Genetic Screening in Cardiomyopathies: Practical Guidance for Clinicians. JACC. Heart Failure. 2023; 11: 133–142. https://doi.org/10.1016/j.jchf.2022. 11.025.
- [143] Łuczak-Woźniak K, Werner B. Left Ventricular Noncompaction-A Systematic Review of Risk Factors in the Pediatric Population. Journal of Clinical Medicine. 2021; 10: 1232. https://doi.org/10.3390/jcm10061232.
- [144] Aung N, Doimo S, Ricci F, Sanghvi MM, Pedrosa C, Woodbridge SP, et al. Prognostic Significance of Left Ventricular Noncompaction: Systematic Review and Meta-Analysis of Observational Studies. Circulation. Cardiovascular Imaging. 2020; 13: e009712. https://doi.org/10.1161/CIRCIMAGING. 119.009712.
- [145] Weiford BC, Subbarao VD, Mulhern KM. Noncompaction of the ventricular myocardium. Circulation. 2004; 109: 2965– 2971. https://doi.org/10.1161/01.CIR.0000132478.60674.D0.
- [146] Agmon Y, Connolly HM, Olson LJ, Khandheria BK, Seward JB. Noncompaction of the ventricular myocardium. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography. 1999; 12: 859–863. https://doi.org/10.1016/s0894-7317(99)70192-6.
- [147] Shi WY, Moreno-Betancur M, Nugent AW, Cheung M, Colan S, Turner C, et al. Long-Term Outcomes of Childhood Left Ventricular Noncompaction Cardiomyopathy: Results From a National Population-Based Study. Circulation. 2018; 138: 367–376. https://doi.org/10.1161/CIRCULATIONA HA.117.032262.
- [148] Ritter M, Oechslin E, Sütsch G, Attenhofer C, Schneider J, Jenni R. Isolated noncompaction of the myocardium in adults. Mayo Clinic Proceedings. 1997; 72: 26–31. https://doi.org/10. 4065/72.1.26.
- [149] Al-Kindi SG, El-Amm C, Ginwalla M, Hoit BD, Park SJ, Oliveira GH. Heart transplant outcomes in patients with left ventricular non-compaction cardiomyopathy. The Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation. 2015; 34: 761–765. https://doi.org/10.1016/j.healun.2014.11.005.
- [150] Ramachandran P, Woo JG, Ryan TD, Bryant R, Heydarian HC, Jefferies JL, et al. The Impact of Concomitant Left Ventricular Non-compaction with Congenital Heart Disease on Perioperative Outcomes. Pediatric Cardiology. 2016; 37: 1307–1312. https://doi.org/10.1007/s00246-016-1435-2.
- [151] Kirk R, Dipchand AI, Rosenthal DN, Addonizio L, Burch M, Chrisant M, et al. The International Society for Heart and Lung Transplantation Guidelines for the management of pediatric heart failure: Executive summary. [Corrected]. The Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation. 2014; 33: 888–909. https://doi.org/10.1016/j.healun.2014.06.002.
- [152] Das BB. A Review of Contemporary and Future Pharmacotherapy for Chronic Heart Failure in Children. Children (Basel, Switzerland). 2024; 11: 859. https://doi.org/10.3390/children 11070859.
- [153] Fazio G, Corrado G, Zachara E, Rapezzi C, Sulafa AK, Sutera L, et al. Anticoagulant drugs in noncompaction: a manda-

- tory therapy? Journal of Cardiovascular Medicine (Hagerstown, Md.). 2008; 9: 1095–1097. https://doi.org/10.2459/JCM. 0b013e328308da04.
- [154] Kido K, Guglin M. Anticoagulation Therapy in Specific Cardiomyopathies: Isolated Left Ventricular Noncompaction and Peripartum Cardiomyopathy. Journal of Cardiovascular Pharmacology and Therapeutics. 2019; 24: 31–36. https://doi.org/ 10.1177/1074248418783745.
- [155] Sohns C, Ouyang F, Volkmer M, Metzner A, Nürnberg JH, Ventura R, et al. Therapy of ventricular arrhythmias in patients suffering from isolated left ventricular non-compaction cardiomyopathy. Europace: European Pacing, Arrhythmias, and
- Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology. 2019; 21: 961–969. https://doi.org/10.1093/europace/euz016.
- [156] Li D, Wang C. Advances in symptomatic therapy for left ventricular non-compaction in children. Frontiers in Pediatrics. 2023; 11: 1147362. https://doi.org/10.3389/fped.2023.1147362.
- [157] Toyono M, Kondo C, Nakajima Y, Nakazawa M, Momma K, Kusakabe K. Effects of carvedilol on left ventricular function, mass, and scintigraphic findings in isolated left ventricular noncompaction. Heart (British Cardiac Society). 2001; 86: E4. http s://doi.org/10.1136/heart.86.1.e4.

