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Abstract

Left ventricular noncompaction (LVNC), also called noncompaction cardiomyopathy (NCM), is a myocardial disease that affects children
and adults. Morphological features of LVNC include a noncompacted spongiform myocardium due to the presence of excessive trabecu-
lations and deep recesses between prominent trabeculae. Incidence and prevalence rates of this disease remain contentious due to varying
clinical phenotypes, ranging from an asymptomatic phenotype to fulminant heart failure, cardiac dysrhythmias, and sudden death. There
is a strong genetic component associated with LVNC, and nearly half of pediatric LVNC patients harbor an identifiable genetic mutation.
Recent studies have identified LVNC-associated mutations in genes involved in intercellular trafficking and cytoskeletal integrity, in
addition to well-known mutations causing abnormal cardiac embryogenesis. Currently, the diagnosis is based on symptoms, as well as
various diagnostic criteria, including echocardiography, electrocardiograms, and cardiac magnetic resonance imaging. Meanwhile, clin-
ical management is primarily focused on the prevention of complications, such as heart failure, thromboembolic events, life-threatening
arrhythmias, and stroke. Continued research is focusing on the genetic etiology, the development of gold-standard diagnostic criteria,
and evidence-based treatment guidelines across all age groups. This review article will highlight the genotype—phenotype relationship
within pediatric LVNC patients and assess the latest discoveries in genetic and molecular research aimed at improving their diagnostic
and therapeutic management.
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1. Introduction some patients may have a right ventricle (RV) only pheno-
type, a biventricular phenotype, an undulating cardiomy-
opathy phenotype (meaning the phenotype starts as one
phenotype—such as DCM with hyper-trabeculation—and
then changes to an HCM with hyper-trabeculation and back
compaction (LVNC), also called noncompaction cardiomy- to the DCM with hyper-trabeculation phenotype) [3,4]. The
opathy (NCM), results from abnormal myocardial matura- ¢ ,noenital heart disease (CHD) phenotype is a co-morbidity
tion and compaction and is a classified form of cardiomy- in patients with LVNC and CHD [5,6]. In contrast, the Eu-
opathy in the United States [1]. Per the American Heart As- ropean Society of Cardiology identifies LVNC as an “un-
sociation’s 2019 statement on cardiomyopathy in children, classified” cardiomyopathy or morphological trait shared
LVNC meets the classification as a congenital cardiomy- by phenotypically distinct cardiomyopathies [7]. Although
opathy in pediatric patients and presents in isolation, in- there is a divergence in characterizing LVNC as a normal
cluding those with normal systolic function (isolated form), variation of fetal heart development, a distinct genetic car-
or alongside characteristics seen in other cardiomyopathies diomyopathy, or an acquired morphological trait associated

(non-isolated form) [2]. Non-isolated forms of LVNC can i other types of cardiomyopathies, structural features of
be subdivided into a dilated cardiomyopathy (DCM) phe- this entity are broadly recognized among experts [3,8,9].
notype, a hypertrophic cardiomyopathy (HCM) phenotype,

an arrhythmogenic cardiomyopathy (ACM) phenotype, or a Morphologically, LVNC has two distinct layers within
restrictive cardiomyopathy (RCM) phenotype. In addition, the LV myocardium: the spongy, noncompacted meshwork

A cardiomyopathy is a disease of the myocardium that
causes systolic dysfunction, diastolic dysfunction, or an in-
creased propensity for arrhythmias. Left ventricular non-
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Fig. 1. Morphopathological appearance of left ventricular noncompaction (LVNC). (A) An autopsy image of the heart seen as a

spongy myocardium. Arrows indicate trabeculations towards the apex and left ventricle (LV) lateral walls. (B) Schema of noncompacted

and compacted layers of the LV walls with deep trabeculations and intertrabecular recesses. Adapted with permission from Towbin and
Bowles [11]. The failing heart. Nature 415, 227-233 (2002). https://doi.org/10.1038/415227a.

and the thin compacted layer mainly seen at the apical re-
gion of the heart [10,11]. The “spongy” myocardial mesh-
work includes extensive trabeculae and deep recesses be-
tween trabeculae carneae that provide a potential source for
severe cardiac complications, such as thrombosis, arrhyth-
mias, cardiac arrest, and heart failure (Fig. 1, Ref. [11]).
Additionally, the RV may be affected in isolation or in com-
bination with the LV, leading to isolated LV, RV, or biven-
tricular heart failure [5,12—14].

Genetically, LVNC is heterogeneous, and 45% of the
affected pediatric population have identified genetic mu-
tations [14,15]. Among adults, LVNC is a rare diag-
nosis and 30% of the affected adult population have an
identified genetic mutation or chromosomal abnormality
[9,12,13,16,17]. Despite a strong association with genetic
abnormalities, a direct genotype-phenotype relationship has
yet to be established in many LVNC cases [4]. This is par-
tially due to diverse clinical and pathological phenotypes of
LVNC in patients of all ages, including acquired noncom-
paction cases of various etiologies and speculative modi-
fier factors. Another challenge in identifying the genotype-
phenotype relationship is the diversity of identified genetic
mutations in causal and modifier genes [14,18,19]. Recent
studies have utilized whole exome sequencing among af-
fected family members to further investigate the complex
genotype-phenotype relationships of ventricular noncom-
paction [19-22].

This review article will broadly outline recent im-
provements in the diagnosis and management of this disease

in pediatric patients with an emphasis on underlying genetic
and molecular factors in the development of LVNC.

2. Epidemiology

The first cases of isolated LVNC without cardiac mal-
formations were described in the 1990s [23,24] and because
of advances in echocardiography and cardiac magnetic res-
onance (CMR) imaging, the ability to diagnose LVNC has
improved, enabling better diagnostic accuracy and leading
to an increasing rate of patients currently identified with
LVNC. Despite thirty years of progress, the true estimation
of'the incidence and prevalence of LVNC remains challeng-
ing due to the heterogeneous nature of the disease, vary-
ing diagnostic criteria, and a tendency for hypertrabecu-
lation and noncompaction of the myocardium in high-risk
populations, such as patients with CHD, heart failure or
other cardiac and non-cardiac morbidities, and stresses [25—
29]. Adults without heart failure have shown to develop
hypertrabeculation as an adaptive response to physiolog-
ical stress. This phenomenon has been demonstrated in
adult athletes, pregnant women, and patients with sickle
cell anemia, skeletal myopathies, and chronic renal fail-
ure [8,30]. Unlike hypertrabeculation due to physiological
stress, LVNC caused by genetic mutation will not fully re-
solve once the physiological stress is removed [14].

Approximately 5% of pediatric cardiomyopathy pa-
tients have been diagnosed with LVNC compared with 3%
to 4% of adult patients who have heart failure with asso-
ciated LVNC [18,31,32]. A recent pediatric study showed
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Table 1. Genes associated with left ventricular noncompaction (LVNC) or noncompaction cardiomyopathy (NCM).

Chromosome  LVNC or NCM Genes [References]  Additional Cardiomyopathy Phenotypes [References]
Chrllpl5 MLP; SOX6 [34] DCM [39], HCM [40,41]
Chr8p23 GATA4 [35] CHD [42]

Chrl5q14 ACTCI [43,44] DCM [45], HCM [46], CHD [47]
Chrlq43 ACTN2 [20] DCM [39], HCM [48]
Chrl8ql1 MIBI [49]

Chrllqll MYBPC3 [50] DCM [51], HCM [52]
Chrl4qll MYH7 [53] HCM [54], CHD [55]
Chr15q22 TPM]I [56] DCM [57], HCM [58], CHD [56,59]
Chr18q12 DTNA [18]

Chr2q35 DES [60] DCM [61]

Chr2p13 BMP10[36]

ChrXq24 LAMP? [62,63] DCM [64], HCM [63]
Chr10qg23 LDB3 [65,66] DCM [67], HCM [48]
ChrXq28 TAZ [18] DCM [68]

Chr2g31 TTN [38] ACM [69], DCM [70], HCM [71]
Chr3p22 SCN54 [37] DCM [72], HCM [73]
Chr10q22 VCL [74] HCM [74,75], DCM [76]

ACM, arrhythmogenic cardiomyopathy; CHD, congenital heart disease; DCM, dilated cardiomyopathy;

HCM, hypertrophic cardiomyopathy; NCM, noncompaction cardiomyopathy; MLP, glycine-rich protein;
SOX6, SRY-Box Transcription Factor 6; GATA4, GATA binding protein 4; ACTC]I, cardiac a-actin; MIBI,
MIB E3 ubiquitin protein ligase 1; MYBPC3, myosin binding protein C; MYH7, S-myosin heavy chain;

TPM1, a-tropomyosin; DTNA, alpha-dystrobrevin; DES, desmin; BMP10, bone morphogenetic protein 10;

LAMP?2, Lysosome-associated membrane glycoprotein 2; LDB3, lim domain binding 3; TAZ, tafazzin; TTN,

titin; SCN5A, sodium channel protein type 5 subunit alpha; V'CL, vinculin.

nearly 9% of all cardiomyopathy cases are now diagnosed
with LVNC, recognizing it as the third most common form
of inherited cardiomyopathies in children [2]. Per the Pe-
diatric Cardiomyopathy Registry (PCMR), LVNC has a fa-
milial inheritance pattern of up to 40% with estimated oc-
currence of ~1 per 7000 live births [1,16,32]. The re-
ported ratio of isolated to non-isolated forms of LVNC is
6:1 [2]. Recently, a prevalence of LVNC has been esti-
mated as of 0.076% in a population-based cohort of unre-
markable neonates by echocardiography [12], while the es-
timated prevalence in middle and high school students was
17.5% based on CMR screening [33]. Both studies demon-
strated that LVNC was associated with lower parameters in
systolic function and with an increased risk of LV dysfunc-
tion, even if clinically asymptomatic.

3. Genetic Etiologies and
Genotype-Phenotype Associations

Genetic etiologies of isolated primary LVNC are het-
erogeneous, although the genetic basis is still unresolved
in most LVNC patients. While gene defects are identified
in only 30% of adult patients with LVNC [15], a familial
trait is evident in approximately 40% of infants with LVNC
being the dominant cases with incomplete penetrance of au-
tosomal dominant, autosomal recessive, or X-linked inher-
itance patterns [3]. In some cases, mitochondrial inheri-
tance is noted. A genome-wide linkage analysis in families
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with autosomal dominant LVNC identified the associated
genetic Joci on chromosome (Chr) 11p15 and 8p23.1. The
Chr.11 locus includes cardiomyopathy-associated genes,
such as glycine-rich protein (CSRP3/MLP) and SRY-Box
Transcription Factor 6 (SOX6) [34], while an interstitial
deletion of the Chr.8p23.1 contains GATA binding protein
4 (GATA4), a zinc-finger transcription factor involved in the
cardiac embryogenesis [35]. Other specific gene mutations
occur in a relatively small number of genes (Table 1, Ref.
[18,20,34—76])—including cardiac a-actin (ACTC1), bone
morphogenetic protein 10 (BMP10), myosin binding pro-
tein C (MYBPC3), -myosin heavy chain (MYH7), MIB
E3 ubiquitin protein ligase 1 (MIBI), alpha-dystrobrevin
(DTNA), a-tropomyosin (7PM1), lim domain binding 3
(LDB3), PR domain containing 16 (PRDM]I6), and car-
diac troponin T (TNNT2)—have been linked with non-
compaction phenotypes in humans and mouse models to
date [10,14,36,77]. LVNC patients with heart failure have
demonstrated a high rate of pathologic variants in 77N
(titin) and SCN5A (sodium channel protein type 5 sub-
unit alpha), supporting the notion that these genes are im-
plicated in the development of LVNC as disease-causing
or disease-modifying genes [37,38]. Evidence shows an
increased burden of variants in ion channel genes, such
as SCN5A, ANK2, CACNAIC, ABCCY, HCN4, KCNH2,
KCNE3, KCNQI, RYRI, and RYR2 in pediatric LVNC pa-
tients as reported by Hirono et al. [78]. Multiple stud-
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Fig. 2. Schematic representation of cardiomyocyte structure and location of genes implicated with LVNC phenotypes and molec-

ular pathways invelved. Cross symbols indicate mutated genes that encode cytoskeletal, ion channel, nuclear, sarcomere, and sarcoplas-
mic proteins associated with LVNC. ATP, adenosine triphosphate; DSC2, desmocollin 2; DSP, desmoplakin; DSG2, desmoglein 2; JUP,
junctional plakoglobin; PKP2, plakophilin 2; TMEM43, transmembrane protein 43; SYNE2, nesprin 2; ANKRD1, ankyrin repeat domain
1; MYPN, myopalladin; PALLD, palladin; TNNT2, cardiac troponin T; DMD, dystrophin; DYSF, dysferlin, CAV3, caveolin 3; LAMA2,
laminin subunit alpha 2; SG/DG, sarcoglycans/dystroglycans; PLEC, plectin; /LK, integrin-linked kinase; LRP2, LDL receptor related
protein 2; NRP2, neuropilin 2; KCNH2, voltage-activated potassium channel; GLBI, galactosidase, beta 1; KIF7, kinesin 7; ALMS1, Al-
strom syndrome protein 1; PEX7, peroxisomal biogenesis factor 7, OBSCN, obscurin; WDFY3, WD repeat and FY VE domain-containing
protein 3; TBXS, T-box protein 5; FHLZ2, four-and-a-half LIM domain protein 2; ERG, ETS-related gene; SLC9A3R1, sodium-hydrogen
antiporter 3 regulator 1; PDLIM7, PDZ and LIM domain protein 7; HDAC10, histone deacetylase 10; HIST1H4B, histone H4; SMARCD3,
SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 3; MED12, mediator complex subunit
12; SLC25A426, solute carrier family 25 member 26; AARS, alanyl-tRNA synthetase; MIPEP, mitochondrial intermediate peptidase;
PPA2, protein phosphatase 2A; MRPS2, mitochondrial ribosomal protein S2; ELAC2, ElaC ribonuclease Z2; ACSF3, acyl-CoA syn-
thetase family member 3; CPT2, carnitine palmitoyltransferase 2; ACADVL, acyl-CoA dehydrogenase very long chain; SLC2245, solute

carrier family 22 member 5; CDK5RAPI, CDKS regulatory subunit-associated protein 1.

ies have demonstrated oligogenic or multigenic inheritance
among families with LVNC[9,19,79]. A key study from the
Netherlands demonstrated that 41% of adult and pediatric
probands had an identified genetic mutation, and famil-
ial screening revealed their affected relatives were largely
asymptomatic at the time of diagnosis [80]. Discovering
LVNC in asymptomatic individuals illustrates the impor-
tance of genetic testing of probands and their relatives for
all families with isolated and non-isolated LVNC subtypes.

As shown schematically in Fig. 2, the LVNC-
associated genes identified to date are largely involved
in sarcomere function, mitochondrial function, regulation
of transcription and translation, protein degradation, ion
channel function, and signal transduction. More recently,
genes that encode proteins involved in intercellular traffick-
ing, cellular junction, and cytoskeletal integrity of the my-
ocardium have also been identified [15,36,78,81].

Non-isolated LVNC phenotypes with extended clini-
cal variability in young children have been associated with
mitochondrial disorders, such as Barth syndrome, which
is caused by TAZ/G4.5 (tafazzin) mutations, zaspopathy-
caused mutations in ZASP, hereditary neuromuscular dis-
orders, chromosomal defects (such as 1p36, 1g43, and dis-

tal 5q deletions), Turner syndrome, Ohtahara syndrome, tri-
somy 22, trisomy 13, and DiGeorge syndrome [6,9,18,65,
82—84]. The genotype-phenotype correlation is well identi-
fied between LVNC and X-linked Barth syndrome [18,24].
LVNC has also been associated with a variety of CHDs,
such as multiple, small ventricular septal defects, bicuspid
aortic valve, and Ebstein’s anomalies [28,29]. These co-
existing CHDs may also explain the existence of common
pathogenic pathways in the maldevelopment of the ventric-
ular myocardium [16,85,86].

Acquired LVNC in adult patients has various and spec-
ulative etiologies [30]. Incidences of acquired LVNC has
been demonstrated in athletes, patients with sickle cell ane-
mia, skeletal myopathies and chronic renal failure, and in
pregnant women [8]. It is speculated that acquired ventric-
ular hypertrabeculation in athletes, predominantly in the LV
apex, allows for increased compliance, which reduces wall
stress and strain [87]. Hypertrabeculation in adult patients
with progressive neuromuscular disorders occurs as a part
of myocardial remodeling or it may be acquired to increased
cardiac pre-load and pressure overload or myocardial dam-
age [88,89]. It may also be associated with disturbances in
desmosomes and activation of WNT signaling that results
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in the development of ACM [83,90]. The difference be-
tween physiological hypertrabeculation responses and the
pathological disease of LVNC is the presence of ventricu-
lar dysfunction or fibrosis, cardiac symptoms, and a family
history of cardiomyopathy.

4. Pathogenesis and Molecular Signaling

Formation of the normal ventricular wall is based on
anatomically overlapping morphogenetic events: trabecu-
lation and compaction of the developing cardiac muscles
[91]. During fetal development, ventricular myocardium is
initially composed of trabeculations and deep intertrabec-
ular recesses. At approximately week 5 and 8 in human
embryonic development, cardiac muscle undergoes grad-
ual compaction, which starts from the epicardial towards
the endocardial surface at the base of the heart. As it pro-
gresses inward and distally, the LV apex is the last area to
undergo compaction [92]. It has been speculated that an
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abnormal termination of the myocardial compaction pro-
cess during early development leads to excessive trabec-
ulations with intertrabecular recesses between trabeculae
and a spongy noncompacted LV myocardial appearance, as
shown in Fig. 1 [93,94]. This process can also occur in the
RV. As noted earlier, the study has also identified genetic
mutations associated with intercellular trafficking and cy-
toskeletal integrity, among others (Fig. 2), which may indi-
cate more complex polygenetic interactions lead to the de-
velopment of LVNC’s distinct morphological features [15].

Animal studies have demonstrated that normal trabec-
ulation and compaction processes depend on an exquisite
balance between cardiomyocyte proliferation, differentia-
tion, and maturation [91,93,95,96]. In mice, the trabecula-
tion process starts at E8.0—8.5 when endothelial cells sprout
towards the myocardium, forming endocardial domes filled
with cardiac jelly or the so-called “extracellular matrix
(ECM) bubble” with primitive cardiomyocytes proliferat-
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Fig. 3. Schema of BMP10-mediated signaling in endocardial and myocardial cells. BMP10, bone morphogenetic protein 10; BMPR,
BMP receptor; ALK1, activin receptor-like kinase 1; XIAP, X-linked inhibitor of apoptosis; TAK]1, transforming growth factor beta
(TGF-p)-activated kinase 1; TAB1, TAK1-binding protein 1; MEK1, mitogen-activated protein kinase kinase; MKK, mitogen-activated
protein kinase; ERK, extracellular signal-regulated kinase; p38, protein 38; JNK, c-Jun N-terminal kinase; Smad, suppressor of mother
against decapentaplegic; Nkx2.5, NK2 homeobox 5; myocyte-specific enhancer factor 2C; pS7kip2, cyclin-dependent kinase inhibitor
1C.
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ing into laminar trabeculae [97]. Further, trabeculae un-
dergo assembly, extension and growth followed by the ter-
mination process occurring at around E14.5. Concomi-
tant with trabecular growth, ECM bubbles are progres-
sively reduced from the basal parts to the apex of embry-
onic heart. Myocardial compaction process occurs at the
base of trabeculae adjacent to the outer myocardium, form-
ing the compacted ventricular muscle wall [98]. The devel-
opment of trabeculae is vigorously controlled by a disinte-
grin and metalloproteinase with a thrombospondin motif 1
(ADAMTS!I) protease that digests ECM proteoglycan ver-
sican in the heart [99]. In normal cardiac embryogenesis,
ADAMTS]I expression in the cardiac jelly is suppressed by
brahma-related gene 1 (BRG/)-mediated chromatin remod-
eling, and suppression of ADAMTS] protease is critical for
completion of trabecular growth [100]. Later in the mat-
urating heart, ADAMTS] expression is de-repressed (initi-
ated) in the endocardium; its activation degrades the car-
diac jelly, preventing excessive hyper-trabeculation within
the adjacent myocardium, as seen in LVNC resulting from
the failure of termination of ADAMTS1-mediated trabecu-
lation caused by a single mutation in the CHD4 gene that
encodes chromodomain helicase DNA-binding protein 4
[101].

Signaling pathways such as NOTCH, NRG1, BMP,
and Nkx2-5 have been shown to play critical roles for bal-
anced processes of normal trabeculation and compaction
[49,97,102—-106]. NOTCH is a highly evolutionary con-
served signaling pathway involving transmembrane recep-
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Proband v407I1

tors (NOTCH 1-4) with extracellular and intracellular do-
mains that interact with the ligands (Delta-likel, 3, 4, and
Jaggedl, 2) that control cell fate, differentiation, and pat-
terning [107-109]. In the cardiovascular system, develop-
ment of ventricular myocardium and coronary vessels is
mediated by NOTCHI1, and communication between the
endocardium and myocardium during cardiomyocyte pro-
liferation and differentiation is tightly regulated by NOTCH
signaling [110]. It has been shown that NOTCH activity
within the developing endocardium is regulated by JARID2
[93,111], a transcriptional repressor of several cardiac tran-
scriptional factors, including Nkx2.5, GATA4 [112], MEF2
[113], retinoblastoma protein (RP), and cyclin D1 [114,
115].

NOTCH also controls the expression of BMP10, a
peptide growth factor in the TGF-3 family that functions
as the key regulator of ventricular trabeculation and com-
paction [108,116—118]. In mouse embryos, expression of
BMP10 is documented in the ventricular myocardium from
E9.0 to E13.5 and in the atria from E16.5 to E18.5, sug-
gesting a crucial role for BMP10 in myocardial maturation
[36]. Three specific BMP receptors (BMPRs) have been
identified on endocardial and myocardial cells (Fig. 3), in-
cluding BMPR 1a or activin receptor-like kinase 3 (ALK3),
BMPRI1b (ALK6), and BMPR2 [108]. The C-terminus of
BMP10 binds to BMPR1a and BMPR1b, while two finger-
tip domains (Fingertip1 and Fingertip2) in the 8-domain of
BMP10 bind to the BMPR2 (Fig. 4, Ref. [36]).
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Fig. 4. Chromatographic images of sequencing in the members of the LVNC family (left) and the structure of the BMP10 protein

(right). (A) Chromatographs of direct sequencing (upper panels) and the pedigree of the family with LVNC (lover panel). The proband
indicated by black arrow and affected mother with LVNC carried the ¢.1219G>A (V407]) variant in the BMP10 gene. (B) Structure
of the BMP10 protein. The mature BMP10 forms two domains, alpha and beta. The beta-domain has two finger-shaped convex parts,
which binds to BMPR2. Red arrows indicate the V4071 mutation and its location in the S-domain Fingertip2 of BMP10. Adapted
with permission from Hirono et al. [36] Familial left ventricular non-compaction is associated with a rare p.V407I variant in bone
morphogenetic protein 10. Circ J. 2019 Jul 25;83(8):1737-1746. https://doi.org/10.1253/circj.CJ-19-0116.
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As shown in Fig. 3, BMP10’ binding to its BMPRs
regulates cardiomyocyte proliferation and trabeculation
during cardiogenesis via activation of SMAD1/5/8 (canon-
ical) and MAPK (non-canonical) as a result of phospho-
rylation (p), which downstream activate pathways involve
NKX2-5, MEF2c, and TBX20 cardiogenic factors [93,117],
but inhibiting CDKN1c/p57-kip2 [119]. A pathogenic
BMP10 mutation (c.1219G>A, p.V4071) has recently been
identified in familial LVNC cases, a proband, and her af-
fected mother [36]. The V4071 mutation located in the Fin-
gertip2 domain of BMP10 (Fig. 4) altered the interaction
of BMP10 with receptors, BMPR1a and BMPR2. Subse-
quently, abnormal cytoplasmic aggregations of BMP10 in
cardiomyocytes, inhibition of the proliferation of differen-
tiating H9C2 cardiac myoblasts, and cellular intolerance to
cyclic stretch have been demonstrated [36].

Mibl, another NOTCH pathway element, is associ-
ated with the biventricular noncompaction phenotype, ven-
tricular dilatation, and heart failure when mutated [10]. Ge-
netic testing of 100 European patients identified V943F
and R530X variations in MIBI. Injection of Mib/-mutant
V943F and R530X mRNAs into zebrafish embryos dis-
rupted Notch signaling and reduced myocardial arrest pro-

ducing immature trabeculae and noncompaction [49]. In
LVNC cases with the associated CHD, interruption of the
NOTCH or WNT signaling appears to be part of a “common
final pathway” of this form of LVNC [9,97,108]. LVNC and
ACM also have overlapping associations with WNT signal-
ing disturbances [83,90].

5. Diagnostic Testing

Adult and pediatric LVNC patients are commonly di-
agnosed by imaging at the time of clinical presentation.
Echocardiography is commonly used to diagnose a non-
compacted ventricular myocardium in patients with LVNC
[16,120]. Echocardiographic criteria for diagnosing LVNC
consists of a noncompacted to compacted myocardium ratio
of greater than 2:1 in at least one ventricular segment in end-
diastole. The apical, mid-septal, and mid-lateral ventricular
segments are typically involved [121]. Other studies de-
fine LVNC based on the noncompacted to compacted my-
ocardium ratio being greater than 2:1 in end-systole [27,33].
Cases of increased trabeculations echocardiographic crite-
ria for LVNC during pregnancy with complete or marked
resolution of LV trabeculations postpartum have also been
documented [122].
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Fig. 5. Electrocardiogram images of pediatric patients with left ventricular noncompaction. (A) A 12-lead electrocardiogramin a 1-

year-old patient with LVNC with sinus rhythm, left atrial enlargement, prolonged PR interval, Q wave in V1, and prolonged QTc interval.

(B) A 12-lead electrocardiogram in an infant with LVNC with sinus rhythm, excessive QRS voltage, and biventricular hypertrophy.
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CMR imaging with late gadolinium enhancement
(LGE) testing is suggested for adult and pediatric patients
with suspected LVNC on electrocardiogram (ECG) for pre-
cise clinical assessment of noncompaction, myocardial fi-
brosis, and damage to predict severity of the disease [123,
124]. Diagnostic criteria of LVNC using CMR imaging also
varies among studies, although this method is particularly
useful for adults in providing more reliable assessment of
hypertrabeculation in the apex [125]. Examples of CMR di-
agnostic criteria include the trabeculated mass being greater
than 20% of the global LV mass in end diastole, and an end-
diastolic ratio of noncompacted to compacted myocardium
greater than 2.3:1 in the short and long axis views [126].
Cases of increased trabeculations with de novo echocardio-
graphic criteria for LVNC during pregnancy with complete
or marked resolution of LV trabeculations postpartum have
also been documented [122]. Moreover, LV strain parame-
ters on CMR imaging were lower in adolescent children and
young adults with LVNC compared to healthy age-matched
control individuals [127].

ECG is abnormal in 75-94% of pediatric and adult
LVNC patients [128]. Typical ECG findings include pro-
longed QTc intervals, R wave notching, T wave inversion,
pathologic Q waves, left axis deviation, and severe LV
hypertrophy with gigantic QRS complexes, especially in
neonates [94]. In babies with LVNC, the ECG commonly
shows extreme QRS complex voltage (Fig. 5). In adults, in
addition to all those ECG features, intraventricular conduc-
tion delay with predominant left bundle branch block and
life-threatening ventricular arrhythmias, such as ventricular
tachycardia, and ventricular fibrillation have been reported
by Steffel ef al. [129]. Presence of fragmented QRS com-
plex (fQRS) on ECGs in adult LVNC patients were identi-
fied as a novel predictor of arrhythmic events, sudden car-
diac death, and mortality [130]. Atrial fibrillations are also
associated with LVNC, which may be due to proarrhythmic
substrate from the continuity between extensive intertrabec-
ular recesses and endocardium as demonstrated in previous
studies [131].

G Swackion || selected: MiA

Fig. 6. Results of echocardiographic, cardiac magnetic resonance (CMR) imaging, and electrocardiography (ECG) tracing anal-

yses in a 17-year-old adolescent patient with LVNC. A representative echocardiography image in four chamber view. Yellow arrows

indicate noncompacted myocardial walls with trabeculae and recesses seen in the LV. (A) A parasternal short axis view of echocardiogram

demonstrating circumferential noncompaction on the LV walls. (B) A representative CMR image demonstrating circumferential LV non-

compaction. (C) An ECG tracing recorded prior to pacemaker placement. Sinoatrial (SA) nodal exit block (Mobitz II) is demonstrated.

Arrowheads demarcate timing of SA node exit block. (D) An ECG tracing recorded after pacemaker implantation. (E) Non-sustained ven-

tricular tachycardia found on device interrogation is demonstrated. Adapted with permission from Collyer ef al. [19] Combining whole

exome sequencing with in silico analysis and clinical data to identify candidate variants in pediatric left ventricular noncompaction. Int
J Cardiol. 2022 Jan 15:347:29-37. https://doi.org/10.1016/j.ijjcard.2021.11.001.
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6. Clinical Manifestations

Adults and children with LVNC present with the full
spectrum of this heterogenous disease with clinical man-
ifestations ranging from asymptomatic hypertrabeculation
to infantile cardiac muscle disease presentation of heart fail-
ure with reduced EF (HFrEF) and unfavorable long-term
prognoses. As previously reported, adult patients may be
asymptomatic and develop hypertrabeculation as a phys-
iological response. These cases are not typically associ-
ated with systolic or diastolic dysfunction [8,30]. It has
also been demonstrated that pediatric patients with iso-
lated LVNC and normal ventricular function remain asymp-
tomatic throughout adulthood and into old age [132]. This
phenotype accounts for nearly 35% of LVNC cases and has
been termed a “benign form” by Towbin et al. [3,5].

Affected adult and pediatric patients typically present
with symptoms of chest pain, dyspnea, palpitations, syn-
cope, peripheral edema, or exercise intolerance [9,78].
Their overall presentation may consist of congestive heart
failure, arrhythmias, thromboembolism, embolic ischemic
stroke, myocardial infarction, or sudden death [19,23,32,
120,133]. Although some adult patients have adaptive hy-
pertrabeculation, they may also present with heart failure
secondary to LVNC. One case study highlighted a 41-year-
old heart failure patient with LVNC confirmed by ECG and
CMR. Ventricular remodeling was demonstrated after initi-
ation of heart failure guideline-mediated medical therapy
[134]. Other case studies diagnosed via ECG and CMR
include a previously healthy 62-year-old patient who pre-
sented with palpitations and diagnosed with atrial fibrilla-
tion [135] and a 78-year-old patient with history of ischemic
cardiomyopathy and end-stage renal disease [136]. Both
patients started heart failure medications and anticoagula-
tion prophylaxis. Lastly, a 55-year-old patient who pre-
sented with dyspnea, chest pain, and peripheral edema was
diagnosed with LVNC and right-sided aortic arch. This pa-
tient later died from the known complication of ventricular
fibrillation [131].

LVNC may also have associated CHDs, neuromuscu-
lar disorders, or chromosomal defects [6,9,15,23,81,137].
Children are more likely to have associated CHD and an
identified genetic mutation than their adult counterparts
[138]. Complex clinical phenotypes with concurrent di-
lated, hypertrophic, restrictive, or arrhythmogenic forms,
or those with overlapping phenotypes one or more forms of
cardiomyopathy or CHD, are also reported [9]. For exam-
ple (Fig. 6, Ref. [19]), a 17-year-old patient with circum-
ferential apical hypertrabeculation, no systolic dysfunction,
and no LGE on echocardiogram and CMR imaging, re-
spectively, required placement of a pacemaker for sinoatrial
(SA) nodal exit Mobitz II block, which was followed by up-
grading to a defibrillator system due to development of non-
sustained ventricular tachycardia (NSVT) after pacemaker
implantation and interrogation [19]. Distinct LVNC phe-
notypes identified impact diagnostic testing, potential treat-
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ments, and overall prognosis in the pediatric LVNC popu-
lation [2,5,9].

LVNC in newborns and infants is most commonly
non-isolated (mixed) with worst case outcomes reported,
particularly in those with associated systemic and metabolic
disorders with or without CHD [5,9]. Those with overlap-
ping forms of cardiomyopathy [14] have an associated in-
creased risk for heart failure [139]. Therefore, it is imper-
ative to follow these pediatric patients long-term to estab-
lish their individual risk for developing potential complica-
tions while optimizing their medical management. As the
potential genetic etiology is explored further, it is impor-
tant to screen first degree relatives for LV noncompaction
or other cardiomyopathy forms. Studies have shown that
30% of screened family members are also diagnosed with
LVNC or other types of cardiomyopathies [140]. In addi-
tion, identifying all affected and unaffected family mem-
bers is necessary to define if the LVNC phenotype in af-
fected (clinically and sub-clinically) patients is progressive,
and whether proactive genetic counseling and individual-
ized prevention and medical management should be initi-
ated [19].

7. Genetic Testing

Genetic testing is not routinely performed in the clin-
ical setting in many countries. As previously noted, pa-
tients with suspected LVNC based on the above diagnos-
tic testing and clinical presentation should be considered
for genetic testing, given LVNC’s strong correlation with
genetic etiologies. Family members of affected individ-
uals should also be genetically screened. Recent studies
have shown the importance of genetic testing in this patient
population due to potential adjustment of clinical manage-
ment and risk stratification for family members via cascade
testing [141,142]. A broad cardiomyopathy genetic panel
may be considered at time of presentation to identify LVNC
pathologic variants, including those overlapping with other
cardiomyopathies [142]. One study demonstrated half of
adult and pediatric LVNC probands and relatives had an
identified genetic mutation via a targeted panel contain-
ing 17 genes, which included MYH7, MYBPC3, ACTCI,
TPM1, CSRP3, TAZ, LDB3, cardiac troponins (TNNCI,
TNNT2, TNNI3), cardiac-regulatory myosin light chains
(MYL2, MYL3), theletonin (TCAP), calsequestrin (CASQ?2),
calreticulin (CALR3), phospholamban (PLN), and lamin
A/C (LMNA) [80]. Other studies have demonstrated the
utility of whole exome sequencing in LVNC probands and
their family members [19-22]. Genetic testing and famil-
ial screening for LVNC are essential for diagnosis, prog-
nosis, and future genetic counseling among affected fami-
lies [120]. Overall, without current gold standard diagnos-
tic and genetic testing criteria, the accurate assessment of
genotype-phenotype associations in inherited LVNC cases
in both pediatric and adult populations is difficult. This
is further complicated by the heterogeneity among LVNC
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phenotypes and potential progression of LV dysfunction,
particularly in pediatric patients over time [140]. Uni-
form diagnostic criteria in assessment of symptoms, cardiac
imaging, and electrocardiogram applied to asymptomatic
and symptomatic pediatric and adult populations may lead
to a more accurate depiction of LVNC’s genetic architec-
ture.

8. Prognosis and Treatment

Prognosis among adult and pediatric LVNC patients
is affected by individual phenotypes and the presence of an
identified genetic mutation or ventricular dysfunction [120,
143,144]. LVNC patients have a significant risk for compli-
cations, such as ventricular arrhythmias, systolic dysfunc-
tion with heart failure, cardioembolic events, and sudden
cardiac death, which may occur in up to two-thirds of LVNC
patients [3,145,146]. The worst outcomes are also asso-
ciated with mitochondrial disorders, hereditary neuromus-
cular disorders, or chromosomal defects. These are more
commonly found in pediatric LVNC patients, specifically
infants [5,9]. A meta-analysis demonstrated an overall mor-
tality rate of 14% among adults with isolated LVNC [120].
There is an increased risk for heart failure, heart transplan-
tation and death among LVNC subtypes with RCM, ACM,
DCM, HCM, and undulating phenotypes in children and
adults [6,14,139,147]. Children with LVNC are more likely
to have an identified genetic mutation and associated CHD
[138]. Prior studies have also demonstrated increased risk
for death or heart transplantation rates among LVNC pa-
tients with overlapping phenotypes compared to those with
the isolated LVNC phenotype [6,147]. Between 60% to
75% of LVNC patients either die or undergo cardiac trans-
plantation within 6 years of diagnosis [6,148,149]; heart
transplantation is more common in pediatric LVNC patients
with a higher incidence of extracorporeal membrane oxy-
genation (ECMO) and inotropic use employed as a bridge
to transplant, compared to those with idiopathic cardiomy-
opathy. Moreover, pediatric LVNC patients with associated
CHD have worse postoperative outcomes following cardiac
surgery and longer hospitalizations, compared to those with
isolated CHD [150].

There is no specific therapy for LVNC except for con-
sensus guideline-directed heart failure treatments for vari-
ous cardiomyopathies and arrhythmias across age groups.
Heart failure guideline-directed medical therapy (GDMT),
including beta blocker, angiotensin-converting-enzyme
(ACE) inhibitors, angiotensin II receptor blocker (ARB)
and angiotensin receptor/neprilysin inhibitor (ARNI), has
been shown to improve systolic function and favorable ven-
tricular remodeling in adult LVNC patients [134]. Min-
eralocorticoid receptor antagonists (MRA) and sodium-
glucose cotransporter 2 inhibitors (SGLT21i) are additional
components of adult heart failure GDMT. Due to the limited
pediatric data from single center studies, these medications
are often prescribed based on pediatric heart failure ex-
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pert guidance and extrapolation from the adult clinical trials
[151,152]. Cardiac resynchronization therapy is typically
utilized only in the adult population [120]. Reduced systolic
function and deep intertrabecular recesses may contribute to
the increased risk of thrombosis formation. Chronic antico-
agulation is generally recommended as primary prevention
for thromboembolic events, such as strokes [138,148]. The
clinical necessity of therapeutic anticoagulation in benign
cases of adult LV hypertrabeculation and pregnant women
[153,154]. If LVNC patients do not respond well to med-
ical management, they should be evaluated for ventricular
assist device placement or heart transplant as needed. Also,
patients with significantly reduced ejection fraction or life-
threatening arrhythmias should be considered for placement
of an implantable cardioverter defibrillator (ICD) to prevent
cardiac arrest and sudden cardiac death [94,155].

Several critical differences in the management of pe-
diatric LVNC patients with heart failure should be consid-
ered compared to adult patients. The majority of LVNC pa-
tients undergoing heart transplantation was pediatric, and
their post-transplant survival was comparable with that of
other cardiomyopathy patients [ 149]. Babies have the high-
estrisk, and other risk factors for death or transplantation in-
clude female sex and severity of systolic dysfunction [147].
Although huge achievements have been made in diagnosis
and treatment, limited quantifiable criteria may hinder early
detection of LVNC and primary prevention of potential
complications in newborns and young children [12,133]. In
addition, due to undeveloped capillary networks within the
hyper-trabeculated meshwork and noncompacted endocar-
dial islands, LVNC easily can be a substrate for ischemia
and infarctions and thromboembolic events commonly dis-
playing as peripheral embolism or stroke in pediatric LVNC
cases [9]. Further secondary pathogenic processes, such as
dissection of the myocardium, myocardial hypertrophy, or
myocardial tearing caused by dilatation and hypervascular-
ization, cause major adverse cardiac events and advanced
deterioration of heart function [14]. Therefore, careful car-
diorespiratory management with monitoring oxygen partial
pressure, ventilation support, and medication therapy with
beta blocker, ARB or ACE inhibitors are considered in pe-
diatric LVNC patients with LV ejection fraction less than
45% [156,157].

9. Conclusions

Left ventricular noncompaction in children is a com-
plex disease with heterogeneous phenotypes and a diverse
array of associated genetic mutations. Children are more
likely to have certain LVNC phenotypes, an identified ge-
netic mutation, and heart transplantation compared to their
adult counterparts. There are no widely accepted diagnostic
criteria, but multiple image modalities are utilized to assist
with the diagnosis and guide management. There is a wide
spectrum of clinical presentations and long-term prognosis;
therefore, patients diagnosed with childhood LVNC should
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be followed throughout their lifespan to optimize their med-
ical management and prevent future complications based on
their individual risk. Future studies are needed to establish
gold standard diagnostic criteria and corroborate targeted
therapies for this complex disease, especially in neonates
and young pediatric populations.
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