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Abstract

Background: The hemoglobin, albumin, lymphocyte, and platelet (HALP) score represents a meaningful predictor in many cardiovascu-
lar diseases. However, the predictive utility of this score for the outcome of patients admitted to the intensive care unit (ICU) due to acute
myocardial infarction (AMI) has yet to be fully elucidated. Methods: Information from the Medical Information Mart for Intensive Care
(MIMIC)-IV v3.1 database was used to analyze the association between the HALP score and 90 days and 365 days all-cause mortality in
critically ill patients with AMI. Patients were grouped according to the calculated HALP quartiles. Cox proportional hazards regression
analysis and restricted cubic spline (RCS) analysis were performed to assess the association between the HALP score and mortality risk.
A recursive algorithm identified the HALP inflection point, thus defining high and low HALP groups for the Kaplan–Meier survival
analysis. Subgroup analyses analyzed the robustness across clinical strata. Furthermore, predictive models based on machine learning
algorithms that included the HALP score were constructed to estimate 90 days mortality. The performance of the models was evaluated
using the area under the receiver operating characteristic curve (AUC).Results: A total of 818 AMI patients were included. The analysis
revealed mortality rates of 31% at 90 days and 40% at 365 days. Elevated HALP values were independently linked to a reduced risk of
death. In fully adjusted models, patients in the top HALP quartile exhibited significantly lower all-cause mortality at 90 days (hazard ratio
(HR) = 0.68; 95% confidence interval (CI): 0.47–0.99; p = 0.047) and 365 days (HR = 0.66; 95% CI: 0.47–0.90; p = 0.011). A nonlinear,
inverse “L-shaped” association was observed, with an inflection point identified at a HALP value of 19.41. Below this value, each unit
increase in the HALP score reduced mortality risk by 2.4%–2.7%. The Kaplan–Meier curves confirmed an improved survival above
the threshold. Meanwhile, the subgroup analyses revealed a generally consistent association between the HALP score and mortality,
except for age, where a significant interaction was observed (p = 0.003), indicating a stronger protective effect in older patients. Machine
learning analyses supported the robustness and predictive value of the HALP score, with a maximum AUC of 0.7804. Conclusions: The
HALP score is significantly associated with all-cause mortality among critically ill individuals suffering from AMI.
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1. Introduction

Over recent decades, cardiovascular diseases repre-
sent a primary cause of mortality worldwide. In the year
2021, these conditions were responsible for an estimated
20.5 million deaths worldwide. Of these, around 8.99 mil-
lion were due to ischemic cardiovascular conditions such as
acute myocardial infarction (AMI) [1,2]. AMI is a partic-
ularly severe and frequent presentation of ischemic heart
disease. The incidence of AMI increases markedly with
age, affecting as many as 9.5% of individuals over the age
of 60 years [3]. Critically ill patients in the intensive care
unit (ICU) often exhibit a range of intricate health issues
and coexisting risk factors. Studies indicate that approx-

imately 4%–14% of ICU patients experience AMI during
hospitalization [4]. Despite these observations, there is still
only limited research on prognostic indicators and risk strat-
ification in critically ill patients with AMI. It is therefore
imperative to conduct additional studies allowing a deeper
understanding of this high-risk cohort. Timely recognition
and proper management of identified risk factors are essen-
tial for lowering the mortality rate in this patient population.

AMI involves complex immunological and inflam-
matory responses. Previous studies have suggested that
combined biomarkers, including the Systemic Immune-
Inflammation Index [5], Systemic Inflammatory Response
Index [6], neutrophil-to-lymphocyte ratio (NLR) [7], Prog-
nostic Nutritional Index [8], and Controlling Nutritional
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Status score [9], may have superior prognostic value for
AMI compared with single inflammatory or nutritional
markers alone [10].

The Hemoglobin, Albumin, Lymphocyte, and Platelet
(HALP) score was first proposed as a prognostic tool for
various types of cancers [11–13]. Recent studies have also
demonstrated prognostic utility for HALP in various cardio-
vascular conditions, such as acute heart failure [14], coro-
nary artery disease [15], patients undergoing percutaneous
coronary intervention (PCI) [16], and individuals recov-
ering from coronary artery bypass grafting (CABG) [17].
This evidence has increased the acceptance of HALP as
a composite marker reflecting both systemic inflammation
and nutritional state in the field of cardiovascular medicine.
However, only limited research has been directed at specifi-
cally evaluating the prognostic relevance of theHALP score
in individuals diagnosed with AMI. This gap is particularly
pronounced for the high-risk subpopulation of critically ill
patients with AMI, whose complex pathophysiology and
management in ICU necessitates more precise risk strati-
fication tools. Considering that AMI is accompanied by
significant immune-inflammatory activation and nutritional
disturbances [18,19], we hypothesized that the HALP score
may be a robust prognostic tool for predicting outcomes
in this cohort. Consequently, the aim of our study was to
evaluate the association between HALP score and all-cause
mortality among critically ill patients with AMI.

2. Methods
2.1 Study Population

All patient information for this analysis was
obtained from the Medical Information Mart for
Intensive Care (MIMIC)-IV version 3.1 database
(http://physionet.org/content/mimiciv/3.1/). The database
comprises a vast collection of de-identified electronic
health records on critically ill patients admitted to the
ICU at Beth Israel Deaconess Medical Center during
2008–2022. It includes a wide range of patient-specific
information, including demographic details, diagnostic
classifications, vital parameters, laboratory findings,
medication usage, and discharge status [20]. Investigator
ZC obtained access to the MIMIC-IV database (ID:
14336451) after fulfilling the training requirements of
the Collaborative Institutional Training Initiative (CITI)
program.

The study cohort comprised 9084 adults aged ≥18
years with a first-time ICU admission and a diagnosis
of AMI (codes International Classification of Diseases-9
[ICD-9] or ICD-10). Removed from the final analysis were
1531 patients with an ICU stay of <24 h, 28 cases with no
outcome data, and 6707 patients that were missing essential
laboratory parameters required to compute the HALP score.
A final cohort of 818 patients met the selection criteria and
were divided into four groups according to the quartile dis-
tribution of their HALP score (Fig. 1).

2.2 Data Extraction

Using pgAdmin4 (version 8.12; pgAdmin Develop-
ment Team, Chicago, IL, USA) and SQL, 7 categories of
data were extracted: demographics, vital signs, labora-
tory indicators, underlying comorbidities, medication us-
age, clinical interventions, and severity scores. A full sum-
mary of all included variables is available in Supplemen-
tary Table 1. Only the initial lab values collected in the first
24 h following ICU admission were included in the analy-
sis. Variables in which data was missing for>20% of cases
were omitted from further analysis. For variables below this
cutoff, missing values were imputed using multivariate im-
putation by chained equations (MICE) implemented in R
(mice package, version 3.17.0, Stef van Buuren, Utrecht,
Netherlands). A total of five imputations (m = 5) were
conducted using a random forest (RF) algorithm to capture
potential nonlinear relationships among variables. A fixed
random seed (2025) was set to ensure reproducibility. The
first completed dataset was used for all downstream analy-
ses.

2.3 Outcomes

The main outcome assessed in this study was 90 days
all-cause mortality. 365 days all-cause mortality was the
secondary outcome.

2.4 Calculation of HALP Score

The HALP score was calculated according to the fol-
lowing formula [21]: hemoglobin (g/L) × albumin (g/L)
× lymphocyte count (109/L) / platelet count (109/L). Base-
line values for hemoglobin and albumin in the MIMIC-IV
database were recorded in grams per deciliter (g/dL). These
values were converted to grams per liter (g/L) prior to the
calculation by multiplying by 10.

2.5 Statistical Analysis

Normality testing of all continuous variables indicated
they did not follow a normal distribution. Therefore, they
were presented as medians and interquartile ranges (IQRs),
and the Kruskal–Wallis rank-sum test was used for com-
parisons between groups. Categorical data were summa-
rized by frequencies (percentages), with group differences
assessed via Pearson’s chi-square test.

All variables incorporated into the model were ex-
amined for potential multicollinearity. To reduce multi-
collinearity, variables exhibiting a variance inflation fac-
tor of ≥5 were removed from the model (Supplementary
Table 2). Cox proportional hazards regression was used
to determine the association between the HALP score and
risk of mortality. The selection of covariates for the fi-
nal models was informed by a combination of least ab-
solute shrinkage and selection operator (LASSO) regres-
sion results and clinical judgment. Model 1 comprised
only the HALP score. Model 2 was additionally adjusted
for both age and gender. Model 3 included additional ad-
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Fig. 1. Patient screening flow from the Medical Information Mart for Intensive Care (MIMIC)-IV database. ICU, intensive care
unit.

justments for race, respiratory rate (RR), systolic/diastolic
blood pressure (SBP/DBP), peripheral capillary oxygen sat-
uration (SPO2), carbon dioxide partial pressure (PCO2),
white blood cell count (WBC), serum potassium, sodium,
glucose (GLU), anion gap, lactate, partial thromboplastin
time (PTT), atrial fibrillation (AF), cancer (CA), chronic
obstructive pulmonary disease (COPD), chronic kidney dis-
ease (CKD), diabetes, hypertension, congestive heart fail-
ure (CHF), stroke, clopidogrel use, beta-blockers, statins,
invasive mechanical ventilation (MV), and noninvasive
MV.

To explore potential nonlinear trends, restricted cubic
spline (RCS) analysis was employed to examine the link
between the HALP score and all-cause mortality. When
a statistically significant nonlinear association was found,
a recursive algorithm was used to determine the inflection
point for the HALP score in relation to 90 days and 365
daysmortality. For a deeper analysis of the link between the
HALP score andmortality, segmented Cox regression mod-
els were fitted separately for the ranges below and above the
identified turning point. Based on this inflection point, pa-
tients were then divided into low- and high-HALP groups.
Kaplan–Meier (KM) survival analysis was conducted to
compare the occurrence of outcomes between these groups.

In addition, subgroup evaluations were carried out
among populations defined according to age, gender, AF,
hypertension, CHF, and diabetes. Interaction effects be-
tween the HALP score and each stratification variable were
evaluated through likelihood ratio testing. All statistical
computations were performed using R software (version

4.4.3; R Foundation for Statistical Computing, Vienna,
Austria), with statistical significance set at a two-sided p-
value of <0.05.

2.6 Construction and Assessment of the Prognostic Models

The dataset was randomly partitioned into a training
cohort (70% of data) and a validation cohort (30% of data).
In the training cohort, feature selection was performed us-
ing LASSO regression, with five-fold cross-validation to
determine the optimal λ parameter. The variables identi-
fied were subsequently employed to construct a series of
machine learning models for the prediction of 90 days mor-
tality in AMI patients.

To optimize the performance of each model, hyper-
parameters were systematically tuned using a grid search
strategy combined with five-fold cross-validation. The ba-
sis for selecting the final hyperparameters was to maxi-
mize the mean area under the receiver operating charac-
teristic curve (AUC) during the cross-validation process.
The specific hyperparameter tuning ranges and the final se-
lected values for each model are detailed in Supplemen-
tary Table 3. The developed models included support vec-
tor machine, elastic net (ENet), decision tree, Light Gradi-
ent Boosting Machine (LightGBM), ridge regression, mul-
tilayer perceptron (MLP), RF, k-nearest neighbors, extreme
gradient boosting (XGBoost) algorithms, and Stacking en-
semble algorithms. Discrimination was measured by calcu-
lating the AUC.

Furthermore, the clinical utility of various models was
assessed using decision curve analysis (DCA). Calibration
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curves were also generated to evaluate the concordance be-
tween predicted probabilities and observed results. To en-
hance model interpretability and facilitate clinical transla-
tion, SHapley Additive exPlanations (SHAP) were utilized
to interpret the predictions of the optimal model.

3. Results
3.1 Baseline Characteristics

A final cohort of 818 patients with AMI met the crite-
ria for inclusion in this analysis. The median age of partic-
ipants in the study cohort was 71 years (IQR: 62–80), with
males accounting for 62% of the population. Participants
were allocated to one of four groups according to the quar-
tile distribution of their HALP scores upon ICU admission:
Q1 (HALP <9.7), Q2 (9.7 ≤ HALP < 19.71), Q3 (19.71
≤ HALP < 34.47), and Q4 (HALP ≥34.47). The baseline
features of each subgroup are summarized in Table 1. To
address potential selection bias stemming from the exclu-
sion of 6707 patients who were missing the necessary pa-
rameters to calculate the HALP score, their baseline char-
acteristics were compared against those of the 818 patients
included in the final analysis (Supplementary Table 4).
The comparison revealed significant differences between
the two groups. Notably, the included cohort presented with
a more severe clinical profile, as evidenced by higher rates
of sepsis (73% vs. 58%, p < 0.001), higher severity scores
(median simplified acute physiology score II [SAPS-II]: 41
vs. 37, p < 0.001; median sequential organ failure assess-
ment [SOFA]: 6 vs. 4, p < 0.001), and a greater need for
continuous renal replacement therapy (9.5% vs. 3.5%, p <
0.001). Crucially, the included patients experienced signif-
icantly higher all-cause mortality at both 90 days (31% vs.
18%, p < 0.001) and 365 days (40% vs. 26%, p < 0.001)
compared to the excluded group.

Patients in the highest HALP quartile (Q4) were gen-
erally younger and included a greater proportion of males
compared to the lowest quartile (Q1). The Q4 group also
showed higher levels of albumin, hemoglobin, lympho-
cyte count, sodium, and PTT. In contrast, patients in Q4
had lower heart rate, RR, platelet count, international nor-
malized ratio (INR), creatinine (Cr), blood urea nitrogen
(BUN), potassium, GLU, anion gap, and Acute Physiol-
ogy Score III (APS-III). Additionally, the prevalence of AF,
CA, CHF, and sepsis was lower in Q4, along with less use
of beta-blockers and clopidogrel.

In comparison with the other quartiles, the Q4 group
had a lower mortality rate at all evaluated time points. The
90 days mortality rates were 37%, 34%, 26%, and 25% for
Q1 to Q4, respectively (p = 0.024), while the mortality rates
at 365 days were 48%, 43%, 37%, and 34%, respectively (p
= 0.013).

3.2 Relationship Between HALP Score and Clinical
Outcomes

The association between the HALP score and mortal-
ity risk was investigated using Cox proportional hazards re-
gression analysis, as shown in Table 2. In the unadjusted
analysis (Model 1), the highest HALP quartile (Q4) was
associated with a significantly reduced risk of 90 days mor-
tality relative to the lowest quartile (Q1), with a hazard ra-
tio (HR) of 0.66 and 95% confidence interval (CI) of 0.46–
0.94 (p = 0.020). The association with reduced risk per-
sisted following adjustment for age and gender in Model 2
(HR = 0.65, 95% CI: 0.46–0.92; p = 0.016). The reduced
risk was still apparent following complete adjustment for
comorbidities, laboratory findings, and medication use in
Model 3 (HR = 0.68, 95% CI: 0.47–0.99; p = 0.047). A
very similar association was also evident for 365 days mor-
tality (Table 2). The trend analysis demonstrated a signif-
icant dose-response pattern, where higher HALP quartiles
were linked with a stepwise decrease in all-cause mortal-
ity risk (all p for trend <0.05). These results indicate that
an elevated HALP score is independently associated with a
reduced risk of mortality.

3.3 Detection of Nonlinear Relationship
The RCS analysis suggested a possible nonlinear re-

lationship linking the HALP score to all-cause mortality at
each time point (both p for nonlinear <0.05). Specifically,
the association exhibited an inverse L-shaped pattern, in-
dicating a sharp decline in mortality risk with increasing
HALP scores up to a certain point, beyond which the effect
plateaued (Fig. 2).

To further explore this nonlinear relationship, we ap-
plied both conventional and two-piece Cox proportional
hazards models, as shown in Table 3. Log-likelihood ratio
tests confirmed a superior statistical fit for the two-piece
model (p < 0.05 for all comparisons). For both 90 days
and 365 days all-cause mortality, the analysis identified a
HALP score of 19.41 as the inflection point. Below the in-
flection point (HALP score≤19.41), each one-unit rise was
associated with a 2.7% reduction in 90 days mortality risk
(HR = 0.973, 95% CI: 0.952–0.994, p = 0.012) and a 2.4%
reduction in 365 days mortality risk (HR = 0.976, 95% CI:
0.957–0.994, p = 0.011). In contrast, when the HALP score
exceeded 19.41, it was no longer significantly associated
with mortality at either time point (p > 0.05).

3.4 KM Survival Curves
For the KM survival analysis, patients were stratified

into high and lowHALP groups using the inflection point of
19.41 as the threshold (Fig. 3). The low HALP score group
had significantly worse 90 days survival relative to the high
HALP group (p = 0.002). A comparable and statistically
significant result was also observed for 365 days all-cause
mortality.
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Table 1. Characteristics and outcomes of participants categorized by HALP score.
Characteristic Overall (n = 818) Q1 (HALP <9.7, n = 205) Q2 (9.7 ≤ HALP < 19.71, n = 204) Q3 (19.71 ≤ HALP < 34.47, n = 204) Q4 (HALP ≥34.47, n = 205) p-value

Age (years) 71 (62, 80) 71 (62, 80) 72 (62, 81) 70 (61, 80) 70 (62, 78) 0.449
Gender, n (%) 0.212

Female 314 (38%) 81 (40%) 79 (39%) 87 (43%) 67 (33%)
Male 504 (62%) 124 (60%) 125 (61%) 117 (57%) 138 (67%)

Race, n (%) 0.486
Black 71 (8.7%) 14 (6.8%) 20 (9.8%) 23 (11%) 14 (6.8%)
White 475 (58%) 117 (57%) 116 (57%) 122 (60%) 120 (59%)
Others 272 (33%) 74 (36%) 68 (33%) 59 (29%) 71 (35%)

Heart rate (bpm) 87 (75, 101) 92 (78, 104) 88 (78, 106) 87 (75, 98) 83 (73, 96) 0.002
RR (bpm) 20 (16, 25) 21 (17, 26) 20 (17, 25) 20 (17, 25) 20 (16, 23) 0.008
SBP (mmHg) 118 (104, 137) 120 (104, 138) 115 (103, 134) 120 (104, 138) 120 (105, 138) 0.527
DBP (mmHg) 69 (59, 81) 68 (59, 81) 68 (58, 82) 70 (59, 79) 70 (59, 82) 0.912
SPO2 (%) 97 (94, 100) 97 (94, 100) 97 (93, 99) 97 (94, 99) 98 (95, 100) 0.090
Hemoglobin (g/dL) 10.65 (8.80, 12.70) 9.10 (7.80, 11.00) 10.45 (9.00, 11.85) 11.40 (9.70, 13.55) 11.70 (9.50, 13.50) <0.001
Albumin (g/dL) 3.20 (2.80, 3.60) 2.90 (2.50, 3.30) 3.10 (2.70, 3.50) 3.40 (2.90, 3.70) 3.50 (3.00, 3.80) <0.001
Lymph (109/L) 1.07 (0.65, 1.70) 0.44 (0.29, 0.74) 0.87 (0.69, 1.20) 1.30 (0.98, 1.71) 1.92 (1.53, 2.71) <0.001
Platelet (109/L) 198 (141, 255) 226 (166, 317) 208 (167, 263) 197 (144, 243) 155 (99, 214) <0.001
INR 1.30 (1.10, 1.50) 1.30 (1.20, 1.60) 1.30 (1.20, 1.55) 1.25 (1.10, 1.50) 1.20 (1.10, 1.60) 0.106
PH 7.36 (7.29, 7.42) 7.35 (7.28, 7.41) 7.37 (7.29, 7.42) 7.37 (7.28, 7.42) 7.37 (7.32, 7.42) 0.312
PTT (S) 34 (28, 51) 31 (27, 40) 34 (28, 47) 36 (28, 58) 35 (29, 66) <0.001
WBC (109/L) 13 (9, 17) 12 (9, 17) 13 (10, 17) 13 (9, 17) 12 (9, 18) 0.161
PCO2 (mmHg) 41 (35, 47) 41 (35, 49) 40 (35, 48) 40 (35, 46) 41 (36, 45) 0.768
Cr (mg/dL) 1.30 (0.90, 2.10) 1.60 (1.00, 3.10) 1.40 (0.90, 2.40) 1.30 (0.90, 1.80) 1.10 (0.80, 1.60) <0.001
Potassium (mmol/L) 4.30 (3.90, 4.70) 4.30 (3.90, 4.90) 4.30 (3.90, 4.70) 4.30 (3.90, 4.80) 4.10 (3.80, 4.50) 0.036
Sodium (mmol/L) 138 (136, 141) 138 (134, 141) 138 (136, 141) 139 (136, 141) 139 (136, 141) 0.017
BUN (mg/dL) 26 (16, 46) 36 (20, 59) 29 (18, 46) 24 (16, 42) 20 (14, 36) <0.001
Lactate (mmol/L) 1.90 (1.30, 3.00) 1.90 (1.30, 2.90) 1.80 (1.30, 3.10) 1.95 (1.30, 3.00) 1.90 (1.30, 3.20) 0.712
GLU (mg/dL) 147 (113, 207) 154 (111, 209) 142 (116, 204) 151 (120, 206) 140 (105, 196) 0.449
PO2 (mmHg) 66 (41, 122) 55 (38, 93) 66 (41, 115) 64 (41, 120) 86 (49, 234) <0.001
Anion gap (mmol/L) 15 (13, 18) 16 (13, 19) 15 (13, 18) 15 (13, 18) 15 (12, 17) 0.197
Neuts (109/L) 10 (7, 15) 10 (7, 15) 11 (7, 15) 10 (8, 15) 10 (6, 14) 0.295
AF, n (%) 368 (45%) 103 (50%) 92 (45%) 89 (44%) 84 (41%) 0.287
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Table 1. Continued.
Characteristic Overall (n = 818) Q1 (HALP <9.7, n = 205) Q2 (9.7 ≤ HALP < 19.71, n = 204) Q3 (19.71 ≤ HALP < 34.47, n = 204) Q4 (HALP ≥34.47, n = 205) p-value

CA, n (%) 167 (20%) 44 (21%) 45 (22%) 37 (18%) 41 (20%) 0.765
CKD, n (%) 320 (39%) 95 (46%) 93 (46%) 68 (33%) 64 (31%) <0.001
CHF, n (%) 506 (62%) 131 (64%) 135 (66%) 119 (58%) 121 (59%) 0.290
COPD, n (%) 180 (22%) 59 (29%) 43 (21%) 36 (18%) 42 (20%) 0.044
Diabetes, n (%) 360 (44%) 94 (46%) 82 (40%) 89 (44%) 95 (46%) 0.583
Hypertension, n (%) 370 (45%) 100 (49%) 70 (34%) 92 (45%) 108 (53%) 0.001
Sepsis, n (%) 596 (73%) 171 (83%) 156 (76%) 129 (63%) 140 (68%) <0.001
Stroke, n (%) 126 (15%) 27 (13%) 29 (14%) 35 (17%) 35 (17%) 0.588
Aspirin, n (%) 539 (66%) 111 (54%) 129 (63%) 138 (68%) 161 (79%) <0.001
Beta-blockers, n (%) 481 (59%) 122 (60%) 104 (51%) 123 (60%) 132 (64%) 0.046
Clopidogrel, n (%) 156 (19%) 37 (18%) 50 (25%) 37 (18%) 32 (16%) 0.124
Statin, n (%) 540 (66%) 111 (54%) 132 (65%) 143 (70%) 154 (75%) <0.001
CRRT, n (%) 78 (9.5%) 24 (12%) 23 (11%) 14 (6.9%) 17 (8.3%) 0.273
Invasive MV, n (%) 396 (48%) 96 (47%) 101 (50%) 101 (50%) 98 (48%) 0.933
Noninvasive MV, n (%) 21 (2.6%) 5 (2.4%) 10 (4.9%) 4 (2.0%) 2 (1.0%) 0.077
APS-III 48 (35, 65) 55 (42, 69) 50 (38, 61) 43 (32, 58) 43 (32, 63) <0.001
CCI 6 (5, 9) 7 (5, 9) 7 (5, 9) 6 (5, 8) 6 (4, 8) <0.001
GCS 15 (14, 15) 15 (14, 15) 15 (14, 15) 15 (14, 15) 15 (14, 15) 0.253
SAPS-II 41 (31, 52) 44 (34, 54) 42 (34, 50) 39 (29, 50) 40 (31, 52) 0.004
SOFA 6 (3, 10) 7 (4, 10) 6 (4, 9) 5 (3, 10) 7 (3, 10) 0.229
90 days mortality, n (%) 250 (31%) 75 (37%) 70 (34%) 53 (26%) 52 (25%) 0.024
365 days mortality, n (%) 330 (40%) 99 (48%) 87 (43%) 75 (37%) 69 (34%) 0.013
HALP, Hemoglobin, Albumin, Lymphocyte, and Platelet; RR, respiratory rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; SPO2, peripheral capillary oxygen saturation; Hb, hemoglobin;
INR, international normalized ratio; PH, potential of hydrogen; PTT, partial thromboplastin time; WBC, white blood cell count; PCO2, partial pressure of carbon dioxide; Cr, creatinine; BUN, blood urea
nitrogen; GLU, glucose; PO2, partial pressure of oxygen; AF, atrial fibrillation; CA, cancer; CKD, chronic kidney disease; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease;
CRRT, continuous renal replacement therapy; MV, mechanical ventilation; APS-III, acute physiology score III; CCI, Charlson comorbidity index; GCS, Glasgow coma scale; SAPS-II, simplified acute
physiology score II; SOFA, sequential organ failure assessment.
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Table 2. Association between HALP score and all-cause mortality at 90 days and 365 days.

Variables
Model 1 Model 2 Model 3

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

90 days mortality

HALP quartile
Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Q2 0.95 (0.68∼1.13) 0.737 0.91 (0.66∼1.26) 0.567 0.84 (0.60∼1.17) 0.298
Q3 0.69 (0.48∼0.97) 0.035 0.67 (0.49∼0.98) 0.040 0.66 (0.46∼0.96) 0.029
Q4 0.66 (0.46∼0.94) 0.020 0.65 (0.46∼0.92) 0.016 0.68 (0.47∼0.99) 0.047

p for trend 0.005 0.006 0.022

365 days mortality

HALP quartile
Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Q2 0.87 (0.65∼1.16) 0.341 0.83 (0.63∼1.11) 0.218 0.80 (0.60∼1.08) 0.152
Q3 0.71 (0.52∼0.95) 0.023 0.70 (0.52∼0.95) 0.022 0.69 (0.50∼0.94) 0.020
Q4 0.63 (0.47∼0.86) 0.004 0.62 (0.46∼0.85) 0.003 0.66 (0.47∼0.90) 0.011

p for trend <0.001 <0.001 0.006
Model 1: Crude.
Model 2: Adjusted for Age and Gender.
Model 3: Adjusted for Age, Gender, Race, RR, SBP, DBP, SPO2, WBC, PCO2, Potassium, Sodium, GLU, Anion
gap, lactate, PTT, AF, CA, CKD, CHF, COPD, Diabetes, Hypertension, Stroke, Clopidogrel, Beta-blockers, Statin,
Invasive MV, and Noninvasive MV.
HR, Hazard Ratio; CI, Confidence Interval.

3.5 Subgroup Analysis
We next performed subgroup analyses to determine

whether the link between the HALP score and 90 days and
365 days all-cause mortality was consistent across differ-
ent clinical subgroups. These analyses stratified patients by
age, gender, hypertension, diabetes, AF, and CHF (Fig. 4).
A significantly lower risk of 90 days mortality was asso-
ciated with higher HALP scores in individuals aged ≥70
years (HR = 0.64), males (HR = 0.69), and those with hy-
pertension (HR = 0.58), atrial fibrillation (HR = 0.60), or
congestive heart failure (HR = 0.70). The association was
not significant at this time point in patients with diabetes.
The protective association with higher HALP scores was
even more widespread for 365 days mortality. It remained
statistically significant in all of the aforementioned sub-
groups, while also being significant in patients with dia-
betes (HR = 0.66). Interaction analysis revealed a signif-
icant effect modification by age for 365 days mortality (p
for interaction = 0.003). Specifically, higher HALP scores
were strongly linked to reduced mortality in patients aged
≥70 years (HR = 0.62; 95% CI: 0.46–0.85), but this asso-
ciation was not significant in those aged <70 years (HR =
0.96; 95% CI: 0.64–1.45). No other significant interactions
were observed, indicating the prognostic utility of HALP is
particularly evident in elderly patients.

3.6 Contribution and Interaction of HALP Components
We carried out two additional analyses to determine if

the prognostic value of HALP is disproportionately driven
by any single component.

First, a dominance analysis was performed to evalu-
ate the comparative importance of each HALP component.
As shown in Supplementary Table 5, albumin accounted
for 77.8% of the overall predictive contribution, followed
by hemoglobin (13.5%), platelets (7.9%), and lymphocytes
(0.8%). This result indicates that albumin is the primary
contributor to the prognostic value of the HALP score.
Second, to test for potential synergistic or antagonistic ef-
fects, interaction terms between HALP components were
incorporated into a multivariable Cox regression model.
None of the interaction terms (e.g., albumin× hemoglobin)
achieved statistical significance (all p > 0.05), indicating
that each component contributes independently to risk pre-
diction (Supplementary Table 6). These analyses support
the internal validity and stability of HALP as a composite
biomarker in critically ill AMI patients.

3.7 Feature Selection

As shown in Fig. 5, LASSO regression was applied
to the training cohort to identify the most relevant predic-
tive features. During model construction, five-fold cross-
validation was utilized to determine the optimal penalty pa-
rameter (λ). The λ value associated with the lowest cross-
validation error (lambda.min) was chosen to optimize the
trade-off between model accuracy and feature sparsity. At
the lambda.min point, a total of 24 variables were identi-
fied as the most predictive of all-cause mortality and were
used to construct the final analysis model: age, gender, race,
RR, SPO2, HALP score, INR, PTT, sodium, BUN, lactate,
anion gap, AF, CA, CKD, CHF, hypertension, sepsis, as-
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Fig. 2. Restricted cubic spline (RCS) analysis of the association betweenHemoglobin, Albumin, Lymphocyte, and Platelet (HALP)
score and all-cause mortality at 90 days (A) and 365 days (B).

pirin, beta-blockers, statin, renal replacement therapy, in-
vasive MV, and noninvasive MV.

3.8 Construction and Validation of Prognostic Models

The receiver operating characteristi (ROC) curves for
different machine learning algorithms evaluated on the test
dataset are shown in Fig. 6A, with their predictive perfor-
mance assessed by the AUC. Ranked from highest to low-
est AUC, the models performed as follows: ENet = 0.7804,
MLP = 0.7768, ridge regression = 0.7690, RF = 0.7676,

and Stacking = 0.7627. These results indicate that ENet,
MLP, and ridge regression showed relatively superior pre-
dictive performance. Fig. 6B presents the calibration curves
for each model on the test set. Among them, RF and XG-
Boost demonstrated the closest alignment with the ideal ref-
erence line and achieved the lowest Brier scores (0.1767
and 0.1828, respectively), indicating better predictive con-
sistency and calibration. Fig. 6C illustrates the results of
DCA for all models. Across a range of threshold probabil-
ities, each model provided a clear net clinical benefit over

8

https://www.imrpress.com


Fig. 3. Kaplan–Meier survival curves for all-cause mortality at 90 days (A) and 365 days (B) of patients with high and low
Hemoglobin, Albumin, Lymphocyte, and Platelet (HALP) score.
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Table 3. Threshold effect analysis of HALP score on all-cause mortality.
90 days mortality HR (95% CI), p-value

Inflection point 19.41
Fitting model by two-piecewise linear regression

HALP ≤19.41 0.973 (0.952∼0.994), 0.012
HALP >19.41 1.000 (1.000∼1.000), 0.161
p for Log-likelihood ratio 0.013

365 days mortality HR (95% CI), p-value

Inflection point 19.41
Fitting model by two-piecewise linear regression

HALP ≤19.41 0.976 (0.957∼0.994), 0.011
HALP >19.41 1.000 (1.000∼1.000), 0.260
p for Log-likelihood ratio 0.012

HALP, Hemoglobin, Albumin, Lymphocyte, and Platelet; HR, Hazard Ratio; CI,
Confidence Interval.

the “treat-all” and “treat-none” strategies, further support-
ing the potential clinical utility and value of these predictive
models.

To assess whether our ENet model offers an improve-
ment over existing risk stratification tools, we compared
its performance against models based on the Charlson Co-
morbidity Index (CCI) and Glasgow coma scale (GCS)
alone. As shown in Supplementary Table 7, the addition
of HALP and other variables to our ENet model led to sig-
nificant improvements in both net reclassification and dis-
crimination in the validation set. A significant improve-
ment was observed compared to the CCI model (NRI =
0.445, p < 0.001; IDI = 0.079, p = 0.005), and an even
greater improvement compared to the GCS model (NRI =
0.924, p < 0.001; IDI = 0.156, p < 0.001). Furthermore,
comparative DCA indicates the ENet model offers a supe-
rior net benefit across a wide range of threshold probabil-
ities (Supplementary Fig. 1), indicating superior clinical
utility over the standalone scores.

3.9 Model Interpretability and Clinical Applicability

To enhance the clinical applicability of our best-
performingmodel (ENet), we utilized SHAP to interpret the
model’s predictions at both the global and individual lev-
els. The SHAP summary figure (Supplementary Fig. 2)
depicts the relative impact of each variable on the predic-
tion of mortality. Variables such as admission age, BUN,
lactate, CRRT use, and HALP had the highest impact on
the model output. Of note, elevated HALP scores demon-
strated a consistent association with a lower predicted risk,
further supporting its inverse relationship with mortality.
This interpretation was based on the ENet model, which
achieved the highest AUC among all the machine learning
algorithms evaluated in this study. The global importance
ranking based on mean absolute SHAP values is shown in
Supplementary Fig. 3. HALP ranked among the top pre-
dictive features, thus confirming its clinical value beyond
conventional predictors. Such explainability visualizations

can assist clinicians in understanding the relative impor-
tance of different risk factors, as well as enhancing trust
in machine learning-driven decision support tools. Ulti-
mately, the integration of HALP into a transparent, inter-
pretable model framework may facilitate risk stratification
and individualized treatment planning in ICU patients with
AMI.

4. Discussion
In this study, we conducted a comprehensive exami-

nation of the link between HALP score and all-cause mor-
tality in critically ill AMI patients. We found a significant
association between higher HALP score and reduced risk of
mortality at both 90 days and 365 days follow-up periods.
Multivariable Cox regression models revealed that individ-
uals with HALP scores in the upper quartile (Q4) had a sig-
nificantly lower risk of death compared to those in Q1, with
an HR of 0.68 for 90 days mortality and 0.66 for 365 days
mortality (both p < 0.05). Threshold effect analyses were
performed using both standard and two-piece Cox models,
with an inflection point identified at a HALP score of 19.41
for both time points. Below this identified threshold, each
one-point rise in HALP score corresponded to a 2.4%–2.7%
decrease inmortality risk. However, no significant relation-
ship was observed when the HALP score exceeded the cut-
off. Additionally, machine learning models incorporating
the HALP score and other clinical variables demonstrated
strong predictive performance for 90 days mortality, with
the highest AUC reaching 0.78. Furthermore, our addi-
tional analyses demonstrated that a model incorporating the
HALP score provides significant incremental value in risk
prediction and clinical utility over established scores like
the CCI and GCS, as evidenced by NRI and DCA results.
These results highlight the value of theHALP score as a pre-
dictive marker and its applicability in developing targeted
interventions to reduce mortality in critically ill AMI pa-
tients.

10

https://www.imrpress.com


Fig. 4. Subgroup analysis for the association between 90 days (A) or 365 days (B) all-cause mortality and Hemoglobin, Albumin,
Lymphocyte, and Platelet (HALP) score.
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Fig. 5. Least absolute shrinkage and selection operator (LASSO) regression-based screening of variables.

Immune-inflammatory mechanisms are pivotal in
driving the progression of AMI and determining its prog-

nosis. Following the onset of AMI, a robust immune-
inflammatory response is triggered, resulting in sub-
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Fig. 6. Performance and clinical utility of different machine learning models for predicting 90 days all-cause mortality with
the test dataset. (A) Receiver operating characteristic (ROC) curves, with the area under the curve (AUC) value for each model. (B)
Calibration curves, with the Brier score indicating the calibration performance for each model. (C) Decision curve analysis (DCA),
showing the net benefit of using each model across a range of threshold probabilities.

stantial release of damage-associated molecular patterns.
These facilitate the recruitment and infiltration of neu-
trophils, monocytes, and macrophages into the infarcted
myocardium [22,23]. During this phase, neutrophils exac-
erbate the local myocardial injury by releasing proteolytic
enzymes and reactive oxygen species via degranulation,
thereby expanding the infarct size and initiating maladap-
tive left ventricular remodeling [24]. Macrophages further
amplify local inflammation, thereby exacerbating ventric-
ular dilatation and dysfunction [25]. Concurrently, hospi-
talized AMI patients frequently exhibit nutritional deficits,
such as hypoalbuminemia and anemia, which impair im-
mune function, reduce resistance to inflammatory dam-
age, and diminish the capacity for tissue regeneration [26].
Studies have demonstrated that malnutrition significantly
increases mortality in AMI patients and is an indepen-
dent predictor of poor outcomes [27]. Thus, the exag-
gerated immune-inflammatory response following AMI di-
rectly exacerbates myocardial injury and adverse remodel-
ing, while concurrent nutritional deficiencies weaken the
body’s immune defence and repair mechanisms. Together,

these synergistic effects contribute substantially to poor pa-
tient outcomes.

The HALP score functions as a composite biomarker
that simultaneously captures both immune-inflammatory
activity and nutritional condition. Our findings demonstrate
a nonlinear relationship of the HALP score withmortality in
critically ill AMI patients. This was identified as an inverse
“L-shaped” curve by RCS analysis. A significant inflec-
tion point was detected at a HALP score of 19.41, below
which the risk of mortality declined sharply with each unit
increase in HALP. After this threshold, the risk of mortal-
ity stabilized. The threshold effect provides a clinically ac-
tionable cutoff, allowing stratification of ICU patients into
low- and high-risk groups at the time of admission. Such
early risk stratification can facilitate timely nutritional sup-
port, anti-inflammatory interventions, and intensive mon-
itoring. The observed nonlinear relationship underscores
the combined impact of immune-inflammatory responses
and nutritional status on patient prognosis. Firstly, a lower
HALP score suggests dual impairment of immune func-
tion and nutritional status. Lymphopenia diminishes the
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body’s capacity to effectively regulate and suppress inflam-
mation. Previous studies have indicated that AMI patients
with lower lymphocyte counts and higher NLR have a sig-
nificantly increased risk of long-term mortality. Further-
more, impaired peripheral T-lymphocyte function has been
shown to exacerbate myocardial ischemia-reperfusion in-
jury [28,29]. Concurrently, platelets not only contribute
to coronary artery and microvascular thrombosis during
AMI, but also exacerbate inflammation and reperfusion
injury. This inflammatory-thrombotic interaction is rec-
ognized as a critical contributor to adverse outcomes in
AMI [30,31]. Increased platelet levels typically indicate
a cytokine-driven acute-phase response that promotes in-
flammation, most notably interleukin-6, leading to a hy-
percoagulable and pro-inflammatory state [32]. Compared
to patients with moderate platelet counts (250–349 K/µL),
those with higher counts (≥350 K/µL) were reported to
show increased overall mortality following AMI [33]. Sec-
ondly, hypoalbuminemia, as included in the HALP score,
not only indicates malnutrition but also serves as a marker
of increased inflammation and oxidative stress [34]. Clini-
cal evidence consistently demonstrates that hypoalbumine-
mia independently predicts adverse outcomes following
AMI [35]. To illustrate this, a cohort study of 7192 pa-
tients with acute coronary syndrome (ACS) found that in-
dividuals with a serum albumin level <3.5 g/dL at admis-
sion had significantly higher rates of both in-hospital death
and heart failure [36]. Moreover, a lower HALP score typ-
ically coexists with reduced hemoglobin levels (anemia),
directly impairing oxygen transport and tissue perfusion.
Anemic states intensify myocardial hypoxia, potentially en-
larging the infarct size and precipitating cardiac dysfunc-
tion. Severe anemia (hemoglobin<9 g/dL) has been shown
to significantly increase short-term mortality among AMI
patients, and a hemoglobin level of <9 g/dL is associated
with an approximately 50% increase in the 120 days mor-
tality risk [37]. At a mechanistic level, the robust prognos-
tic power of the HALP score in critically ill AMI patients
likely stems from the synergistic interplay among its com-
ponents, which collectively reinforce a vicious cycle of in-
flammation, hypoxia, and impaired healing. For example,
anemia-induced hypoxia can exacerbate inflammatory sig-
naling via HIF-1α pathways [38,39], while inflammation
in turn suppresses erythropoiesis, further worsening ane-
mia [40]. Concurrently, hypoalbuminemia not only signals
depleted nutritional reserves, but also weakens antioxidant
defenses and buffering capacity against inflammatory cy-
tokine storms [41]. This effect is particularly pronounced
in the setting of lymphocytopenia and subsequent immune
dysregulation. The resulting systemic vulnerability pre-
disposes patients to severe microvascular damage during
ischemia–reperfusion and maladaptive cardiac remodeling,
ultimately leading to adverse clinical outcomes.

Of note, our analysis of subgroups identified a signif-
icant interaction between the HALP score and age in rela-
tion to 365 days mortality. The protective effect of a high

HALP score was markedly stronger in patients aged ≥70
years, but was not significant in the younger cohort. A
likely explanation for this is that elderly patients, because
of their diminished physiological reserves, are more vul-
nerable to the nutritional and immune insults captured by
the HALP score. In contrast, mortality in younger patients
may be driven by more aggressive pathophysiological fac-
tors that overshadow the HALP parameters. This finding
highlights the utility of the HALP score as a particularly
crucial long-term prognostic marker for risk-stratification
of elderly, critically ill AMI patients.

In summary, a low HALP score reflects an impaired
immune defense and poor nutritional reserves, resulting in
uncontrolled inflammatory responses and oxidative stress.
This weakened immune state further increases the patients’
susceptibility to complications such as infections, while
hindering myocardial repair, delaying functional recovery,
and ultimately worsening patient prognosis. Conversely,
when the HALP score exceeds a certain threshold, it in-
dicates a relatively favorable immune and nutritional sta-
tus. Beyond this point, further increases in HALP score
provide diminishing marginal benefit in terms of progno-
sis, representing a plateau in its predictive utility. More-
over, recent findings indicate that certain glucose-lowering
drugs, such as GLP-1 receptor agonists and SGLT2 in-
hibitors, may provide cardioprotective effects in AMI, ir-
respective of their glycemic control function. These agents
exhibit anti-inflammatory and endothelial-stabilizing prop-
erties, which may interact with nutritional and inflamma-
tory pathways reflected in the HALP score [42]. Although
not addressed in the present study, this evolving therapeutic
landscape warrants further investigation. Compared to pre-
vious studies, our work offers several novel insights. Pannu
[43] emphasized the theoretical advantages of HALP and
CALLY as systemic indices to supplement traditional ACS
risk models, but provided no primary data from critically
ill cohorts. Yılmaz et al. [44] focused on elderly AMI pa-
tients (≥75 years) undergoing PCI and identified HALP as
a long-term predictor of mortality in a relatively small, elec-
tive cohort. In contrast, our study targeted critically ill AMI
patients in the ICU setting and provided robust statistical
modeling, including nonlinear and machine learning analy-
ses. We identified a clinically actionable threshold (HALP
= 19.41) to facilitate early risk stratification and personal-
ized care.

Nonetheless, this study has several limitations that
should be taken into consideration. First, a key limitation
is the selection bias associated with the exclusion of 73.8%
of patients who lacked HALP data. Because the patients
included in the study cohort were more unwell and had
higher mortality, our findings on the prognostic value of
the HALP score apply mainly to this high-risk group and
may not generalize to less severe AMI populations. Sec-
ond, due to a substantial amount of missing data for inflam-
matory biomarkers and lipid profiles in the database, these
variables could not be incorporated into our analysis. This
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absence may limit a more comprehensive understanding of
the immune and metabolic pathways involved in AMI, po-
tentially affecting the completeness of our predictive mod-
els. Third, the retrospective and single-center design of the
study is a further limitation, with the findings being sus-
ceptible to selection bias and residual confounding, thus
restricting our ability to establish causality. Fourth, this
was a retrospective, single-center study based on a U.S.
tertiary academic hospital cohort, with patients limited to
those admitted to the ICU for AMI. Caution is warranted
when extrapolating the findings to AMI populations outside
the ICU, in resource-limited settings, or in different health-
care systems. Furthermore, the findings may not fully ap-
ply to patients with specific clinical subtypes, such as ST-
elevation or non-ST-elevation MI. Lastly, the HALP score
in this study was calculated from lab values obtained during
the initial 24 h of the patient’s stay in ICU. This may reflect
acute physiological stress rather than chronic nutritional or
inflammatory status. Therefore, caution is warranted when
interpreting HALP as a modifiable biomarker. To over-
come these shortcomings, future investigations should fo-
cus on large-scale, prospective studies conducted at multi-
ple centers. Such a design would be instrumental in vali-
dating our findings across more heterogeneous AMI popu-
lations, including non-ICU patients and those from different
healthcare systems. This would enhance the generalizabil-
ity of our findings and reduce selection bias. Furthermore,
additional studies should aim for the systematic collection
of serial HALP measurements alongside a comprehensive
panel of inflammatory and metabolic biomarkers. Such an
approach is crucial for mitigating confounding factors and
better elucidating the temporal dynamics and causal role of
the HALP score in AMI prognosis.

5. Conclusions
The present study validates the HALP score as an in-

dependent predictor of mortality for patients with AMI.
Moreover, machine learning models incorporating the
HALP score showed strong performance in predicting mor-
tality risk, further highlighting its potential utility in clinical
decision-making. These results support use of the HALP
score as a practical, economical, and objective tool for early
risk stratification and outcome prediction in critically ill pa-
tients with AMI.
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