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Abstract

Many patients with chronic renal impairment experience cardiac comorbidities throughout their lives, and the incidence of electrophysio-
logical demise for patients with terminal renal impairment requiring renal replacement therapy is higher than in patients with normal renal
function. Thus, this relationship warrants continued examination, such that the risk of subsequent cardiac complications might eventu-
ally be mitigated. This review aims to outline the electrophysiology concepts, both basic and clinical, underlying the pathophysiology
mediated by end-stage renal disease (ESRD). An evaluation of how chronic kidney disease may accelerate adverse cardiac remodeling,
as well as the mechanisms through which hemodialysis may precipitate electrophysiological aberrations that impair the ability of the
conduction system to maintain normal sinus rhythm, are provided. Furthermore, relevant animal models for this pathophysiology, with
respect to their innate ability to recapitulate human renal and cardiac electrophysiology, are outlined. Specifically, the concepts of hyper-
kalemia, pericarditis, and arrhythmia are discussed in relation to ESRD. Furthermore, murine, porcine, and human species are compared
and contrasted on all structural levels, from subcellular to clinical, illustrating which models best recapitulate this propensity to asystole.
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1. Introduction

End-stage renal disease (ESRD) is a laboratory di-
agnosis (estimated glomerular filtration rate less than 15
milliliters/minute/1.73 meters?) that also requires the pres-
ence of clinical signs and symptoms of uremia, such as
anorexia, nausea, and fatigue. ESRD is the right-most posi-
tion on the spectrum of acute and chronic renal syndromes
that has an age-specific down-trending prevalence, which
is offset by an increasing total prevalence in the setting of
epidemic hypertension and diabetes [1].

Preceded by the progressive loss of nephrons, termed
renal insufficiency, as well as functional impairment of
blood filtration, termed renal failure [2], ESRD is a termi-
nal condition that can be managed via dialysis, preferably
peritoneal dialysis for young patients without other comor-
bidities [3], or renal transplantation. However, dialysis has
adverse effects on the cardiovascular system through oxida-
tive stress and on the metabolic system through hyperlipi-
demia and hyperhomocysteinemia [4]. A therapy superior
to dialysis has yet to be revealed, with the exception of al-
logeneic renal transplantation, which necessitates lifelong
immune modulation.

The most common cause of death related to ESRD is
not renal in nature but cardiovascular, often through atrial
and ventricular tachyarrhythmias leading to acute asys-
tole. Indeed, sudden cardiac death (SCD) represents 22%
of ESRD-related deaths [5], with the arrhythmogenic sub-
strate thought to be enhanced through the cardiovascular

and metabolic remodeling associated with chronic kidney
disease. Once sufficient proarrhythmic remodeling, which
is mediated through both uremia and often comorbid sub-
acute ischemia, has produced a critical volume of arrhyth-
mogenic substrate with quenched repolarization reserve, it
is hypothesized that the substrate is then activated by the
sudden fluxes in electrolyte concentration, both relative and
absolute, associated with hemodialysis (Fig. 1).

All of these concepts have remained active areas of
research [6—8] as both physicians and molecular scientists
pursue recapitulating the adverse cardiorenal remodeling in
animal models to identify necessary and sufficient steps,
ultimately aiming to improve clinical outcomes via novel
interventions. However, some animal models are better
suited to approximate human macroscopic renal and car-
diovascular electrophysiology due to similarities in subcel-
lular protein expression and comparable electromechanical
coupling profiles.

2. End-Stage Renal Disease

ESRD is a dynamic disease with four major metabolic
consequences: (1) hypertension due to blunted blood fil-
tration for micturition, (2) components of uremic syndrome
due to impaired elimination of nitrogenous waste, (3) com-
ponents of metabolic acidosis due to hypertrophy-turned
failure of residual nephrons causing retention of hydrogen
ions, and (4) components of non-hemolytic normocytic ane-
mia via low plasma erythropoietin, dialysis-mediated blood
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Fig. 1. Patient case. (A) A surface electrocardiogram from a patient with end-stage renal disease on intermittent hemodialysis with

comorbid multivessel coronary artery disease complicated by coronary artery bypass grafting and heart failure with reduced ejection

fraction secondary to ischemic cardiomyopathy, who presented to the hospital via emergency medical services immediately after sched-

uled outpatient hemodialysis, where the patient experienced unwitness

tachycardia. (B) A follow-up surface electrocardiogram from the sam

ed cardiac arrest secondary to sustained monomorphic ventricular

e patient, which illustrates additional reentrant ventricular ectopy

in the setting of prolonged corrected QT interval despite normal serum electrolytes outside of iatrogenic mild hypermagnesemia.

loss, and possibly inadequate nutritional intake of folate
and cobalamin. While these four clinical findings are fre-
quently encountered, this review will focus on the more
subtle concepts of hyperkalemia, pericarditis, and arrhyth-
mia to address the cardiac electrophysiology underlying
ESRD-mediated cardiac arrest and SCD.

2.1 Hyperkalemia

Normal potassium homeostasis is predominantly a re-
nal circadian process that occurs slowly, in contrast to
the acute process that occurs over four hours or less with
hemodialysis or less than one hour with emergent insulin,
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albuterol, and bicarbonate-mediated intracellular shifting.
Hyperkalemia, often found during fasting periods in pa-
tients with ESRD, has been associated with low muscle
tone, cardiac conduction deficits, and both bradycardic and
tachycardic arrhythmias [4]. Moreover, the risk of all-
cause mortality increases nearly exponentially with increas-
ing serum potassium levels [9]. Given this exceptional de-
gree of increased risk, it is hypothesized that the effects of
excess extracellular potassium on the heart specifically are
most related to the identified elevated all-cause mortality.
Meanwhile, cellular adaptation to chronic hyperkalemia,
characterized by aberrations in sodium, calcium, and chlo-
ride currents, may contribute to the background that under-
lies bradycardia, prolonged QT interval, and asystole dur-
ing the peri-dialysis period [10,11].

Additionally, it is hypothesized that the decreased
driving force for potassium efflux in both autorhythmic and
mechanically driven cardiomyocytes during chronic hyper-
kalemic periods leads to modulation of membrane chan-
nel abundance and distribution, in an attempt to maintain
normal physiologic action during depolarization and repo-
larization. These non-uniform adaptive changes suddenly
become maladaptive in the face of acute dialysis-mediated
hypokalemia, where the driving force for potassium efflux
is substantially increased (Fig. 2). Furthermore, this sudden
increase in potassium efflux could lead to hyperpolarization
and dispersed repolarization heterogeneity (Fig. 3). Thus,
molecular studies are needed to evaluate this hypothesis, as
potential therapeutic targets in the membrane channel ex-
pression pathway may be identified to interrupt this poten-
tial adaptive-turned maladaptive phenomenon, or even cor-
rect it acutely.

2.2 Pericarditis

Pericarditis in the context of ESRD is thought to be
due to uremic toxin accumulation. The parietal and visceral
pericardium are composed of mesothelial cells, fibroblasts,
adipocytes, and small blood vessels. Uremic toxins, such as
urea and the ensuing reactive oxygen species, parathyroid
hormone, and homocysteine, can precipitate pericarditis by
facilitating a proinflammatory state, particularly in adipose
tissue [12]. Pericarditis is related to arrhythmias in that an
inflammatory infiltrate from the visceral pericardium has
been described extending to the sinus node and other por-
tions of the atrial myocardium [13], which could explain
why atrial fibrillation is prevalent in ESRD patients [14].

2.3 Arrhythmia

As previously demonstrated (Fig. 1), a disproportion-
ate number of chronic dialysis patients consistently suc-
cumb to lethal ventricular arrhythmia. From the perspec-
tive of this review, multiple components are likely at play
regarding the initiation and propagation of the ventricular
arrhythmia. The first and most obvious factor is ESRD-
mediated hyperkalemia, as well as other electrolyte imbal-
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ances that can contribute to creating an arrhythmogenic sub-
strate. The second factor encompasses all uremic toxins that
may impair normal myocardial function by affecting mito-
chondrial energetics [12] and induce macro- and microvas-
cular atherosclerosis, leading to ischemia-mediated fibro-
sis. Note that this second factor is not a direct cause for ar-
rhythmia, but rather for myocardial dysfunction that may, in
itself, predispose to arrhythmia. The third and final factor,
from the perspective of this review, involves pericarditis, as
a non-compliant pericardium can serve as both a mechan-
ical obstruction and a paracrine hindrance through its re-
cruitment of proinflammatory cells and cytokines. Again,
this third factor does not directly lead to arrhythmia, but
rather contributes to the proarrhythmic environment.

3. Renal Ion Channels

Renal ion channel function modulates serum elec-
trolyte values, which in turn can modulate cardiac ion chan-
nel density and function in a compensatory manner.

3.1 Humans

Renal tubule epithelium is one of the most active tis-
sues in the entire body due to the diversity of channels
and the sheer quantity of secondary active transport tran-
scellular pumps. The sodium—potassium ATPase is at the
core of all electrophysiology, predominantly represented by
the a1-31 isoform in mammalian kidneys [15], which es-
tablishes the baseline cation gradients that underpin ATP-
independent electrophysiology in the body, accounting for
the majority of all electrophysiologic activity. The ba-
solateral ten + two transmembrane domain-containing en-
zyme secretes sodium and retains potassium; hence, why
fluid overload-mediated hyponatremia, in addition to hy-
perkalemia, is a common finding in ESRD [16] since an os-
motic gradient is created by the diminished tubular sodium—
potassium ATPase activity, which leaves cations in the
plasma. This reduced activity has three possible expla-
nations: (1) uremic toxin-damaged mitochondrial machin-
ery, stunting the basolateral sodium—potassium ATPase,
(2) a defect in the apical potassium leak channels upon
which the sodium—potassium—chloride symporter, namely
NKCC2 isoforms A, B, and F [17,18] rely, or (3) frank
sloughing of the tubular epithelium.

The renal outer medullary potassium channel, specif-
ically isoforms 1 and 3 of the principal cell [19], facil-
itates the efflux of potassium out of the cytoplasm and
into the ultrafiltrate under the influence of magnesium [20]
and in collaboration with the aldosterone-sensitive epithe-
lial sodium channel. The large potassium channel also
works in conjunction with the renal outer medullary potas-
sium channel, with the exception that its lower affinity for
potassium makes it flow-dependent in ultrafiltrate [19,21—
23]. In ESRD after chronic kidney disease, it is hy-
pothesized that chronic perturbations in potassium concen-
trations induce an upregulation in excretion mechanisms
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Fig. 2. Maladaptive potassium efflux regulation. A stylized schematic of the non-uniform potassium efflux upregulation that could

occur with recurrent hyperkalemia. This adaptation could become pathologic when serum potassium levels suddenly decrease from

therapies, such as acute hemodialysis, creating repolarization heterogeneity and electrical dyssynchrony. Illustration modified from

Microsoft Copilot May 2025 Update (1.25053.93.0).

(sodium—potassium ATPase and apical potassium channels)
as well as altered handling of other electrolytes (sodium—
potassium—chloride symporter, aldosterone-mediated ep-
ithelial sodium channel [24], and Wnk-sensitive sodium—
chloride cotransporter [25]) to preserve membrane poten-
tials at the expense of chemical gradients [26].

3.2 Mice

Murine nephropathy models are widely employed;
however, their clinical application in relation to ESRD is
limited. Moreover, the advantages conveyed in these mod-
els are often unrelated to their innate ability to recapitu-
late human physiology-turned-pathophysiology, but rather
relate to logistical advantages such as decreased housing
costs, feed costs, and ease of genetic and surgical experi-
mentation.

It is no surprise that mouse renal function differs from
that of humans. For starters, proximal tubular cells occupy
a larger surface area than just the proximal tubule. Mean-
while, tubularization of Bowman’s capsule is commonly
observed in our quadrupedal counterparts [27], while it is
rare in humans. This could partially explain why a five-

sixths nephrectomy induces an acutely elevated blood urea
nitrogen and creatinine that then levels off to mild levels
after four weeks [28,29] in the commonly used C57BL/6
strain.

The other explanation for enhanced renal activity even
in the face of pathology could be that mouse tubular epithe-
lial cells are capable of withstanding a remarkable amount
of oxidative stress [30], which may be more than human
cells can combat. Nonetheless, both mice and humans are
thought to express the same sodium—potassium ATPase o 1—
B1 isoforms, although with a different v subunit [15,31],
which may partially explain the altered stability. While iso-
forms 1 and 3 of the renal outer medullary potassium chan-
nel are relevant in humans, isoform 1 has no functional sig-
nificance in mice and is not coupled with the action of the
sodium—potassium—chloride symporter as it is in humans
[32].

3.3 Pigs

Swine models of nephropathy are considered superior
to murine models due to the increased similarity in enzyme
and transporter isoforms at the kidney level [33], as well
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Local Electrograms

Surface Electrocardiogram

Fig. 3. Proarrhythmic repolarization heterogeneity. An anatomic diagram of the geographically separated electrical dyssynchrony

in the setting of rapid electrolyte changes. In combination with other secondary pathophysiology, end-stage renal disease and rapid

hemodialysis can facilitate sudden cardiac death via ventricular tachyarrhythmia—illustration modified from Microsoft Copilot May

2025 Update (1.25053.93.0).

as in other relevant organs, such as the heart, thereby en-
hancing overall physiologic translation ability. Notably, the
degree of metabolic acidemia may play a significant role
in determining the extent of nephrotoxicity and the subse-
quent translational utility between swine and mouse models
[34]. The scientific literature contains a paucity of orig-
inal research manuscripts evaluating acid—base homeosta-
sis in mice with ESRD. Pigs that undergo four/five-sixths
nephrectomy also exhibit an acute increase in BUN and cre-
atinine that recovers to a moderate (meaning more often sta-
tistically significant) level [35], rather than the mild level of
uremia observed in most mouse models (Table 1) [36].

Morphometry of the porcine kidney yields smaller di-
mensions than the human kidney in all parameters except
for length [37]. However, their embryological development
from pronephros to mesonephros to metanephros is identi-
cal to that of human and mouse renal development, as all
are mammalian. The difference is attributed to the absolute
number of nephrons per kidney, which is approximately
14,000 in mice, 1 million in humans, and a value interpo-
lated for swine, although the number is highly variable be-
tween human ethnicities [38]. Swine arterial segments do
not resemble those of humans with respect to distribution
and size [39], while mice are thought to more consistently
replicate the typical cranial-caudal organization [40,41].

4. Pericarditis

As mentioned before, pericarditis in itself does not di-
rectly lead to arrhythmia, but rather is secondary to a proin-
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flammatory trigger that may contribute to a proarrhythmic
environment.

4.1 Humans

Pericarditis is an active process that consists of stages
of inflammation, but can also refer to the residual sequelae
from an acute bout of pericarditis. Frequently caused by
viral infection or autoimmune hypersensitivity in middle-
aged men, pericarditis is a rare diagnosis and elusive in that
the exact mechanisms have yet to be defined. Clinically, the
majority of cases of acute pericarditis are benign, perhaps
lessening the driving force behind basic and translational re-
search. With an estimated annual incidence of less than 1%
among all hospitalized patients [42], the primary therapy for
pericarditis remains non-steroidal anti-inflammatory drugs,
with colchicine and interleukin-1 blockade treatments used
in the event of recurrence.

The mechanism of pericarditis depends on which spe-
cific etiology is being discussed. As previously alluded
to, the infectious etiology is commonly encountered; how-
ever, the uremic etiology may be more frequently repre-
sented in the scientific literature. Regardless of the specific
triggers, pericarditis eventually involves activated resident
fibroblasts, which have a high metabolic and telomere-
conferred reproductive tolerance. This hyperplasia, pre-
ceded by the inflammatory secretome from both polymor-
phonuclear myeloid cells and lymphocytic cells, results in
granulation tissue [43], which facilitates angiogenesis as the
M1-M2 transition is completed [44,45]. This inflammation
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Table 1. Summary of renal differences.

Category Human

Mouse Swine

Nephron count ~1 million per kidney

Nat/K+- al-41 isoforms; essential for

ATPase electrochemical gradients; impaired in
ESRD

Potassium chan- ~ ROMK isoforms 1 and 3 functional; BK

nels channel flow-dependent

Sodium  trans- Tightly-regulated NKCC2, ENaC, and

porters NCC; hormone-responsive

Water reabsorp-  AQP2 regulated by vasopressin; essential
tion for water reabsorption
Response to in-  Chronic electrolyte imbalance in ESRD;

jury impaired pumps and epithelial damage

Similar isoforms but with a different
~ subunit; altered stability

ROMK isoform 1 not functional;
varied BK channel function
Functional but less coupling;

Functional AQP2; possible
differences in vasopressin response
Acute BUN/creatinine increase

post-nephrectomy; mild uremia;

~14,000 per kidney Intermediate between mice and
humans
Similar to humans; high

translational relevance

Similar structure and function to

humans
Closely resemble human

regulatory differences transporter expression and
regulation

Similar vasopressin response and

function to humans
Moderate uremia
post-nephrectomy; more closely

stress-resilient mimics human ESRD

A table of the major differences between human, murine, and swine models with respect to renal function, ion channels, and renal dis-

ease severity. Definitions: «, alpha; 3, beta; ESRD, end-stage renal disease; ROMK, renal outer medullary potassium channel; BK, big
potassium/maxi-K; NKCC2, Na—K-2Cl cotransporter 2; ENaC, epithelial sodium channel; NCC, sodium—chloride cotransporter; AQP2,

aquaporin 2; BUN, blood—urea—nitrogen.

may lead to myocarditis, and the increased mechanical re-
sistance of the remodeled pericardium may hinder the abil-
ity of the right heart to function properly due to its relatively
low muscle mass.

4.2 Mice

A review of the scientific literature reveals a dearth of
research on murine pericarditis, as our search yielded only
four manuscripts representing the years 1979 to 2018. With
this limited data, one can draw the following conclusion:
mice are susceptible to Coxsackievirus- and Trypansoma
cruzi-induced myopericarditis [46,47], likely due to either
the activation of the Nod-like receptor type three protein
innate immunity cascade [48] or activation of innate lym-
phoid cells [49].

Although limited, this conclusion supports the notion
that murine models of human ESRD-mediated pericarditis
may serve a purpose due to their analogous intrinsic quali-
ties in immunology and pericardial physiology.

4.3 Pigs

While four manuscripts could be identified with
murine pericarditis, three of which were contemporary,
only two manuscripts could be identified that describe the
modelling of pericarditis in porcine models, and only one of
the two manuscripts utilized a clinically relevant methodol-
ogy [50]. While the publication addresses the autoimmune
etiology of pericarditis, it sheds little light on the uremic
processes. It is hoped that this review will inspire further
research in this area.

5. Ion Channels in the Heart
5.1 Humans

Human cardiomyocytes express a1, a2, and a3, in ad-
dition to 1 isoforms, to formulate their sodium—potassium
ATPase [51]. The a2 isoform is fundamental to both car-
diac and smooth muscle due to its role in calcium home-
ostasis [52] and is the target of cardiac glycosides [53]. In
comparison to the nephron, the cardiomyocyte is less com-
plex in terms of diversity and the number of enzymes and
channels in its sarcolemma. However, the present channels
combine to function seamlessly on the order of microsec-
onds and produce a very interesting pathology when uncou-
pled.

The sodium—potassium ATPase is coupled with a
sodium—calcium antiporter, commonly isoform 1, as intra-
cellular calcium fluxes and the basal sarcoplasmic concen-
tration must be tightly controlled to prevent altered genetic
regulation for anabolic, catabolic, or apoptotic processes
[54]. Ryanodine receptor 2 is the largest known ion chan-
nel and is also the isoform present in humans to release cal-
cium from the sarcoplasmic reticulum [55]. The function-
ally coupled dihydropyridine receptor for the L-type cal-
cium current is composed of five subunits, of which the a1
subunit is paramount in determining pore size and drug in-
teractions [56]. In the human cardiomyocyte, a1 isoforms
1.2 and 1.3 are present, conferring a relatively high sensi-
tivity to compounds such as nifedipine.

The incessant metabolic activity of the heart requires
a high density of mitochondria to power the preferentially
aerobic cellular machinery. In healthy states, the organ op-
erates similarly to a well-oiled machine. However, in the
ESRD states characterized by low cellular energy due to
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hyperlipidemia, toxemia resulting from urea-mediated re-
active oxygen species, and aberrant calcium homeostasis
caused by elevated parathyroid hormone, alongside a high
density of mitochondria, can be crippling due to their abil-
ity to induce apoptosis and subsequent heart failure. The
coupling of L-type calcium channels to mitochondria is a
critical link in calcium regulation [57] and may help ex-
plain the beneficial effects of nifedipine therapy in chronic
kidney disease and ESRD [58].

Autorhythmic cardiomyocytes should also be ac-
knowledged, as their functional decline may contribute to
the frequently encountered uremic bradycardia and sud-
den cardiac death [59]. In addition, their failing strength
may decrease the likelihood of spontaneous return to nor-
mal sinus rhythm during dyskalemic-induced tachycardic
episodes. Indeed, alterations in the Nay1.5 current have
been shown to increase the likelihood of arrhythmia, po-
tentially to a greater degree than modulated activity in other
potassium currents [60,61].

Hyperpolarization-activated ~ cyclic ~ nucleotide-
modulated channel isoforms 14, responsible for the funny
current, are primarily expressed in conduction system cells;
however, structural cardiomyocytes can also express these
channels during adverse remodeling [62]. Essentially, any
deviation from normal ion channel number or distribution
will disturb the funny current in autorhythmic cells and
subsequently increase the likelihood of arrhythmia or
decrease the likelihood of successful cardioversion to sinus
rhythm. Computational models have implicated calcium
in autorhythmic cell deterioration during ESRD-mediated
bradycardia and SCD [63]. Furthermore, autorhythmic
cells may exhibit a high tolerance to ischemia but a low
tolerance to toxicity, and their adaptive response often
involves a change in the number and distribution of ion
channels [64,65].

5.2 Mice

Some rodents have been described to lack the sodium—
potassium ATPase a2 isoform, rendering cardiac glyco-
sides relatively inert [15,53]. However, mice express the a2
isoform in addition to the 52 isoform, both of which seem to
be restricted to expression in the myocardium [52]. More-
over, the coupled sodium—calcium antiporter, isoforms 1
and 2, have been documented [66], suggesting that the basic
cellular machinery for maintaining the quintessential cation
gradients is similar to that described in humans.

Nonetheless, this notion of similar machinery does not
persist in the discussion of calcium regulation, with the
most obvious difference between mice and humans, with
respect to cardiac function, being the large difference in
resting heart rate, which is a macroscopic manifestation of
the minute differences in protein isoform expression related
to sodium current and intracellular calcium handling. Mice
express the ryanodine receptor 2 [55] similarly to humans;
however, the upstream Nay 1.5 is composed of the a, 51,
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and (2 subunits [67], rather than the « subunit with differ-
ent 3 subunits. It is the § subunits that confer thermody-
namic stability to the pore-forming « subunit, modulating
the open—inactive—closed cycle [68,69].

Calcium reuptake from the sarcoplasm back into
the sarco-endoplasmic reticulum is the responsibility of
SERCAZ2a in all mammals, with a minor contribution from
isoform 2b [70]. While subtleties may exist between
species with respect to the calcium ATPase amino acid
sequence, a larger degree of modulation is regulated via
phospholamban, a negative allosteric modulator that is con-
served between all mammals, and sarcolipin, another neg-
ative allosteric modulator that shares a binding site with
phospholamban and is also likely conserved between all
mammals [70]. The allosteric effects are mediated by the
degree of protein abundance, which differs between atria (a
lesser quantity) and ventricles (a greater quantity), as well
as between different mammalian species, such as mice and
humans.

Finally, autorhythmic cardiomyocytes in mice are
equivalent to those in humans with the main differ-
ence being in the action potential duration, which is
shorter in mice due to (1) a faster pacemaker poten-
tial from hyperpolarization-activated cyclic nucleotide-
modulated channel isoforms 1-4 [60,71,72] and (2), ax-
illary subunit isoform differences in t-type calcium chan-
nels. Functional decline is hypothesized to be causative of
ESRD-mediated sinus bradycardia; however, no significant
difference in heart rate was observed between wild-type and
5/6 nephrectomy mice, nor was there an increase in sponta-
neous or inducible arrhythmias (Table 2; Ref. [73]). These
findings are attributed to the mechanism of kidney disease
induction, the compensatory hypertrophy of the remaining
1/6 kidney that acts to compensate for the acute insult, a
short period of chronic kidney disease-associated ion chan-
nel remodeling without sufficient time for systemic elec-
trolyte concentration disturbances, and no functional dete-
rioration to ESRD.

Table 2. Murine heart rate and electrophysiologic evaluation.

Heart Rat: Non-Sustained VT
Sample e a. ¢ Induced VT on u.s amne
(beats per minute) (episodes)
Wildtype 421 + 28 0/5 (0%) 1
Uremic 381 + 59 0/2 (0%) 1

The intrinsic heart rate (beats per minute) and response to elec-
trophysiologic evaluation (incidence of programmed electrical
stimulation-induced ventricular tachycardia (VT)) in wildtype mice
(n = 5) and 5/6 nephrectomy-mediated uremic mice (n = 2; four
weeks of uremia). The definition of sustained VT in small animals
is greater than fifteen consecutive premature ventricular contrac-
tions as defined in previous publications [73]. No statistically sig-
nificant relationships exist between reported parameters. Heart rate

is reported as mean + standard error of the mean.
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Table 3. Summary of cardiac differences.

Category

Humans

Mice

Swine

Ion channel expression

Potassium regulation

Arrhythmia propensity

Uremia may induce autorhythmic cell
dysfunction, in addition to potentially inducing
chronic adaptive changes in ion channel
expression to preserve action potential integrity.
Transient outward potassium current plays a role
in repolarization.

Moderate propensity to ventricular arrhythmia at
baseline that increases in ESRD.

Similar to humans in basal sodium—potassium
handling but with unique calcium sensitivity and
cycling; overall, relatively refractory to uremia.

Prominent transient outward potassium current,
similar to humans.

Low propensity to ventricular arrhythmia at
baseline that does not change significantly with
ESRD.

Less gap-junction distribution, otherwise similar
to human expression in ion channel isoforms and
relative abundance at baseline and in ESRD.

Minimal role of transient outward potassium
current in repolarization, contributing to a
relatively prolonged action potential duration.
A higher propensity for ventricular
tachyarrhythmia at baseline has not been
well-characterized in ESRD.

The major differences between human, murine, and swine models with respect to ion channels that facilitate cardiac rhythm.


https://www.imrpress.com

5.3 Pigs

Cardiovascular research has long utilized swine mod-
els due to their similarity to human cardiac anatomy and
physiology, their propensity to spontaneous atheroscle-
rosis, and their inability to form collateral anastomoses
quickly. The scientific literature reveals no major dif-
ferences between pigs and humans with respect to either
ion channel isoforms or relative expression. Specifically,
swine cardiomyocyte expression of the sodium—potassium
ATPase [74], sodium—calcium antiporter [75,76], calcium
channels, and their regulators [77,78] is similar to that in
human cardiomyocytes in both normal and disease states
(Table 3). However, there has been and continues to be
a significant difference in the propensity of pigs to tach-
yarrhythmia and susceptibility to cardioversion after fibril-
lation [79].

This difference could be rooted in a difference in
potassium regulation on a subcellular level, specifically in
the transient outward potassium current. This current is
prominent in repolarization in humans and mice but plays
a negligible role, if any role at all, in the action potential in
pigs [80]. Further, the innate propensity of pigs to arrhyth-
mia, namely atrial and ventricular premature complexes and
fibrillation rather than the conduction blocks found in other
models, has been quantified [81,82], and was attributed to
(1) a relatively prolonged action potential duration due to
less potassium efflux, increasing the likelihood of R-on-T,
and (2) a smaller gap-junction distribution [83,84]. Though
their propensity to arrhythmias makes swine difficult to
manage during experimental studies, it also facilitates ro-
bust clinical translation when novel therapeutics, such as
the inhibition of the sodium—hydrogen exchanger, are eval-
uated with positive outcomes [85].

6. Conclusion

This review discusses the topics of hyperkalemia,
pericarditis, and arrhythmia in the context of animal mod-
els for ESRD. Additional research is necessary to validate
the hypothesis that increased potassium efflux secondary
to chronic hyperkalemia in ESRD directly predisposes to
lethal ventricular arrhythmias. Furthermore, it is not cur-
rently known whether potassium dysregulation in the set-
ting of rapidly shifting serum levels is sufficient and/or nec-
essary to produce the clinical phenotype of arrhythmogenic
asystole observed in ESRD patients. Translational research
has been and will continue to be paramount to understand-
ing and eventually preventing cardiac arrest in patients.
Thus, understanding the molecular, biophysical, and subse-
quent macroscopic differences in ion handling and chronic
adaptations between humans, pigs, and mice will enable in-
creasingly precise arrhythmia research with accurate clini-
cal correlation.
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